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Abstract: Technological and economic development have influenced the amount of post-production
waste. Post-industrial waste, generated in the most considerable amount, includes, among others,
waste related to the mining, metallurgical, and energy industries. Various non-hazardous or haz-
ardous wastes can be used to produce new construction materials after the “solidification/stabilization”
processes. They can be used as admixtures or raw materials. However, the production of construction
materials from various non-hazardous or hazardous waste materials is still very limited. In our
opinion, special attention should be paid to waste containing fluoride, and the reuse of solid waste
containing fluoride is a high priority today. Fluoride is one of the few trace elements that has received
much attention due to its harmful effects on the environment and human and animal health. In
addition to natural sources, industry, which discharges wastewater containing F− ions into surface
waters, also increases fluoride concentration in waters and pollutes the environment. Therefore,
developing effective and robust technologies to remove fluoride excess from the aquatic environment
is becoming extremely important. This review aims to cover a wide variety of procedures that
have been used to remove fluoride from drinking water and industrial wastewater. In addition, the
ability to absorb fluoride, among others, by industrial by-products, agricultural waste, and biomass
materials were reviewed.

Keywords: solidification/stabilisation; fluoride removal; defluorination techniques; adsorption;
industrial waste

1. Introduction

According to the circular economy principles, issues related to the correct and effective
management of production waste are currently among the fundamental problems [1–3].

The following article comprehensively presents various materials used to neutralize
fluorine ions, including waste materials. Moreover, a new material proposed by the authors
was presented here, which is made of two industrial waste materials that form a sorbent
for fluorine adsorption, and after use, it can be used in building material.

Environmental pollution due to the mismanagement of solid waste is a global problem.
Many publications on specific waste streams have been published in the scientific literature
to quantify their environmental impact [4–10]. N. Ferronato [10], in a review work, assessed
the global problems associated with various waste materials, pointing out how they affect
the environment, what their relation is to human health, and how they influence sustainable
development. The results shown by the authors provide a reference point for scientists and
stakeholders to quantify comprehensive effects and plan integrated solid waste collection
and treatment systems to make it easier to achieve sustainable development at the global
level [10].

The efficient management and further utilization of waste materials becomes a signifi-
cant problem for the industry and is growing as the amount of waste materials is increasing,
and management costs are rising for both the industry and local administrations [11–19].
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Therefore, recycling and reusing industrial waste and by-products are of great impor-
tance [20–23]. In fact, in reducing environmental problems and increasing economic
benefits, there is a great need for technologies to transform waste materials into products
of commercial value [24–29].

For example, some waste materials are converted in the scope of solidification and
stabilization (S/S) processes. The solidification aids in changing the physical state of waste,
from a liquid to a solid material, by encapsulation, thus decreasing the level of migration to
the environment. The stabilization, by applications of some chemical reactions, migrates
dangerous materials to less soluble or less toxic forms [30].

There are several S/S processes and methods proposed, tested, and implemented
in practice [31–34]. These solutions, however, still need a lot of research to increase their
effectiveness/performance and long-term effects [31]. The massive usage of S/S products,
e.g., as construction materials, is still blocked by the potential risk of migrating the contam-
inants to the environment, including the toxic materials. New research, however, points
out low leachability factors, which indicates that the S/S waste (contaminant source) can
be regarded as an environmentally sustainable material with potential beneficial uses in
construction [35].

Therefore, research and development is needed for the wide production and utilization
of construction materials from various nonhazardous or hazardous waste materials [36].

In our opinion, special attention should be paid to waste containing fluoride, and the
reuse of solid waste containing fluoride is a high priority today.

As one of the most extended elements on earth [37], fluorine (F) is widely used in
the chemical industry, which in turn has produced large amounts of fluorine-containing
hazardous waste. Fluoride, which is the most electro-negative element in the halogen family,
is considered to be one of the main environmental pollutants due to its low biodegradability,
high reactivity, and popularity [38]. One of the sources of introducing fluoride into the
environment is the industry, which discharges sewage containing F− ions to surface waters
and contributes to an increase in the concentration of fluoride in waters and environmental
pollution [39].

Fluoride is one of the few trace elements that has received much attention due to its
harmful effects on the environment and human and animal health [40–43]. Sabine [44]
Guth et al. reviewed the available literature to critically assess the risks to human health
from fluoride exposure, with a focus on developmental toxicity. Several factors, such as
pH, alkalinity, chemical composition of aquifers, hardness, etc., determine the presence and
concentration of fluoride in water resources [45–51].

Table 1 summarizes the review publications that have been published over the past
decade on fluoride removal from both drinking and industrial wastewater, followed by the
impact of fluoride waste to the environment and human health, and finally defluorination
techniques. It presents the state of the art in the field of fluorinated waste management
in one place. Moreover, it summarizes most of the techniques already proposed. The
effectiveness of various materials for fluoride removal has been reviewed, taking into
account key factors such as pH, initial fluorine concentration, surface area, particle size,
and temperature, as well as the occurrence of counterions influencing the process of
defluorination [39,52–62].

Natural and anthropogenic processes contribute to the release of fluorine compounds
into the environment, causing the fluoride concentration in the soil to be much higher than
the limit values, which is further followed by health and environmental problems in many
regions of the world.



