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Abstract

Introduction: Altered metabolism may occur years before clinical manifestations of

Alzheimer’s disease (AD).Weuseduntargetedmetabolomicson the cerebrospinal fluid

of patients with mild cognitive impairment (MCI) to uncover metabolomic derange-

ments.

Methods: CSF from 92 normal controls and 93 MCI underwent untargeted

metabolomics using high-resolution mass spectrometry with liquid chromatography.

Partial least squares discriminant analysiswas used followed bymetabolite annotation

and pathway enrichment analysis (PES). Significant features were correlated with dis-

ease phenotypes.

Results:We identified 294 features differentially expressed between the two groups

and 94 were annotated. PES showed that sugar regulation (N-glycan, P = .0007; sialic

acid, P = .0014; aminosugars, P = .0042; galactose, P = .0054), methionine regulation

(P= .0081), and tyrosinemetabolism (P= .019) pathways were differentially activated

and significant featureswithin these pathways correlatedwithmultiple disease pheno-

types.

Conclusion: There is a metabolic signature characterized by impairments in sugars,

methionine, and tyrosine regulation in MCI. Targeting these pathways may offer new

therapeutic approaches to AD.
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1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by a complex set of molec-

ular pathways that begin decades before symptoms start.1,2 Changes

in proteins, lipids, and many other molecular networks have been

described.3,4 The overlapping and interaction of these networks can
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obscure the root pathogenic mechanisms when not fully accounted

for in molecular or analytical methods. The level of complexity in

these networks is becoming more evident as the cumulative knowl-

edge of AD pathogenesis has increased in the last decade. Disentan-

gling these complexities is becoming more feasible due to the signif-

icant advances in high throughput technologies5 coupled with novel
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bioinformatic tools including those developed by our team.6 Recent

examples applying the high throughput measurements of thousands

of metabolites coupled with advanced bioinformatic approaches has

comprehensively describedmolecular alterations andpathways inmul-

tiple diseases.7-10 We apply these advances in investigating underlying

metabolic changes in AD.

Metabolomic research focuses on examining metabolites, small

molecules (typically <1500 Da) that are end products of multiple bio-

logical pathways and processes. The human metabolome is estimated

to contain ≈150,000 or more of such metabolites and a large fraction

are still unidentified.11 Metabolomics aid in identifying downstream

perturbations from the genetic and post genetic pathways reflecting

a functional signature of biochemical activities that are closer to the

phenotypical changes.12 Our work uses high resolution untargeted

metabolomic approaches, which can be a powerful tool in describing

novel and previously unknown pathways involved in AD pathogenesis.

Brain hypometabolismhasbeen reported in symptomaticADaswell

as before the onset of cognitive symptoms.13 Preliminary studies have

suggested the existence of multiple metabolic changes in this prodro-

mal stage.14,15 However, many previous studies have either included

small samples for cerebrospinal fluid (CSF) analyses,16-18 used targeted

approaches, or focused on plasma profiling.16-19 In this study, we con-

ducted a case-control untargeted high resolution metabolomic study

on theCSF of a larger sample, relative to publishedCSF studies to date,

of normal cognition (NC) and mild cognitive impairment (MCI), a pro-

dromal state forAD.Weaimedat investigating the alterations between

NC and MCI in the metabolome and metabolic pathways using an

established high resolution metabolomic biospecimen and data anal-

ysis pipeline. We further explored the association of these metabolic

alterations with multiple disease phenotypes related to cognition, CSF

amyloid beta 1-42 (Aβ42) and tau biomarkers, and brain magnetic res-

onance imaging (MRI) measures.

2 METHODS

2.1 Participant description

Data for the current analysiswere drawn from thebaseline assessment

of participants in the Brain Stress Hypertension and Aging program

(B-SHARP) at Emory University. B-SHARP participants undergo base-

line cognitive assessments, neuroimaging, and lumbar punctures and

are subsequently enrolled clinical studies. This analysis used data from

the 185 participants enrolled from March 2016 to January 2019 who

had CSF obtained during their baseline evaluations. The protocol was

approved by the Emory University Institutional Review Board prior to

recruitment. Each participant provided a written informed consent.

The sample includes community-dwelling adults 50 years or older

with NC or amnestic MCI. Potential study participants were identi-

fied either through a referral from the Goizueta Alzheimer’s Disease

Research Center at Emory or through strategic community partner-

ships with grass roots health education organizations, health fairs,

advertisements, and mail out announcements. An appropriate study

HIGHLIGHTS

∙ Metabolic signature is detectable in amnestic mild cogni-

tive impairment (MCI), a prodromal state for Alzheimer’s

disease.

∙ This signature includes dysregulation in sugars, methion-

ine, and tyrosinemetabolism.

