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Enhancement effect of mass 
imbalance on Fulde-Ferrell-Larkin-
Ovchinnikov type of pairing in 
Fermi-Fermi mixtures of ultracold 
quantum gases
Jibiao Wang1,2, Yanming Che1,2, Leifeng Zhang1,2 & Qijin Chen1,2

Ultracold two-component Fermi gases with a tunable population imbalance have provided an excellent 
opportunity for studying the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, which have been 
of great interest in condensed matter physics. However, the FFLO states have not been observed 
experimentally in Fermi gases in three dimensions (3D), possibly due to their small phase space volume 
and extremely low temperature required for an equal-mass Fermi gas. Here we explore possible 
effects of mass imbalance, mainly in a 6Li–40K mixture, on the one-plane-wave FFLO phases for a 3D 
homogeneous case at the mean-field level. We present various phase diagrams related to the FFLO 
states at both zero and finite temperatures, throughout the BCS-BEC crossover, and show that a large 
mass ratio may enhance substantially FFLO type of pairing.

The past decade has seen great progress in ultracold atomic Fermi gas studies1,2. With the easy tunability in terms 
of interaction, dimensionality, population imbalance as well as mass imbalance1,2, ultracold Fermi gases have 
provided a good opportunity to study many exotic quantum phenomena. In particular, the 
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, which were first predicted by Fulde and Ferrell3 (FF) and 
Larkin and Ovchinnikov4 (LO) in an s-wave superconductor in the presence of a Zeeman field about fifty years 
ago, have attracted enormous attention in condensed matter physics5, including heavy-fermion6, organic7 and 
high Tc superconductors8–10, nuclear matter11 and color superconductivity12, and ultracold Fermi gases13–15. In 
these exotic states, Cooper pairs condense at a finite momentum q, with an order parameter of the form of either 
a plane-wave Δ​(r) =​ Δ​0eiq ⋅ r or a standing wave ∆ = ∆ ⋅r q r( ) cos( )0  for the FF and LO states, respectively. 
Despite many theoretical studies on the FFLO states in equal-mass Fermi gases, both in a 3D homogeneous 
case16–21 and in a trap22–24, the experimental search for these exotic states in atomic Fermi gases still has not been 
successful25–27, largely because they exist only in a small region at very low temperature in the phase space16,17,18,23. 
To find these elusive states, attention has been paid to more complex systems. There have been theoretical inves-
tigations in either Fermi-Fermi mixtures28–30 or equal-mass Fermi gases with spin-orbit coupling31–37 or in an 
optical lattice38–43. Recently, Stoof and coworkers28,29 found an instability toward a supersolid state (i.e., the LO 
state) in a homogeneous 6Li–40K mixture in the unitarity and BCS regimes. Using a mean-field theory and the 
Bogoliubov–de Gennes (BdG) formalism, they have also studied the LO states for the unitary case30. However, it 
is hard to perform stability analysis for various phases in the BdG formalism. Other types of mass-imbalanced 
systems such as the 6Li-173Yb mixture were not considered in ref. 30.

In this paper, we will investigate the one-plane-wave FFLO states (i.e., the FF states) in a homogeneous 6Li–40K 
mixture, as well as for other mass ratios, as they undergo BCS–BEC crossover, using a mean-field theory. In par-
ticular, we will focus on the effect of a varying mass ratio. We will present several T–p (where p is the population 
imbalance) phase diagrams to show the FFLO regions under typical interaction strengths (1/kFa) at finite tem-
perature, as well as p–1/kFa phase diagrams at zero temperature. We find that when the heavy species, 40K, is the 
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majority, an s-wave FFLO phase, which is stable against phase separation, persists throughout the BCS through 
BEC regimes, with the population imbalance evolving from small to large. In contrast, when the light species, 6Li, 
is the majority, such an FFLO phase exists only in the BCS regime. At unitarity, the phase space of FFLO states 
becomes substantially enlarged as the mass ratio increases. The superfluid transition temperature Tc of the FFLO 
states may be enhanced by a factor of about 3 and 7 for a large mass ratio as in 6Li–40K44–46 and 6Li–173Yb47,48, 
respectively, in comparison with the equal-mass case16, which is hardly accessible experimentally26. Therefore, one 
may find it realistic to experimentally observe the exotic FFLO states in unitary ultracold Fermi-Fermi mixtures 
with a large mass ratio.