Materials 2022, 15, 3461 3 of 23

Table 1. A summary of review publications that have been published over the past decade on the
removal of fluoride from drinking water and industrial wastewater.

Authors Title Aim

Habuda-Stanić M. et al., 2014
[52]

Review on Adsorption of
Fluoride from
Aqueous Solution

A list of various adsorbents (oxides and hydroxides,
biosorbents, geomaterials, carbonaceous materials, and
industrial by-products) and their modifications is discussed.
This survey showed that various adsorbents, especially binary
and trimetal oxides and hydroxides, have good potential for
fluoride removal from aquatic environments.

Waghmare S.S. et al., 2015
[53]

Fluoride removal by
industrial, agricultural and
biomass wastes as adsorbents:
a review

Reviews the fluoride uptake capacities of industrial
by-products, agricultural wastes, and biomass materials from
plants, grass, etc., and their modified forms as adsorbents in
batch and column performance.

Tomar V. et al., 2013
[54]

A critical study on efficiency
of different materials for
fluoride removal from
aqueous media

An extensive list of adsorbents for fluoride removal is
compiled. In particular, nanomaterial-based adsorbents might
be promising adsorbents for environmental and
purification purposes.

Kumar P.S., 2019
[39]

Treatment of
fluoride-contaminated water:
a review

Reviews the origin of fluoride, the analysis of fluoride
derivatives, and the technologies to remove fluoride from
water, using different adsorbent types.

Nagendra Rao C.R. 2003
[58]

Fluoride and
environment—a review

Current information on fluoride presence in the environment
and its effects on human health, as well as basic methods
of defluoridation.

Schlesinger W.H. et al., 2020
[59]

Global Biogeochemical Cycle
of Fluorine

Synthesis of what is currently known about the natural and
anthropogenic fluxes of fluorine.

He J. et al., 2020
[60]

Review of fluoride removal
from water environment
by adsorption

The recent developments in fluoride removal from the water
environment by adsorption methods. Based on the review,
four technical strategies of adsorption method, including
nano-surface effect, structural memory effect, anti-competitive
adsorption, and ionic sieve effect, were proposed.

Bhatnagar A. et al., 2011
[61]

Fluoride removal from water
by adsorption—a review

An extensive list of various adsorbents from literature has
been compiled, and their adsorption capacities under various
conditions (pH, initial fluoride concentration, temperature,
contact time, adsorbent surface charge, etc.) for fluoride
removal are presented.

Bodzek M. et al., 2018
[39]

Fluorine in the Water
Environment-Hazards and
Removal Methods,
Engineering and Protection
of Environment

Detailed information on recent researchers’ efforts in the field
of fluoride removal during potable water production. The
contaminant elimination methods have been broadly divided
in three sections, i.e., coagulation/precipitation, adsorption,
and membrane techniques. Both precipitation with the use of
calcium salts or coagulation with aluminium sulphate and
ferric salts followed by sedimentation are used for fluorine
removal. In electrocoagulation, a coagulant is generated in
situ by means of oxidation of anode usually made of
aluminium or iron.

Wang L. et al.
2019
[62]

A Review on Comprehensive
Utilization of Red Mud and
Prospect Analysis

Comprehensive utilization methods for reducing red mud
(RM) environmental pollution and divides the comprehensive
utilization of RM into three aspects: the effective extraction of
valuable components, resource transformation, and
environmental application.

2. Anthropogenic Sources of Contamination with Fluorine Compounds

In many countries around the world, high levels of fluoride are the result of discharges
of sewage polluted with fluoride [52].

Such wastewater is usually produced by industry: superphosphate fertilizers [63–65];
glass and ceramics production processes [66,67]; aluminium and zinc smelters [68–70];
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steel production; uranium enrichment plants; coal-fired power plants; beryllium extrac-
tion plants; oil refineries [61,69–72]; the photovoltaic solar cell industry [61,73–78]; the
production of high-tech silicon-based semiconductors [61,75–78]; and municipal waste
incineration plants through HF emissions caused by the incineration of fluorinated plastics,
fluorinated textiles, or CaF2 in sludge [79]. Fluorine is also used in electroplating. In
addition, it is used as a melting point depressant in metallurgical furnaces in the smelting
process. Water from mines can be a significant source of fluoride.

Chlorofluorocarbons (CFS) have been used extensively as gas in deodorants and
coolants in refrigerators. However, due to their destructive effect on the ozone layer, some
of these compounds are withdrawn from use. Fluoride also migrates to the environment
due to the use of pesticides (e.g., cyhalothrin, fenfluthrin, and tefluthrin) [21]. It is also
liberated into the environment in the brick production process [76].

It is estimated that about 30% of pharmaceuticals (including antibiotics, antidepres-
sants, drugs against asthma, and atresia) are based on fluoride. The next big emitters of
fluoride are cooling gases used in air conditioning, ventilation, and cooling devices contain
fluorine in their composition [80,81]. Fluor is released into the atmosphere by burning
hard coal, brown coal, and fuel oil. Then, industrial dust containing soluble fluorides and
gaseous compounds (including HF) is emitted [82]. Wastewater from these industries has
a higher F− concentration than natural waters, starting from ten thousand mg/L, and in
the case of phosphate production, fluoride concentrations in wastewater can reach up to
3000 mg/L [83].