∙ S-adenosylmethionine is under- and S-adenosylhomo-

cysteine is overexpressed inMCI.

RESEARCH INCONTEXT

1. Systematic review: The authors searched PUBMED and

Google Scholar for previous reports of metabolomics

and Alzheimer’s disease (AD). Search terms included:

mild cognitive impairment, Alzheimer’s disease “AND”

metabolism, metabolomics. This search resulted in the

following findings: Prior studies have either included

small samples, used targeted approaches, or focused on

plasma profiling. In this study, we conducted a case-

control untargeted high resolutionmetabolomic study on

the cerebrospinal fluid of a larger sample of normal cogni-

tion andmild cognitive impairment (MCI).

2. Interpretation: We discovered that multiple pathways,

including pathways in sugar, methionine and homocys-

teine, and tyrosine metabolism were dysregulated in

AD. Further, features that were significantly different

between MCI and normal cognition had different pat-

terns of association with cognitive, neuroimaging, and

amyloid and tau biomarkers.

3. Future direction: These pathways offer newpotential tar-

gets for AD.

informant, defined as an individual who has regular contact with the

participant at least once aweek (in person or telephone), was also iden-

tified for each participant. The potential study participant attended a

screening visit, duringwhich they underwent cognitive testing. A study

physician also performed a clinical evaluation, cognitive interview, and

a lumbar puncture (LP).

2.2 Cognitive diagnosis and exclusionary criteria

Amnestic MCI categorization was done using modified Peterson

criteria. This modification included using the Montreal Cognitive

Assessment (MoCA)20 instead of Mini-Mental State Exam.21 MCI

criteria included subjective memory complaints, a MoCA < 26, Clin-

ical Dementia Rating (CDR) score, memory sum of boxes=0.5,22
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education adjusted cutoff score on Logical Memory delayed recall of

the Wechsler Memory Scale,23 and preserved Functional Assessment

Questionnaire (FAQ)<=7.24 Individuals with amnestic MCI are at

high risk for progression into dementia due to AD and hence may be

considered a prodromal state for AD.25

NCwas defined as having no significantmemory complaints beyond

those expected for age, a MoCA score >26 points, a CDR score of 0

(including 0 on the Memory Box score), and preserved FAQ <=7. Par-

ticipants were excluded if they had a history of stroke in the past 3

years, were unwilling or unable to undergo study procedures including

MRI and LP, did not have a study informant, had a clinical diagnosis of

dementia of any type, or abnormal serum thyroid stimulating hormone

(>10) or B12 (<250).

2.3 Cognitive assessment and biomarker
measurements

Demographics (age, sex, education), anthropometrics (weight and

height), medical diagnosis, and medications were collected at baseline

by interview. Cognitive assessment included those described above

plus TrailMaking Tests (TMTPartA andB) ameasure of executive func-

tion and Hopkins Verbal Learning Test (HVLT) for episodic memory.

Cognitive assessment was performed by trained personnel supervised

by the study neuropsychologist. After a fast of at least 6 hours, CSF

sampleswere collected via LPusing24GSprotte atraumatic spinal nee-

dles. Samples were collected in sterile polypropylene tubes, separated

into 0.5cc aliquots, and stored at −80◦C. Samples were subsequently

shipped to and analyzed by the Biomarker Research Laboratory at the

University of Pennsylvania (Dr. Leslie Shaw).26 CSF biomarkers: Aβ, t-
tau, and p-tau were measured using the multiplex with the multiplex

xMAP Luminex platform (Luminex Corp, Austin, TX) with Innogenetics

(INNO-BIA AlzBio3; Ghent, Belgium; for research use–only reagents)

immunoassay kit–based reagents. The test–retest reliabilities are 0.98,

0.90, and 0.85 for t-tau, Aβ, and p-tau181p, respectively.26

2.4 MRI brain imaging

Brain magnetic resolution imaging (MRIs) were also completed at

Emory University (3.0 Tesla Trio MRI scanner, Siemens Medical

Solutions, Malvern, PA). Anatomical images were acquired using

high-resolution three-dimensional (3D) magnetization-prepared rapid

acquisition with gradient echo (MPRAGE). Images were then digitally

saved for offline processing. Hippocampal volume and other volumet-

ric measurements were calculated using the free surfer package with

manual supervision. Quality checks were performed for each scan.