We also find that at zero temperature the phase space of stable FFLO states becomes larger as the mass ratio 
increases. This has never been reported by other previous works.

Despite the fact that a mean-field theory usually overestimates Tc, we believe that our findings about the 
enhancement effect of a large mass ratio on FFLO type of pairing remain valid.

Theoretical Formalism
We consider a three-dimensional (3D) Fermi-Fermi mixture with a short-range contact potential of strength 
U <​ 0, where momentum k pairs with q −​ k and thus Cooper pairs have a nonzero center-of-mass momentum q. 
The dispersion of free atoms is given by ξk,σ =​ k2/2mσ −​ μσ, where mσ and μσ are the mass and chemical potential 
for (pseudo)spin σ =​ ↑​, ↓​, respectively. We set the volume V =​ 1, and = =k 1B . At the mean-field level, the 
system with a one-plane wave LOFF solution can be described by the following Hamiltonian
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where the order parameter Δ​ carries momentum q. Using Bogoliubov transformation, it is easy to deduce the gap 
equation via the self-consistency condition
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where f(x) is the Fermi distribution function. The coupling constant U can be replaced by the dimensionless 
parameter, 1/kFa, via the Lippmann-Schwinger equation
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where a is the s-wave scattering length, mr =​ 2m↑m↓/(m↑ +​ m↓) is twice the reduced mass, and εk =​ k2/2mr. 
Therefore the gap equation becomes
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The number density of each species is given by
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2 . So the total number 
density n =​ n↑ +​ n↓ and the density difference δn ≡​ n↑ −​ n↓ are given by
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The thermodynamic potential ΩS is given by
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Momentum q is determined by minimizing ΩS at q, i.e., (∂​ΩS)/(∂​q) =​ 0, which leads to
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where nkq and δnkq are given by the summands of Eqs (8) and (9), respectively. Furthermore, the FFLO solutions 
are subject to the stability condition against phase separation (PS)16,49,50,
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This condition is equivalent to the positive definiteness of the particle number susceptibility matrix {∂​nσ/∂​
μσ′}16,50. For the Sarma phase (where q =​ 0), Eq. (12) is reduced to ∂​2ΩS/∂​Δ​2050.

Equations (6), (8), (9) and (11) form a closed set of self-consistent equations, which can be used to solve for  
(Δ​, μ↑, μ↓, q) with various parameters 1/kFa, p, and T, as well as the mass ratio m↑/m↓, and obtain the FFLO 
regions in phase diagrams. Since phase separation provides an alternative way to accommodate the excessive 
majority fermions, some of the mean-field solutions of the FFLO states are unstable against phase separation. 
Here we use the stability condition Eq. (12) to locate the phase boundary separating stable FFLO (or Sarma super-
fluid) phases and the PS phases. As a convention, we take the heavy (light) species to be spin up (down), and 
define Fermi momentum kF =​ (3π2n)1/3. To avoid an artificial jump across population imbalance p ≡​ δn/n =​ 0 in 
the phase diagrams, we take m =​ (m↑ +​ m↓)/2 and define the Fermi temperature as =T k m/2F F

2  as our energy 
unit.

Note that for the (q =​ 0) Sarma phases, we will use the pairing fluctuation theory described in ref. 51 to deter-
mine the superfluid and pseudogap regions.