The combustion of biomass releases fluoride into the atmosphere, which is the main
stream of this atmospheric pollutant, which has not been characterized before. The emission
of fine particles (PM 2.5) of water-soluble fluorine (F−) from the biomass combustion was
assessed at the Fourth Fire Laboratory in Missoula Experiment (FLAME-IV) using X-ray
energy dispersive scanning electron microscopy (SEM-EDX) and ion chromatography
with conductivity detection. Based on recent assessments of global biomass combustion,
they estimated that biomass combustion releases 76 Gg F− per year into the atmosphere,
with an upper and lower limit of 40–150 Gg F− per year. The estimated F− flux from
biomass combustion is comparable to fluoride emission from coal combustion and other
anthropogenic sources. These data show that biomass combustion is the primary source of
fluoride released into the atmosphere in the form of fine particles that can be transported
over long distances [37].

As the aforementioned fluoride-originated pollutants raise several health problems,
the World Health Organization (WHO) determined the acceptable level of fluoride content
in drinking water at the level of 1.5 mg/L [45]. However, the concentration of fluorides in
industrial wastewater mostly exceeds these WHO guidelines, reaching even thousands of
milligrams per litre [40,84,85]. Thus, fluoride pollution in the aquatic environment, caused
by natural and artificial activities, has been a significant problem worldwide. Searching for
new, effective ways to remove of fluoride-originated waste from water seems to be very
important [60].

3. Selected Types of Reagents for Fluoride Removal

Several conventional techniques may be pointed here, such as adsorption [61,67–73,86–91],
chemical precipitation [86,92], coagulation and precipitation methods [72,93–99], ion
exchange [100–111], and electrocoagulation [69,77,86,112–123], as well as more advanced
membrane processes [83,124–131], reverse osmosis [132–134], and electrochemical
treatment [69,115–123]. In general, such compounds as CaCl2 and CaO are added to
precipitate fluoride in wastewater.

Each method has its advantages and limitations and can be operated with the ap-
propriate efficiency provided that the process parameters are properly selected to remove
fluoride in the appropriate concentration range [26,31,122].

Large-scale industrial operations generate vast amounts of waste, the management of
which can be a serious problem. An interesting possibility is to convert such waste into
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sorbents used for the water defluorination. Then, industrial waste becomes an adsorbent to
remove fluoride from aqueous solutions [29]. Figure 1 shows selected types of industrial
waste that are used as such adsorbents.

Figure 1. Selected types of industrial waste that are used as fluoride adsorbents.

Among the various methods of water defluorination (as mentioned earlier), adsorption
is the most commonly used technique to remove fluoride. Fluorine is adsorbed on a barrier
composed of a resin and some mineral particles. This method is efficient, simple, and
cheap. These factors are especially important for developing countries [7,28,102]. The
adsorbents may be also based on the biomass from plants, even being an agricultural waste,
and several industrial by-products. These inexpensive materials help replace an expensive
commercial adsorbent such as activated carbon, which again has a regeneration problem.
Agricultural and industrial waste materials are available in massive amounts, Some of
them are inexpensive and biodegradable, and thus environmentally friendly [123].

A wide range of adsorbents and their modifications were tested to remove fluoride
from water [26]. These include activated carbon [83,124–128], activated alumina [129–132,135],
bauxite [53,131,133,134,136–151], hematite [137,152–156], polymer resins [94,138,139,157],
activated rice husk [125,140,141,158], brick powder [142], pumice stone [143,159–161], red
earth, charcoal, brick, fly ash, serpentine [144,162–165], Moringa oleifera seed extracts [166],
granular ceramics [167], chitin, chitosan and alginate [135,145–151,155,156,168–174], modi-
fied iron oxide/hydroxide [175–181], hydroxyapatite (HAP) [182–186], zirconium-modified
materials and ceremonies [58,187–197], titanium adsorbent [198–200], schwertmannite [201],
modified cellulose [202,203], clays [165,204–207], zeolite [57,208–213], and magnesium mod-
ified sorbent [106,118,202,214].

4. Industrial Waste, By-Product, and Biomass as Fluoride Adsorbents

Red mud is waste produced by the aluminium industry during alkaline processing,
namely by the so-called Bayer process. The red sludge is strongly alkaline. The use of in-
dustrial wastes such as red sludge for defluorination will significantly reduce their volume
for the problem of land removal, soil and groundwater contamination, and landscaping for
alternative uses [53].

The removal of fluoride from water using red mud granular according to batch and
column adsorption techniques is described by Tor et al. [215]. Cengeloglu et al. [165] have
studied defluoridation by using red mud as such and acid-treated red mud by 5.5 M HCl for
drinking purposes, and Wei et al. [216] have used modified red mud with AlCl3 (MRMA)
and further modified by heat-activated red mud (MRMAH) as an adsorbent for the removal
of fluoride from water. Lv et al. [217] have investigated zirconium hydroxide modified red
mud porous material to remove fluoride from aqueous solutions. Soni et al. [218] have
studied red mud for defluoridation of water collected from the Sitapura Industrial Area,
Jaipur (Rajasthan). The results of a study to remove fluoride from red mud by electrokinetic
treatment and the feasibility of this technique were presented by Zhu et al. [219].