Left and right hippocampal volumes were obtained and combined to

derive the total hippocampal volume and cortical thickness. Intra-

cranial volume (ICV,mm3)was alsoderived fromthis analysis. Volumet-

ric measurements using free surfer has been shown to provide similar

estimates to a fully manual procedure.27 We used ICV-adjusted hip-

pocampal volume to reflect the degree of neurodegeneration for each

participant.28

2.5 Untargeted metabolomic high-resolution
metabolomics approaches and pipeline

Our metabolomic approaches used an established pipeline devel-

oped at the Clinical Biomarker Laboratory, led by Dr. Dean Jones

(diagrammatic representation of this pipeline is included in Figure

S1 in supporting information). High-resolution metabolomics (HRM)

was completed using established methods by an analyst blinded to

sample identity.8,29 Briefly, CSF samples were prepared and analyzed

in batches of 20. Prior to analysis, CSF aliquots were removed from

storage at −80◦C and thawed on ice. A 65 µL aliquot of CSF was then

treated with 130 µL of liquid chromatography-mass spectrometry

(LC-MS) grade acetonitrile, equilibrated for 30 minutes on ice and

centrifuged (16.1 × g at 4◦C) for 10 minutes to remove precipitated

proteins. The supernatant was added to an autosampler vial and

maintained at 4◦C until analysis. Sample extracts were analyzed

using LC and Fourier transform high-resolution mass spectrometry

(Dionex Ultimate 3000, Q-Exactive HF, Thermo Scientific). For each

sample, 10 µL aliquots were analyzed in triplicate using hydrophilic

interaction liquid chromatography (HILIC) with electrospray ioniza-

tion source operated in positive mode. This use of complementary

chromatography phases and ionization polarity has been shown to

improve detection of endogenous and exogenous chemicals.30 Analyte

separation was accomplished by HILIC using a 2.1 mm × 100 mm

× 2.6 µm Accucore HILIC column (Thermo Scientific) and an eluent

gradient (A = 2% formic acid, B= water, C= acetonitrile) consisting

of an initial 1.5 minutes period of 10% A, 10% B, 80% C, followed by

linear increase to 10% A, 80% B, 10% C at 6 minutes and then held for

an additional 4 minutes, resulting in a total runtime of 10 minutes per

injection. Mobile phase flow rate was held at 0.35 mL/min for the first

1.5minutes, increased to 0.5mL/min, and held for the final 4minutes.

The high-resolution mass spectrometer was operated in full scan

mode at 120,000 resolution and mass-to-charge ratio (m/z) range

85–1275. Probe temperature, capillary temperature, sweep gas, and

S-Lens RF levels were maintained at 200◦C, 300◦C, 1 arbitrary units

(AU), and 45AU, respectively, for both polarities. Positive tune settings

for sheath gas, auxiliary gas, sweep gas and spray voltage setting were

45 AU, 25 AU, and 3.5 kV, respectively. Raw data files were extracted

and aligned using apLCMS31 with modifications by xMSanalyzer.32

Uniquely detected ions consisted of accurate massm/z, retention time

and ion abundance, referred to as m/z features. Data filtering was

performed to removem/z features withmedian coefficient of variation

within technical replicates ≥75%. Additionally, only samples with

Pearson correlation within technical replicates ≥0.7 were used for

downstream analysis. Feature intensities for triplicates were median

summarized with the requirement that at least two replicates had

non-missing values. Batch-effect correction was performed using

ComBat.33
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TABLE 1 Characteristics of the overall sample by the two groups, normal cognition andmild cognitive impairment (MCI)

Characteristic

Overall

(n= 185)

Normal cognition

(n= 92)

Mild cognitive

impairment (n= 93) P value

Age (years)

Mean± SD (N) 64.4± 8.2 (185) 62.7± 7.1 (92) 66.1± 8.9 (93) .0071

Sex

Female 116 (62.7) 62 (67.4) 54 (58.1) .19

Male 69 (37.3) 30 (32.6) 39 (41.9)

Race

White 117 (63.2) 63 (68.5) 54 (58.1) .24

Black or African American 65 (35.1) 27 (29.3) 38 (40.9)

Other 3 (1.6) 2 (2.2) 1 (1.1)

Education (years)

Mean± SD (N) 16.3± 2.9 (179) 16.6± 3.0 (92) 15.9± 2.9 (87) .23

Smoking status

Never 44 (37.9) 32 (43.8) 12 (27.9) .0014

Current 21 (18.1) 6 (8.2) 15 (34.9)

Past 51 (44.0) 35 (47.9) 16 (37.2)

EtOH consumption

Current 88 (89.8) 66 (93.0) 22 (81.5) .09

Never or remote 10 (10.2) 5 (7.0) 5 (18.5)

Bodymass index (kg/m2)

Mean± SD (N) 27.3± 5.5 (178) 27.4± 5.0 (92) 27.3± 6.0 (86) .66

Systolic blood pressure (mmHg)