Numerical Results and Discussions
Figure 1 shows the calculated T–p phase diagram for a homogeneous 6Li–40K mixture at unitarity. Pairing takes 
place below the pairing temperature T* (black solid curve). A mean-field FFLO solution exists to the lower right 
of the (red) q =​ 0 line. However, stable FFLO states exist only when 40K is the majority at relatively high p (in the 
gray shaded area). For lower p, FFLO states become unstable and phase separation takes place at low T (dotted 
region), whereas Sarma superfluid (brown area) and pseudogap states exist at intermediate T. The (green) line 
that separates the PS and the FFLO phases is given by the stability condition Eq. (12). When 6Li is the majority, 
i.e., p <​ 0, phase separation dominates the low T region. Note here that, as we focus on the FFLO phases, we do 
not distinguish superfluid and pseudogap states in the PS regions. Further details regarding non-FFLO related 
phases can be found in ref. 51.

Figure 1.  T–p phase diagram of a homogeneous 6Li–40K mixture at unitarity. Here “PG” and “PS” indicate 
pseudogapped normal state and phase separation, respectively, and LP labels a Lifshitz point. An FFLO 
superfluid (gray shaded) phase exists in the high p regime when 40K dominates, while it becomes unstable in the 
dotted region. A Sarma superfluid lives in the intermediate T and low p regime (brown shaded region).
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Shown in Fig. 2 is the (near-)BCS counterpart of Fig. 1 at 1/kFa =​ −​1, with much weaker pseudogap effects. 
Here we find stable FFLO phases for p <​ 0 as well, when 6Li is the majority. This is different from refs 28, 29 and 
30, which found no LO or supersolid states in the BCS regime for p <​ 0. The p >​ 0 part is rather similar to the 
unitary case, except that everything moves to lower p and lower T due to weaker pairing strength. For p <​ 0, 
the q =​ 0 line splits the PS phase into two regions, representing unstable Sarma (upper) and FFLO (lower part) 
phases, respectively.

In both Figs 1 and 2, we have found a Lifshitz point (as labeled “LP”) within the mean-field treatment, below 
which FFLO states emerge.

As the pairing strength grows, the Sarma phase becomes stabilized in a much larger region, especially for p <​ 0 
(not shown). However, the stable FFLO states are squeezed towards very low T and very high p 1, and eventu-
ally disappear on the BEC side of the Feshbach resonance. Our result suggests that it is more promising to find 
FFLO phases in the unitary regime.

Typical behaviors of the order parameter amplitude Δ​ are shown in Fig. 3 as a function of T. Plotted in 
Fig. 3(a) two cases corresponding to the FFLO phases in Figs 1 and 2, respectively. For both cases, we have chosen 
a population imbalance such that the FFLO phase turns into a normal gas upon crossing the phase boundary with 
increasing T. The ratio 2Δ​(0)/Tc =​ 2.39 and 3.08 for the unitary and BCS cases, respectively, substantially lower 
than the BCS ratio 3.52 for a balanced Fermi gas with equal masses. Its value depends on multiple parameters and 
can vary substantially as a function of p, as shown in the Supplementary Fig. S6.

At the mean-field level, the PG phase would be a Sarma superfluid state. Across the q =​ 0 boundary between 
this phase and FFLO phase, the transition is of the second order, with a finite but continuous gap across the 
boundary. This corresponds to the p =​ 0.6 case (blue dashed line) in Fig. 3(b). On the other hand, across the 

Figure 2.  T–p phase diagram of a homogeneous 6Li–40K mixture at 1/kFa = −1, similar to Fig. 1. Here the 
FFLO phase (gray shaded regions) exists for both p >​ 0 and p <​ 0.
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Figure 3.  Typical behavior of the order parameter amplitude Δ in the FFLO phase as a function of T, for a 
homogeneous 6Li–40K mixture. Plotted in (a) are the cases at (1/kFa, p) =​ (0,0.68) (black solid) and (−​1, 0.23) 
(red dashed), and in (b) are at unitarity with p =​ 0.55 (green solid) and 0.6 (blue dashed line).
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boundary between the PS and FFLO phases, such as the p =​ 0.55 case (green solid line) shown in Fig. 3(b), the 
transition is of the first order, with a finite but different gaps on the two sides. At fixed T, the gap decreases mono-
tonically from the PS-FFLO boundary on the smaller |p| side towards the FFLO-normal phase boundary on the 
larger |p| side, as shown in Supplementary Fig. S5.