All authors reported promising results in removing fluoride. Waste mud was recently
found as one of the most promising adsorbents due to its extremely low cost and wide
availability. This waste is an untapped resource and, in some cases, presents serious dis-
posal problems, so using waste sludge to remove contaminants is an important application.
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The authors [220] tested three different forms of waste sludge for their fluoride removal
efficiency: primary sludge, acid-treated sludge, and precipitated waste sludge [220]. The
precipitated waste sludge showed a higher yield than the others [52].

Sujana et al. [221] investigated the defluorination limit of alum sludge, a waste prod-
uct of the bauxite alum production process by adding sulfuric acid, which mainly con-
tains aluminium oxide and titanium with a small number of undecomposed silicates.
Nigussie et al. [222] investigated the removal of fluoride using the sludge formed during
aluminium sulphate production (alum) from kaolin in the sulfuric acid process.

The potential of fluoride adsorption in drinking water treated with spent bleaching
earth (SBE) was investigated by Mahramanlioglu et al. [223]. SBE is a solid waste generated
during oil processing, as it contains mainly residual oil not removed by filter pressing. SBE
applications were found very efficient [224] to adsorb fluorine from water in one of the Iran
regions at concentrations ranging from 2.28 and 5.4 mg/L, pH 7, and processing time about
180 min [38].

Fly ash or coal ash, also known as UK Powdered Fuel Ash or Carbon Combustion
Residue (CCR), is the product of coal combustion that consists of solid particles (fine
particles of burnt fuel) that are driven from coal boilers along with exhaust fumes. The ash
that falls to the bottom of the boiler combustion chamber (colloquially called the furnace) is
called bottom ash. Singh et al. [53] have studied the defluoridation of groundwater of Agra
city by means of fly ash (ATF).

The batch adsorption capacity of fly ash has been studied by Nemade [225]. He
observed that fluoride adsorption decreased continuously between pH 2 to 12. Xue [226]
observed that the high pH of the solution caused a slight turbidity of the filtered water,
the effectiveness of defluorination increases with the increase of fluoride concentration in
the inflow, and both the amount of sifted water and the effectiveness of the defluorination
increase with an increasing temperature. Geethamani et al. [227] used calcium hydroxide-
treated fly ash (CFA) to remove fluoride in a batch study. The removal of more than 80%
was achieved with a 10 mg/L fluoride solution with an equilibrium contact time of 120 min
and a dose of 3 g/L CFA. The maximum removal of fluoride was at pH 7 [53].

Ramesh et al. [228] investigated the ability to remove bottom ash fluoride in batch
and column modes. Thus, 73.5% fluoride removal was achieved with a bottom ash dose of
70 mg/100 mL with an optimal contact time of 105 min. The maximum removal efficiency
of 83.2% was observed at pH 6.

Zhang et al., in their work [229], characterized the mechanisms of the detoxification
of water-soluble fluoride in bottom ash and the decomposition of fluorine during the
combustion of spent potting material (SPL) in response to four calcium compounds CaSiO3,
CaO, Ca(OH)2, and CaCO3, which converted NaF into low toxicity compounds, with a
conversion range at the level of 54.24–99.45%.

The cenosphere is a light, inert, hollow sphere made mainly of silica and aluminium
oxide, filled with air or an inert gas, usually produced as a by-product of coal combustion
in thermal power stations. Xu et al. [230] investigated fluoride removal using magnesium-
loaded fly ash cenospheres (MLC) prepared by the wet impregnation of fly ash cenospheres
with a magnesium chloride solution.

The removal of fluoride with aluminium hydroxide-coated rice husk ash was in-
vestigated Ganvir et al. [183]. Rice husk ash is obtained by burning rice husk ash and
unshelled husk, the latter two being relatively cheap and massively produced materials.
Mondal et al. [231] investigated the capacity of activated rice husk ash (ARHA) by washing
and drying rice husk ash from a rice mill at 100 ◦C for 8 h in an electric furnace and further
crushing into 250 µm particles. The fluoride adsorption capacity of such obtained adsorbent
was 15.08 mg/g in the batch and 9.5 mg/g in the column test.

Aluminium Treated Bagasse Fly ash (ABF) treated with aluminium for drinking water
defluorination with an initial fluorine concentration of 1–10 mg/L, with a sorbent dose
range of 1–20 g/L at pH 6.0 were tested by Gupta et al. [232].
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Jadhav et al. [233] used maize husk fly ash as an adsorbent for eliminating fluoride
from water, with the efficiency reaching 86% at a pH value of 2 and reaction time about
two hours.

Waste carbon slurry for fluoride removal was investigated by Gupta et al. [234].
This compound is obtained from fuel oil-based generators of the fertilizer industry. The
maximum fluoride adsorption capacity was reported at a level of 4.861 mg/g, with a
reaction time of about one hour and pH equal to 7–8.

The ability of the adsorbent produced from coal-mining waste to remove fluoride
from an aqueous solution was investigated by CInarli et al. [235]. The optimal pH for the
reaction was found at the level of 3.5. To the same goal, Kumari et al. [236] used shale (coal
mine waste) as a native shell (NS) adsorbent and heat-activated shale (HAS) at various
temperatures ranging from 350 ◦C to 550 ◦C.