Mean± SD (N) 128.9± 18.1 (179) 129.6± 19.3 (92) 128.1± 16.8 (87) .80

Diastolic blood pressure (mmHg)

Mean± SD (N) 75.1± 12.4 (179) 76.9± 12.1 (92) 73.1± 12.5 (87) .037

Pulse rate, beats permin

Mean± SD (N) 67.8± 10.8 (179) 66.9± 10.0 (92) 68.8± 11.5 (87) .30

Hypertension

Yes 79 (49.7) 52 (57.8) 27 (39.1) .020

No 80 (50.3) 38 (42.2) 42 (60.9)

High cholesterol

Yes 70 (44.6) 43 (48.9) 27 (39.1) .22

No 87 (55.4) 45 (51.1) 42 (60.9)

Diabetesmellitus

Yes 21 (13.1) 11 (12.2) 10 (14.3) .70

No 139 (86.9) 79 (87.8) 60 (85.7)

Heart disease

Yes 13 (8.2) 6 (6.7) 7 (10.1) .43

No 146 (91.8) 84 (93.3) 62 (89.9)

Congestive heart failure

Yes 4 (2.5) 1 (1.1) 3 (4.3) .20

No 155 (97.5) 89 (98.9) 66 (95.7)

Depression

Yes 47 (29.4) 20 (22.2) 27 (38.6) .024

No 113 (70.6) 70 (77.8) 43 (61.4)

(Continues)
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TABLE 1 (Continued)

Characteristic

Overall

(n= 185)

Normal cognition

(n= 92)

Mild cognitive

impairment (n= 93) P value

Atrial fibrillation or arrythmias

Yes 20 (12.7) 11 (12.4) 9 (13.2) .87

No 137 (87.3) 78 (87.6) 59 (86.8)

MOCA, score

Mean± SD (N) 24.3± 3.7 (162) 26.6± 2.6 (92) 21.3± 2.8 (70) <.0001

HVLTR, delayed recall

Mean± SD (N) 8.1± 3.2 (161) 9.7± 2.0 (92) 6.0± 3.4 (69) <.0001

Trail Part A (seconds)

Mean± SD (N) 39.3± 16.6 (162) 34.9± 11.1 (92) 45.1± 20.6 (70) .0008

Trail Part B (seconds)

Mean± SD (N) 108.8± 67.1 (161) 83.3± 41.0 (92) 142.8± 79.3 (69) <.0001

Ab42 (pg./dl)

Mean± SD (N) 255.5± 83.2 (183) 256.0± 61.1 (91) 255.1± 100.8 (92) .61

tau (pg./dl)

Mean± SD (N) 60.4± 35.8 (183) 48.4± 20.6 (91) 72.2± 43.2 (92) <.0001

Ptau (pg/dl)

Mean± SD (N) 15.7± 9.5 (180) 12.3± 6.5 (90) 19.0± 10.9 (90) <.0001

Total hippocampal volume

Mean± SD (N) 7303± 1046 (139) 7654± 881.8 (80) 6828± 1071 (59) <.0001

Abbreviations: EtOH, ethyl alcohol; HVLTR, Hopkins Verbal Learning Test-Revised;MOCA,Montreal Cognitive Assessment; SD, standard deviation.

2.6 Metabolome-wide association analysis

A feature was retained for further analysis if at least 90% of the

subjects had non-zero intensity reading in either MCI or NC groups.

After exclusion, the missing values for a feature were imputed as half

of the lowest signal detected for that feature across all samples. After

data filtering, all intensity values were log2 transformed to reduce het-

eroscedasticity and quantile normalized to reduce systematic errors

due to technical and other non-biological factors. Metabolome-wide

association analysis was conducted using partial least squares discrim-

inant analysis (PLS-DA) implemented in the mixOmics34 R package

and features were selected based on the variable importance for

projection (VIP) criteria. P-values were obtained for each feature using

a permutation test. A 1000-permutation approach was performed

by randomly shuffling the group labels of subjects and performing

feature selection using PLS-DA at each iteration.30 Multiple testing

correction was performed using Storey and Tibshirani false discovery

rate (FDR) adjustment.35 Discriminatory features were selected using

the thresholds of VIP ≥ 2, permutation derived P < .05, and FDR

< 0.1. Only features that passed all three criteria were considered

significantly different between the two groups. Manhattan plot was

used to visualize the pattern of differential expression across all fea-

tures with respect to retention time. Fold change of log2 transformed

intensity values was calculated for each feature as the difference

between the average intensity of the two groups, log2 FC=averageNC-

averageMCI. Two-way hierarchical clustering analysis (HCA) was used

to visualize the clustering pattern of discriminatory features and

samples.