The curves in Fig. 3(b) reveals that the gap exhibits a weak non-monotonic behavior at low T. This is not 
unusual for population imbalanced Fermi gases, and has been found previously with equal mass yet population 
imbalanced Fermi gases as well52. The reason is that thermal smearing of the Fermi surfaces at finite T may alle-
viate the mismatch between them, and thus enhance pairing in comparison with zero T. This is the same physics 
behind intermediate temperature superfluidity52.

To ascertain the effect of a varying mass ratio m↑/m↓, we now focus on the stable FFLO superfluid phase for 
p >​ 0 at unitarity and compute the phase diagram for a series of different mass ratios, as shown in Fig. 4. (The 
stable FFLO phase for p <​ 0 quickly disappears when  .↑ ↓m m/ 1 9). Now that the mass ratio is changing, it is 
important to pick the right energy unit for meaningful comparison. In addition to the TF used here, one may 
alternatively consider using mr in the definition of TF. The plot is shown in the Supplemental Fig. S2. However, 
since mr is an average based on the inverse mass, it puts more weight on the light species, which is more appropri-
ate for the p <​ 0 case. For the large p >​ 0 case, where the heavy species dominates, we conclude that the present 
definition of TF is more appropriate.

Figure 4 suggests that the FFLO Tc increases as the mass imbalance grows. At the same time, the phase space of 
stable FFLO superfluid also grows much larger as the mass ratio increases. In comparison with the mass balanced case, 
i.e., m↑/m↓ =​ 1, for m↑/m↓ =​ 40:6, the enhancement of the FFLO Tc is about 3 times. For the 6Li–173Yb mixture47,48 which 
has a mass ratio near 30, the enhancement is about 7 times. Such great enhancement of Tc and enlarged phase space 
suggest that it is much easier to find experimentally the exotic FFLO superfluid with a large mass ratio. Note that one 
may also consider measuring Tc in units of the actual Fermi temperature of the heavy majority atoms, =↑ ↑ ↑T k m/2F F, ,

2 , 
which seems to be a natural choice for ref. 27. In this case, the enhancement of Tc by mass imbalance would be even 
more dramatic, being 7 and 16 times, respectively, as shown in the Supplemental Fig. S1.

One may also notice that there is a curvature change in the FFLO-PS phase boundary in Fig. 4, (as well as 
Supplemental Figs S1 and S2), as the mass ratio increases. For a small mass ratio, the FFLO phase only occupies 
a small high p and low T region. As the mass ratio increases, it starts to extend towards the PS phase. This is due 
to the energetic competition between the FFLO and PS phases at low T. The figure suggests that at intermediate 
T, the FFLO phase can extend farther towards low p than at lower T, when the mass ratio becomes large. It also 
implies that, when compared with the homogeneous mean-field Sarma state, the energy of the PS phase decreases 
faster with decreasing T than the FFLO case, at an intermediate population imbalance and with a very large mass 
ratio. In this case, phase separation becomes energetically more favorable and thus the low T part of the phase 
boundary bends towards the FFLO phase. As a consequence, there exists an optimal value of the mass ratio, for 
which one can reach the FFLO phase with a lowest possible p. This observation would be meaningful, if one could 
continuously tune the mass ratio in experiment.