Islam et al. [237] investigated the basic oxygen furnace slag, produced by the steel
industry, to remove fluoride from water. Basic converter slag (BOFS) mainly contains 46.5%
CaO, 16.7% iron oxide, 13.8% SiO2, and some other components. The thermal activation
of BOFS (TABOFS) by heating at 1000 ◦C for 24 h increased the porosity and surface area,
leading to increased fluoride adsorption and resulting in fluoride removal at the level of
93% (in comparison with initial 70%).

Lai and Liu [238] used a spent catalyst (a by-product of the petrochemical industry) to
remove fluoride from aquatic environments. This compound consists mainly of porous
silica and alumina, and it is efficient enough to remove fluoride. Tsai and Lui [239] examined
spent iron-coated catalyst by coating 0.1 and 0.5 M Fe(NO3)3 to remove fluoride from an
aqueous solution. Fluoride adsorption decreased with an increasing pH. The fluoride
adsorption reaction was endothermic, and the rate of reaction increased with temperature.

Bauxite is a basic source of such metals as aluminium and gallium. It is a sedimentary
rock with a relatively high aluminium content. Das et al. [240] used a thermally activated
titanium-rich bauxite (TRB) for the removal of the fluoride excess from drinking water.
Lavecchia et al. [154] investigated bauxite with a high alumina content (81.5%) to remove
fluoride from contaminated water. The percent removal of bauxite from fluoride in the
pretest was 38.5%. Chaudhari [241] used bauxite to defluoridation water. It was observed
that the optimal dose of the adsorbent was 1.8 g/50 mL, while the process took 90 min at
the optimum pH of 6.0.

Bibi et al. used hydrated cement, brick dust, and marble flour to de-fluorine and
remove arsenic from the water. The presence of co-anions did not significantly affect the
effectiveness of arsenic and fluoride removal [53]. Kang et al. [242] investigated Cement
Paste for removing fluoride as a low-cost solution. The cement paste was competitive with
lime, the prevalent fluoride-removing agent [52].

Zhang et al. [186] investigated the possibility of removing fluoride using recycled
phosphogypsum. The latter was applied in the form of HAP nanoparticles using microwave
radiation technology [52].

Oguz used lightweight concrete (building material) [243] as an adsorbent to remove
fluoride from water, and its effectiveness was tested. The maximum adsorption of flu-
oride took place at pH 6.9. Additionally, hydrated cement [244] and hardened alumina
cement [245] were tested to remove fluoride from an aqueous solution. Various forms
of apatite have been used to remove fluoride because it has shown good defluorination
prospects, namely synthetic nano-hydroxyapatite (n-Hap), biogenic apatite, processed
biogenic apatite, and geogenic apatite [246]. The fluoride adsorption was determined to
decrease with increasing concentration levels and pH value. Ultrasonic and microwave
treatment also increased the effectiveness of the fluoride removal process [247,248]. The
influence of low molecular weight organic acids (LMWOA) on the defluoridation capacity
of nano-hydroxyapatite (nHAP) from an aqueous solution was investigated [249]. Cellulose
nanocomposites @ hydroxyapatite (HA) were prepared in NaOH/thiourea/urea/H2O by
in situ hybridization [203]. Aluminium-modified hydroxyapatite (Al-HAP) was also used
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for defluoridation [250]. High-purity phosphogypsum (PG) nanoparticles were also used,
showing an excellent fluoride adsorption capacity [54,186].

Waste clay brick (WCB) is a silicate solid waste, the recycling of which is of significant
environmental and social importance. WCB is used in the production of concrete and
mortar, as a raw material, or an additive for the production of secondary cement.

In recent years, more and more attention has been paid to the recycling of waste clay
bricks, and the extension of their recyclable use has laid a solid foundation for improving
its utility value [55,251].

Bleaching powder, also known as chlorinated lime (calcium oxychloride), is mainly
composed of calcium hypochlorite. It is widely used as a disinfectant for drinking or
swimming pool water and as a bleaching agent. The whitening powder generally has
advantageous properties as an economical and viable replacement for other adsorbents for
removing fluoride from an aqueous solution. In addition to being a disinfectant, it also acts
as a defluorant. Kagne et al. [252] used a bleaching powder to remove fluoride, raising the
removal ratio from to 90.6% [52].

Li Wang et al. [84] adopted the new calcium-containing calcite precipitating and
assisted precipitating fluorspar to treat wastewater containing fluoride. Key parameters of
the reaction were determined, such as reaction timing, the rate of the oscillation, the doses
of hydrochloric acid and calcite, etc.

Chen et al. [253] developed a ceramic-based adsorbent for removing fluoride from an
aqueous solution. The adsorbent showed sufficient mechanical resistance for long-term
adsorption, as well as high efficiency. The same authors also reported results of batch tests
of fluoride removal using a surface-modified granular ceramic with an Al-Fe complex [52].

Detailed information on the above-mentioned adsorbents is presented in Table 2.

Table 2. Detailed information on the adsorbents used for fluoride removal.

Adsorbent Concentration
Range (mg/L) pH Range Contact Time

(min)

Model Used to
Calculate

Adsorption Capacity

Maximum
Adsorption

Capacity (mg/g)
Ref.