2.7 Pathway analysis

Pathway enrichment analysis was performed using mummichog

(v2.0.6), which uses bothm/z and retention time, and included discrim-

inatory features that met the following criteria: VIP ≥ 1.5, P < .05,

and FDR <0.1. A lower VIP was used to increase enrichment within

the pathway and prevent information loss.10,36 Detailed descriptions

of mummichog computational procedures were previously published

for V1.0.37 Discriminatory features detected in the pathwayswere fur-

ther tested for differential expression between theNCandMCI groups

usingWilcoxon rank sum test.

Additional pathway analyses were performed using Cystoscape-

based metabolomic pathway analysis and visualization using

Metscape.38 MetScape is a plug-in for Cytoscape, an open source

software platform for visualizing complex networks and provides

a method to use experimental data leveraged with bioinformatic

databases of metabolites, genes, and pathways to display them in the

context of system networks.We used that tool to provide complemen-

tary information on possible metabolic differences between MCI and

NC.
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F IGURE 1 A,Manhattan plot shows the variable importance for projection (VIP) andmass-to-charge ratio (m/z) of 8043 features. A total of
294 features were significantly different betweenmild cognitive impairment (MCI) cases (n= 93) and controls (n= 92) by partial least squares
discriminant analysis (PLS-DA) using a VIPmeasure of 2.0 or greater (threshold indicated by horizontal line). One hundred eighty sevenmetabolic
features increased (red dots) and 107 decreased (blue dots) inMCI patients compared to controls are indicated.Metabolite classes detected at
different retention time segments are annotated in the boxes. B, Pathways altered inMCI compared to normal controls. Pathway analysis was
performed usingMummichog 2.0.6 on the 1049 features identified by PLS-DAwith a VIP≥ 1.5

2.8 Metabolite annotation and identification

Metabolite annotation and identificationwas performed usingMS/MS,

comparison with in-house library of confirmed metabolites, and using

xMSannotator33 with the Human Metabolome Database34 (HMDB).

Discriminatory features that were associated with the significantly

enriched pathways and had P < .05 using the Wilcoxon rank sum

test were selected for MS/MS analysis. For MS/MS, samples were

analyzed using a Thermo Fusion Orbitrap high-resolution (120,000

mass resolution) mass spectrometer (Thermo Fisher Scientific, San

Diego, CA) operated in positive ionmodewith 5-minutesHILIC column

chromatography and similar source conditions used for the untargeted

metabolic profiling. Prior to analysis, CSF proteins were precipitated

using acetonitrile:water (2:1 vol/vol) and allowed to sit on ice for 30
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minutes. The supernatant was then carefully pipetted forMS/MS anal-

ysis. The tandem mass spectrometry data were processed using the

xcmsSet and xcmsFragments functions in XCMS39 to extract theMS/MS

fragments associated with each parent mass and the experimental

spectra were compared to in-silico fragmentation using MetFrag40 or

the spectra available frommzCloud (https://www.mzcloud.org/).

We further annotated and confirmed identities of the selected

metabolites using an in-house library of metabolites that have been

previously confirmed by comparing the retention time and MS/MS

of the metabolic feature with authentic standards. Additionally, we

performed computational annotation using xMSannotator33 (v1.3.2)

with the HMDB34 (v3.5). xMSannotator uses adduct/isotope patterns,

correlation in intensities across all samples, retention time difference

between adducts/isotopes of a metabolite, and network and pathway

associations for associating m/z features with known metabolites and

categorizing database matches into different confidence levels.41 This

multi-step annotation process reduces the number of false matches

compared toonlym/z-baseddatabase search.Metabolite identification

levels were assigned using an adapted version of the criteria proposed

by Schymanski et al.: (1) confirmed by MS/MS and co-elution with

authentic standards (level 1); (2) confirmed by MS/MS and matches

with online databases or in-silico predicted spectra (level 2); (3) con-

firmed byMS/MS at the chemical class level, but no evidence for a spe-

cificmetabolite (level 3); (4) computationally assigned annotation using

xMSannotator (medium or high confidence) (level 4); (5) accuratemass

match (level 5).42

2.9 Association of discriminatory features with
other disease phenotypes

Discriminatory metabolites associated with significantly enriched

pathways were then tested for associations with three AD phenotyp-

ical or endophenotypic areas: cognitive performance (MoCA for global

function, TMTA and B for executive function, and HVLT-delayed recall

for episodic memory), neuroimaging (hippocampal volume and cortical

thickness as indicators of neurodegeneration) and CSF AD biomark-

ers Aβ1-42 and total and phosphorylated tau using Spearman’s correla-

tion analyses. A heatmapwas used to visualize the correlation patterns

between significant metabolic features and thesemeasures.