Shown in Figs 5 are the calculated p–1/kFa phase diagrams of a 6Li–40K mixture at T =​ 0 for (a) p >​ 0 and 
(b) p <​ 0, respectively. When 40K is the majority, Fig. 5(a) shows that a narrow (yellow shaded) region of stable 
FFLO superfluids persists from the BCS through the near-BEC regime, up to 1/kFa ≈​ 0.55, as p varies from 0 to 
1. Apparently, in the near-BEC regime, the stable FFLO phase exists only at large p. On the other hand, when 6Li 
is the majority, the stable FFLO phase moves left completely to the BCS side, as shown in Fig. 5(b), in agreement 
with Figs 1 and 2. In comparison with the equal-mass case16, here the stable FFLO region for p >​ 0 is slightly 
larger, while it becomes smaller for p <​ 0. Here “PS” in both figures labels the regions of FFLO and Sarma super-
fluids that are unstable against phase separations. In both cases, the FFLO q vector increases from 0 in magnitude 
as |p| increases along the boundaries of the stable FFLO phase. The red dashed line separates from unstable FFLO 
and unstable Sarma regions.
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Figure 4.  T–p phase diagram of stable FFLO superfluid in Fermi-Fermi mixtures with different mass ratios 
(as labeled) at unitarity. Large mass ratio enhances FFLO type of pairing.
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More details about the behavior of q as a function of interaction strength and population imbalance p are 
given in the Supplementary Information.

It is interesting to note that for p <​ 0, due to the left shift of the PS phase, the stable zero T Sarma superfluid 
phase has extended into the unitary regime (  − .k a1/ 0 1F ) for small |p|, as can also be seen in Fig. 1, where the 
Sarma phase extends all the way down to T =​ 0 at p 0. This should be contrasted with the p >​ 0 case and the 
equal mass case, where zero T Sarma superfluid can be found only when  .k a1/ 1 5F  and  .k a1/ 0 6F , 
respectively52.

By performing vertical and horizontal scans in Fig. 5, we have also studied the behavior of the order parame-
ter at zero T as a function of 1/kFa and p. Typical results are presented in Supplementary Fig. S5. We have found 
that, as the transition boundary between the FFLO and normal gas phase is approached from within the FFLO 
phase, the order parameter vanishes as a square root of the distance to the critical point. Such a square root scaling 
behavior is characteristic of a mean-field theory.

Since a flat bottom or quasi-uniform trap has been realized experimentally53, our homogeneous result may be 
directly applicable when such a trap is used. For a harmonic confining trap which causes inhomogeneity in terms 
of population imbalances54–56, we take the study of the homogeneous case as a necessary first step. In addition, 
one may obtain experimentally homogeneous result using a tomography technique27). In a trap, sandwich-like 
shell structures will emerge when p >​ 0, with superfluid or pseudogapped normal state in the middle shell56,57. 
Figure 1 suggests that the FFLO states may be found locally at low T near the shell interfaces where one may find 
suitable population imbalances.

Finally, we note that while more complex crystalline types of FFLO states are expected to have a slightly lower 
energy and thus may extend the PS-FFLO phase boundary slightly towards the PS phases in the phase diagrams. 
While one pair of ±​q (i.e., the LO state) may lead to a lower energy, higher order crystalline states may further 
decrease the energy. Nevertheless, the energy difference between the FF and LO states is so small that the phase 
diagrams calculated using these two different states are almost indistinguishable in the literature15–17. Therefore, 
we expect this to cause only very slight quantitative modifications in the phase diagrams and not to influence our 
main findings about the enhancement effect of a large mass ratio.

Conclusions
In summary, our results show that, in order to find the exotic FFLO states in a 3D Fermi gas, it is most promising 
to explore Fermi-Fermi mixtures with a large mass ratio in the unitary regime, where one expects to see a rela-
tively large phase space volume and a greatly enhanced superfluid transition temperature when the heavy species 
is the majority. While we have focused on the one-plane-wave FFLO, i.e., the FF case, such enhancement is pres-
ent for the LO phase as well, which has only a slightly lower energy. These FFLO states may be detected via collec-
tive modes58, vortices59, direct imaging60, rf spectroscopy61, triplet pair correlations62, and, most directly, by 
measuring the pair momentum distribution which should exhibit a peak at a finite q. Experimentally, the 
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↑T T F ,  regime has now been accessible for 6Li–40K27. With the recent report of . ↑T T0 3 F ,
48, it is hopeful that 

lower T regime can be accessed for 6Li–173Yb as well in the near future. These experimental progress makes it 
promising to observe the exotic FFLO states if they do exist.
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