Waste mud - 2–8 0–480 Langmuir and
Freundlich 27.2 [220]

Red Mud 5–150 4.7 15–540 Freundlich 0.851 [215]

5 4.7 360 Redlich–Peterson
and Freundlich 0.644 [215]

100–1000 5.5 120 Langmuir and
Freundlich 3.12 and 6.29 [165]

Modified red mud
with AlCl3 (MRMA),

heat activated red
mud (MRMAH)

- 7–8 Langmuir MRMA-68.07
MRMAH-91.28 [216]

Zirconium hydroxide
modified red mud

porous material
Zr-modified RMPM

- 3 60
pseudo-second-order
rate kinetics and pore

diffusion models
0.6 [217]

Red mud - 5.5 120 - [218]

Alum sludge - 5.5–6.5 - - 5.35 [221]

Sludge produced
during the

manufacturing of
aluminium sulphate
(alum) from kaolin

10 3–8 - - 332.5 [222]
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Table 2. Cont.

Adsorbent Concentration
Range (mg/L) pH Range Contact Time

(min)

Model Used to
Calculate

Adsorption Capacity

Maximum
Adsorption

Capacity (mg/g)
Ref.

Spent Bleach
Earth (SBE) - 3.5 - - 7.75 [223]

Fly ash A and S - - - Freundlich 1.22 (A)
1.01 (S) [226]

Calcium hydroxide
treated fly ash (CFA) 10 7 120 10.86 [227]

Bottom ash - 6 105 BDST 16.26 [228]

Magnesia-loaded
fly ash

cenospheres (MLC)
10 - - Thomas 5.884 [230]

aluminium-treated
bagasse fly ash (ABF) 1–10 6 300 - 10 [232]

Maize husk fly ash 2.0 g/50 mL 2 120 Redlich-Peterson [233]

Activated tea
ash (AcTAP) 6 180 Langmuir 8.55 [231]

Waste carbon slurry
obtained from fuel oil 15 7.58 120 Langmuir 4.861 [234]

Coal mining waste - 3.5 - Langmuir 15.67 [235]

Shale (coal mine
waste) in the form of
native shale (NS) and
heat activated shale

(HAS) at 350 ◦C,
450 ◦C and 550 ◦C

10-HAS550 3 24 h Langmuir 0.358 [236]

Blast furnace slag
generated from
steel industry

10 mg/l 6–10 35 Langmuir 8.07 [237]

Spent catalyst
(a by-product of
petrochemical

industry)

- 4 - 28 [238]

Iron coated
spent catalyst - 5.5–6.0 - Langmuir 7.2–20.7 [239]

Thermally activated
titanium rich
bauxite (TRB)

10 5.5–6.5 - Langmuir 3.8 [240]

High alumina (81.5%)
content bauxite - - - Freundlich 3.125 [243]

Bauxite 10 6 90
Freundlicha,
Langmuira
Tempkina,

3 [241]

Hydrated
cement (HC),

brick powder (BP)
marble powder (MP).

30
7
8
7

60 Langmuir
1.72
0.84
0.18

[254]

Bleaching powder - 6–10 - - - [244]



Materials 2022, 15, 3461 10 of 23

Table 2. Cont.

Adsorbent Concentration
Range (mg/L) pH Range Contact Time

(min)

Model Used to
Calculate

Adsorption Capacity

Maximum
Adsorption

Capacity (mg/g)
Ref.

Rice husk ash, which
was coated with

aluminium
hydroxide

10–60 7 60 15.08 [183]

Activated rice husk
ash (ARHA) 100 Langmuir 0.402 [231]

Ceramic adsorbents
consisting of

Kanuma mud, with
zeolite, starch, and

FeSO4·7H2O

20–100 4–11 0–48 h pseudo-second-
order 2.16 [253]

Porous granular
ceramic adsorbents

containing dispersed
aluminium and

iron oxides

10 4–9 48 h Langmuir and
Freundlich 1.79 [249]

Iron-impregnated
granular ceramics 7, 4 Langmuir and

Freundlich - [167]

Recycled
phosphogypsum in a

form of HAP
nanoparticles

7 Langmuir-
Freundlich

19.742–25 ◦C
26.108–35 ◦C
36.914–45 ◦C
40.818–55 ◦C

[186]

HAP-calcium
phosphate based

bioceramic
- - - Langmuir and

pseudo-second-order 32.57 [250]

HAP
Apatitic tricalcium

phosphate.

up to 20
up to 60

4.16
4

Langmuir
Langmuir

13.88–25 ◦C
14.70–30 ◦C
15.15–37 ◦C

[118,
119]

5. Fluoride Wastes Removal in Industrial Processes
5.1. Industrial Production of Aluminium Fluoride

The mass production of aluminium fluoride forces significant amounts of silica gel be-
ing waste-contaminated with fluoride ions [24,255]. For example, a main fertilizer producer
in Lithuania, a joint-stock company “Lifosa”, generates approximately 15 thousand tons
per year of the mentioned waste during the manufacture of 17 thousand tons of AlF3 [256].
AlF3 is formed in the reaction of neutralizing hexafluorosilicic acid with aluminium hy-
droxide. However, due to the strong bonding of fluoride ions to the crystal structure of the
latter compound, the purification of silica gel waste is a challenge. As a result, the waste
silica gel is mainly disposed in the landfill with no further treatment [25,26,255,257]. The
long-term storage of this king of waste provokes many environmental problems, due to the
fact of the leaching of fluoride into water [24,255]. According to the literature [258–263], the
amount of toxic compounds may be reduced by removing them from waste or by reducing
their mobility to the environment [11].