3 RESULTS

3.1 Participants

Of the 185 participants who provided CSF, 93 were MCI and 92 were

normal controls. Thebasic clinical characteristics of the sample arepro-

vided in Table 1. The MCI group were older (P = .007) and had higher

levels of tau and p-tau (both P < .0001), but not Aβ (P = .6).They also

had lower cognitive performance in allmeasures as expected and lower

hippocampal volume (P< .0001).

3.2 MWAS results

Overall, 13,064 features were detected, and 8043 features met the

data filtering criteria and were used for downstream analyses. Using

PLS-DA, 294 discriminatory features were identified using the prede-

fined criteria (Figure 1A). Of those, 107 features were underexpressed

and 187 features were overexpressed in MCI patients relative to NC,

as shown in Figure 1A. Two-wayHCAusing the 294 discriminatory fea-

tures identified 19 clusters of samples indicating clinical andmetabolic

heterogeneity within the MCI group (Figure S2 in supporting informa-

tion). Clusters 13, 9, and 15 (blue box) primarily comprised the MCI

samples. Seventy clusters comprising features with similar abundance

levels across sampleswere identified.Of the294 features, 94were suc-

cessfullymatched to knownmetabolites inHMDBusing xMSannotator

withanannotation confidence scoreofmediumorhigh (TableS1 in sup-

porting information).

3.3 Pathway analysis

To enhance the coverage of metabolites for pathway enrichment anal-

yses and to prevent information loss, 1049 discriminatory features

were included using the less stringent criteria of VIP>1.5, P< .05, and

FDR <0.1. We identified 13 pathways that were perturbed between

the MCI and normal control groups, which are shown in Figure 1B.

The top four pathways were related to bioenergetics and glucose

metabolism: N-glycan (P= .0007), sialic acid (P= .0014), amino-sugars

(P = .0042), and galactose (P = .0054) metabolism. Keratan sulfate

(P = .0173), methionine (P = .0081), cyanocobalamin (P = .0106),

tyrosine (P = .0193), purine (P = .0352) and biopterine (P = .0275)

were also differentially activated between the two groups. Within

the enriched pathways that were significantly different between NC

and MCI, 15 features with an identification confidence of 1 to 5 were

differentially expressed and are shown in Table 2. These features were

then included in the Metscape analysis and visualization, leading to a

signature that includes increased expressions of features related to

sugarmetabolism/bioenergetics, homocysteine, tyrosine andbiopterin

pathways, and lower expression of methionine. The final networks

with relevant signature features are provided in Figure 2. The box

plots for these 15 features are also provided in Figure 3. The complete

list of features in these analyses is provided in Table S2 in supporting

information.

3.4 Correlation with disease phenotype

We then explored the associations between these signature fea-

tures with disease phenotypes. These results are shown in Figure 4.

Increased expression of bioenergetics and glucose metabolism were

associated with higher tau and ptau but also with lower cognitive

performance, hippocampal volume, and cortical thickness. Sugar

metabolism dysregulations were associated with increased tau, and

https://www.mzcloud.org/
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TABLE 2 Results of the pathway enrichment analysis with the significant features and associated pathways in the normal versusMCI groups

m/z time

(s)

Feature name (KEGG

compound name)

Pathway(s)
a

Fold

change
d

VIP Wilcoxon

P

Metabolite

identification

level
c

Adduct

173.0434 52 L-Ribulose (C00508)
b

Tyrosinemetabolism; Purine

metabolism

−0.1642 3.30 0.0001 3 M+Na[1+]

205.0682 62 D-Sorbitol (C00794 )
b

Galactosemetabolism −0.124 1.97 0.0025 5 M+Na[1+]

365.1054 164 Maltose (C00208 )
b

Sialic acid metabolism;

Galactosemetabolism

−0.2469 2.81 0.0055 5 M+Na[1+]

385.1303 73 S-Adenosylhomocysteine

(C00021)

Methionine and cysteine

metabolism; Vitamin B12

(cyanocobalamin) metabolism;

Urea cycle/amino group

metabolism; Tyrosine

metabolism

−0.2034 2.15 0.0167 1 M+H[1+]

517.9829 81 7,8-Dihydroneopterin

3′-triphosphate (C04895)b
Biopterinmetabolism −0.6569 2.32 0.0217 5 M+Na[1+]

255.1076 68 Galactosylglycerol (C05401) Sialic acid metabolism;

Galactosemetabolism

−0.4977 2.72 0.0231 4 M+H[1+]

260.0538 57 N-Acetyl-D-glucosamine

6-phosphate (C00357)
b

Aminosugarsmetabolism −0.1686 2.05 0.0248 5 M+H[1+]

223.0826 53 Salsolinol 1-carboxylate

(C06160)

Tyrosinemetabolism −0.374 2.22 0.0271 4 M+H[1+]

708.2568 255 N-acetyl-alpha-D-

glucosamine

(C00043)
b

N-Glycan degradation; Keratan

sulfate degradation

−0.308 2.15 0.0289 4 M+H[1+]

399.1444 145 S-Adenosylmethionine

(C00019)

Methionine and cysteine

metabolism; Vitamin B12

(cyanocobalamin) metabolism;

Urea cycle/amino group

metabolism; Tyrosine

metabolism

0.3296 2.17 0.0334 1 M+H[1+]

384.1499 231 beta-D-Galactosyl-1,4-N-

acetyl-D-glucosamine

(C00611)
b

N-Glycan Degradation;

Aminosugarsmetabolism;

Galactosemetabolism

−0.1902 2.02 0.0357 5 M+H[1+]

221.042 61 Vanillylmandelic acid

(C05584)

Tyrosinemetabolism −0.5378 1.92 0.0365 4 M+Na[1+]

799.6688 37 Levothyroxine (C01829) Tyrosinemetabolism −0.7153 2.31 0.0416 4 M+Na[1+]

277.0894 67 3-beta-D-Galactosyl-sn-

glycerol

(C03692)
b

Sialic acid metabolism; Galactose

metabolism

−0.1336 2.18 0.0474 4 M+Na[1+]

244.0797 49 GlcNAc (C00140)
b

N-Glycan degradation; Sialic acid

metabolism; Aminosugars

metabolism; Galactose

metabolism; Keratan sulfate

degradation; Hyaluronan

Metabolism

−0.0803 2.22 0.0507 5 M+Na[1+]

aSome compounds werematched or involved inmultiple pathways.
bThese features had multiple chemical names or were matched to multiple metabolites in the databases (we report the KEGG compound name involved in

the significant pathway).
cDescription of metabolite identification levels (adapted from Schymanski et al.42):

Level 1: confirmed byMS/MS and co-elutionwith authentic standards

Level 2: confirmed byMS/MS andmatches with online databases or in-silico predicted spectra

Level 3: confirmed byMS/MS at the chemical class level, but no evidence for a specific metabolite

Level 4: computationally assigned annotation using xMSannotator (medium or high confidence)

Level 5: accuratemassmatch
d(log2; NC vsMCI) -ve: lower in NC+ve: higher in NC.

Abbreviations: KEGG, Kyoto Encyclopedia ofGenes andGenomes;MCI,mild cognitive impairment;MS/MS, tandemmass spectrometry;m/z, mass-to-charge

ratio; NC, normal control; VIP, variable importance for projection
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F IGURE 2 Overall metabolomic networks and related features comprising themetabolomic signature in the cerebrospinal fluid of individuals
withmild cognitive impairment (MCI). The imagewas obtained usingMetscape Plug-in for Cytoscape using the 15 features included in theMCI
signature along with the fold change and P-value and the Compound-Reaction-Enzyme-Gene option selected. The Network is then built from the
underlying data by finding compounds that participate in reactions that are catalyzed by enzymes that are encoded by genes
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F IGURE 3 Box plots for the 15 differentially expressed features identified in the cerebrospinal fluid of individuals withmild cognitive
impairment. Green box plots are in themethionine pathway, brown in the sugar metabolism pathways, purple in the tyrosinemetabolism pathway,
and blue in the biopterin pathway

ptau. Further, 5 of these features were associated with decreased

cortical thickness; hippocampal volume; and cognitive performance on

MoCA, TMT, and delayed recall. S-adenosylhomocysteine (SAH) was

associated with lower MoCA scores and decreased cortical thickness.

In the tyrosine pathway, salsolinol-1-carboxylate was associated with

higher tau and ptau whereas Vanillylmandelic acid (VMA) was associ-

atedwith lowerMoCA score. Finally, features in the biopterin pathway

were not associated with any disease phenotype. Detailed results

are provided in Table S3 in supporting information. Correlation with

demographics are also provided in Table S4 in supporting information.

4 DISCUSSION

This study of untargeted HRM identified a CSF signature of amnes-

tic MCI characterized by dysregulation of multiple pathways includ-

ing sugar, homocysteine/methionine, and tyrosine metabolism. Multi-

ple features within this signature were associated with increased total

tau and ptau biomarkers and lower scores on cognitive measures, hip-

pocampal volume, and cortical thickness.

Although targeted metabolomic approaches have been used in

multiple tissues and samples such as Biocrates AbsoluteIDQ-p180

kit,43 untargeted metabolomics in the CSF have been less common.