5.2. Industrial Waste from Semiconductor Factories

In recent years, the industrial production of electronic materials has contributed to an
increase in the global concentration of fluoride and water pollution. The significant contrib-
utors to fluoride-contaminated wastewater are semiconductor manufacturers and industrial
plants producing hydrofluoric acid, photovoltaic materials, plastics, and textiles [69].
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It is assumed that almost 30% of waste produced in the semiconductor industry is of
fluorine origin; thus, new treatment methods for this kind of waste are welcome, with one
of them described in [65]. The authors converted fluoride waste to AlF3 by an aluminium
treatment. AlF3 is then dissolved, and, at the same time, a calcium conditioner is added to
replace the AlF3 with CaF2. The method is able to reduce the amount of fluorine contents
by a factor of 75%. Moreover, the aluminium component is reusable, therefore the cost of
the method is reasonably small [264].

Chemical vapor deposition (CVD) processes are widely used in the production of
solar cells and include the deposition of crystalline silicon from chlorosilanes, iodides,
bromides, and fluorides [265]. An undesirable side effect is the release of toxic SiO2.
The by-products of silicon film deposition consist of large amounts of SiO2 powder, HF
vapours, SiH4, and PH3 [266]. These by-products are usually transported to the fac-
tory’s central scrubber or dust filter, and treatment produces large amounts of hazardous
fluoride-containing sludges.

The effective and cheap treatment of fluorine-containing sludge resulting from CVD
processes collected after cleaning the filter cartridge in a photovoltaic installation is located
in southern Italy, as found by Zueva et al. [267].

In addition, the treatment of waste with alumina, magnesium sulphate, and lime was
tested. These studies aimed to remove the F- content from the liquid phase of the sludge
and examine the possibility of producing non-hazardous solid waste. Therefore, the toxicity
characterization leaching (TCLP) procedure of the obtained solids was performed with and
without thermal treatment. The best conditions for removing fluoride from liquid waste
and converting the sludge into non-hazardous waste were related to water treatment with
lime and magnesium sulphate.

Electrocoagulation coupled with flotation to treat semiconductor production wastewa-
ter was proposed by Hu et al. [77]. The fluoride ions were partially removed by precipitation
with calcium in an electrolyser, to which sodium dodecyl sulphate was added to increase
flotation. These treatments were effective in reducing fluoride and suspended solids in the
wastewater. They lowered the concentration of fluoride from 806 mg/dm3 to 5–6 mg/dm3.

An original fluidization process to recover CaF2 from a synthetic fluoride solution
was developed by Aldaco et al. [268]. Granulated calcite and silica were used as seed
materials to recover the calcium fluoride by crystallization in a fluidized bed reactor. The
inlet concentration of fluoride was 250 mg/L, and the final fluoride conversion was 92%,
with a CaF2 content in the solid greater than 97% by weight. This process offers a good
alternative for reducing solid waste and reusing calcium fluoride.

In the work of Shin et al. [269], more than 99 wt.% precipitated HF and silicon during
the pre-treatment of the solution and recovered Na2SiF6 to commercial grade 98.2%. The
remaining solution contained 279 g/L acetic acid, 513 g/L nitric acid, and some HF. It was
extracted with 2 ethylhexyl alcohol. Acetic acid was removed from the organic phase with
deionized water to give 96.3% acetic acid recovery.

The recycling of SiO2-CaF2 nanoparticle sludge recovered from the semiconductor
industry wastewater treatment was investigated by Lee and Liu [270]. The dried and
powdered sludge was replaced with 5 to 20 wt.% Portland cement in mortar. The com-
pressive strength of the modified mortar was higher in comparison with the fresh cement
mortar after three days of hardening. Moreover, the Toxicity Trait Leaching Procedure
(TCLP) showed that no heavy metals were released from the modified mortars. In another
study, similar results were obtained with a different deposit produced in the polishing
operations of the IC industry. This sludge, consisting of hazardous compounds such as
SiO2, Al2O3, CaF2, and unknown organic compounds, was used to replace 10 wt.% cement
powder to produce concrete. The compressive strength was comparable to that of regular
Portland cement, while the TCLP test did not detect any metal release [271]. In another
study, Lee [270] investigated the addition of a PV sludge/fly ash slag mixture for the
production of cement mortar. The optimal mixture, determined by the Taguchi method,
was 20.9 wt.%. cement flour, 4.3% volatile slag, 3.4% PV sludge, and 71.4% sand. The
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optimally modified cement mortar showed an increased compressive strength from the
fourth day of maturation, reaching the maximum value of 132% after 7 days in relation to
the compressive strength of the mortar composed of fresh Portland cement.

As such, recycling sludge from the PV industry is essential to preventing their potential
environmental hazards and helping to reduce the cement industry’s carbon footprint and
environmental impact.