The latter can be complementary to prior targeted platforms and

plasma analyses and may identify new markers or new potential

therapeutic targets in AD. The recent advance in MS technology and

related bioinformatics have enhanced the potential for the applica-

tion of metabolomics in AD.44 Indeed, over the last decade reports

using untargeted metabolomics have suggested a significant previ-

ously unrecognized metabolic derangement in AD post mortem brains,

plasma, and to a lesser extentCSF.45,46 Our study adds to these reports

by confirming and expanding on previously described impaired path-

ways or identifying new ones.We discuss these in the next sections.

Multiple studies have suggested an association between AD and

impaired glucose metabolism that may be pronounced in those with

type 2 diabetes and insulin resistance.47,48 Prior fluorodeoxyglucose-

positron emission tomography (FDG-PET) scans have suggested

decreased brain metabolism across the spectrum of AD.49,50 Our

study suggests that in the CSF of those with MCI, there was evidence

for dysregulation of multiple glucose metabolism pathways and

related increase in glucose metabolism byproducts. Taken together,

the increase in CSF features of sugar metabolism pathways coupled

with the previously reported brain hypometabolism may in part be

explained by a lower brain glucose uptake, for example, secondary to

glucose uptake transporter impairment,51,52 leading to increased CSF

levels. An alternative explanation is that the possible central insulin

resistance reported in AD is associated with increases in metabolic

by-products in the brain and CSF. This is further supported by our

observation that these increased metabolic features are associated

with greater tau measures and with lower performance on cognitive
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F IGURE 4 Correlations between significant features and disease phenotypes. Spearman correlation coefficients. Red indicates positive
correlations and blue indicates negative correlations. Correlations with P≥0.05 aremarked in gray. **These Features hadmultiple chemical names
or werematched tomultiple metabolites in the databases (we report the KEGG compound name involved in the significant pathway)

assessments, hippocampal volume, and cortical thickness. Taken

together, our finding may offer support for multiple sugar metabolism

pathways as therapeutic targets in AD.

Our observation that alterations in pathways related to methion-

ine and homocysteine metabolism is of great interest. Specifically, S-

adenosylmethionine (SAM) was underexpressed and SAH was over-

expressed in CSF of the MCI participants. SAM is a key molecule in

the methionine cycle involved in nucleic acid and protein metabolism

and synthesis. SAH is formed by demethylation of SAM. Prior reports

suggest that SAM is decreased and SAH is increased in CSF of AD

and related to tau biomarkers.53 However, in this study only SAMwas

related to additional disease phenotypes including cognitive measures

and cortical thickness. Nevertheless, this untargeted approach sug-

gests that homocysteine-methionine pathways are dysregulated in the

prodromal stages of AD.

We identified perturbations in tyrosine pathways with overlap-

ping features in the purine, methionine, and homocysteine pathways,

including SAM, SAH, VMA, and thyroxine. These cycles are involved in

catecholamine and serotonin neurotransmitter systems and might be

altered inAD.54 ApriorCSF analysis in a smaller number ofMCI using a

targeted metabolomic approach suggested a similar finding of impair-

ments in methionine and tyrosine pathways.55 Despite the difference

between the groups in this pathway, there were minimal associations

with the other diseasemeasures.

There are multiple advantages to this study including the untar-

geted and advanced bioinformatic approaches, which allowed us to

consider many pathways and features, the comparably larger number

of samples with CSF, and the availability of multiple additional disease

phenotypes that offer greater confidence in the associations with

MCI.

The limitations include the cross-sectional design and the number of

identified features that could not bematched to knownmetabolites or

matched to multiple metabolites, which is a major bottleneck in untar-

geted metabolomics.6 Even with identified metabolites, the certainty

of feature identity is another limitation to untargeted metabolomic

approaches. We used MS/MS with an in-house library of confirmed

metabolites in the Clinical Biomarker Lab where these analyses were

performed using authentic standards to confirm these identities and

we provide a standard scale of confidence in all our results. This cou-

pled with advanced bioinformatics tools for metabolite identification

and annotation enhanced the reliability of the identity of our metabo-

lites compared tomany prior untargeted studies.
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Clinical translations of these findings are important. The key path-

ways that are perturbed in AD are potential targets for existing or

new drug developments. For example, insulin and other antidiabetic

agents may address the sugar metabolism abnormalities identified in

this analysis.56,57 Drugs that may restore balance between SAM and

SAH or enhance tyrosine metabolism may also be of relevance in drug

development of AD.58

5 CONCLUSION

In this untargetedmetabolomic study of CSF, we identified ametabolic

signature characterized by impairments in sugar metabolism and

methionine, homocysteine, and tyrosine pathways in MCI. These offer

insight into the metabolic alterations that occur in predementia stages

of AD and offer potential therapeutic targets.
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