One type of hazardous waste was the fluorine-containing sludge from the semicon-
ductor industry, the safe treatment and disposal of which were ineffective. Da et al. [272]
presented the research results on the assessment of the possibility of adding fluorine-
containing sludge to cement clinker. The authors inform that the addition of 2.0% of the
sludge significantly improved the flammability of the clinker and improved a formation of
alite. However, increasing the amount of the sludge to 5.0% caused the profuse formation
of interstitial phases and slowed down the formation of alite and belite. The presence of
fluorite was high in the silicate phase, resulting in the accumulation of this compound
mainly at the surface. The fluoride was immobilized by calcium, with the immobilization
rates for fluorine, copper, zinc, and nickel reaching a level of 99.5%. A sludge addition did
not cause any threats or side effects [272].

6. A New Concept(s) for the Production and Management of Fluoride Adsorbents

According to the review, there are many methods of removing fluoride, including
using sorbents made from industrial waste, by-product, and biomass. Many sorbents and
their application methods have been developed, dedicated to specific industrial processes,
in which there are fluorides in the form of wastewater or waste. There are also known
methods of using fluoride-containing wastes to produce new products used in many fields,
including construction. However, further research on developing new solutions is still
being carried out. One of the latest proposals is the production of composites from several
types of waste, which, although they can be used alone as materials for removing fluorides,
especially from water and sewage, must first be deeply processed; e.g., calcination or their
direct use is associated with technical problems at the stage of separating the used sorbent
from the treated liquid by means of filtration or sedimentation [273].

Paper sludge (PS) is generated as industrial waste in the process of recycling paper
products, with the amount continuously increasing year by year [274]. PS mainly contains
cellulose fibres (up to 50–60%) and inorganic fillers along with coating materials such as
calcite, kaolinite, and talc [275]. The paper industry is of great importance to the natural
environment due to the amount of PS produced and its disposal. A small part of PS
waste is used in agriculture as a soil improver and fertilizer [276–280]. However, PS is
mostly disposed in open landfills with no further treatment, which is a growing problem
especially for highly developed countries. Recently, we observed some tries to use PS as an
additive to cement [281], metakaolin for the production of ceramics and glass [282], fuel
for energy recovery [283,284], and carbon adsorbent for removing organic pollutants [285],
thus reducing the amount of PS disposed in landfills.

Takaaki Wajima et al. converted PS into an effective fluoride sequestrant by the
process of calcination in a high temperature for several hours. They determined that PS
fired at 800 ◦C shows highest fluorine absorption. The authors also pointed out the fact
of the selective removal of fluoride in several solutions containing chlorides, nitrates, and
sulphates [274].

Using paper slurries obtained in the creation of composites based on non-calcined
sludge and post-soda lime is an interesting and innovative solution to remove fluoride from
water and sewage [273]. Post-soda lime is a by-product formed in the process of separating
the solid phase present in the still liquid during the production of soda by the Solvay
method. The mixture mainly contains some calcium compounds (CaCl2, CaCO3, CaSO4,
Ca(OH)2), magnesium and silica, sulphur, and aluminium. It is characterized by a very high
hydration (up to 60%) and low particle size distribution (less than 2 µm). Unfortunately,
such properties strongly limit the traditional usage of this waste material [286]. According
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to the invention, the above problems are solved by the method [287,288], where very fine
soda ash, preferably from clarifiers, is applied to fibrous cellulosic support in the form of
papermaking sludges. The result is a composite that is highly permeable to liquids and
removes fluoride ions very efficiently, with the same amount of added fluoride precipitant
being even twice as high as in the case of traditional materials used to remove fluorides
(such as ground limestone and chalk). The content of cellulose fibres in the composite
allows it to be shaped practically in any form, e.g., in the form of granules, pellets, flat
membranes, plates, cylinders, etc., depending on the user’s needs. They can also be
placed in filter bags that are permeable to solutions, so they can be used repeatedly until
the calcium compounds are entirely converted. After use, they can be easily removed
from the treated solution. The used sorbent can be used analogously to paper sludge, for
example as an additive/filler for building materials [36]. It was shown that, due to the
calcium compounds used, the targeted material may be supplemented with hazardous
mineral waste containing fluorine, e.g., in form of post-crystallization lye formed in the
processing of fluosilicic acid or phosphogypsum. The approach improves the reuse of waste
materials, as well as minimizes the usage of raw materials, contributing to the concept of a
circular economy.

7. Conclusions

The negative impact of hazardous waste on the health of ecosystems, including
humans, is becoming a rapidly growing global problem. The large amount of waste
materials caused by the industry and human life is becoming a huge problem for both
enterprises and local administrations, increasing the costs of everyday activities. Therefore,
recycling and reusing industrial waste and by-products are of great importance. Many of
them can be used to produce new construction materials after “solidification/stabilization”
processes. Such materials may be used as admixtures or raw materials. In this case, an
assessment of the leaching of the contaminants should be of particular concern, as well
as the overall efficiency of the conversion process. Therefore, it is important to know the
properties and conditions of use of fluoride binders.

Several materials have been proposed and tested as adsorbents towards efficient fluo-
ride removal, taking into account also low processing costs and minimal side effects. The
research in this area is undergoing, and the authors describe a high adsorption of fluoride-
originated waste. However, the proposed methods usually depend on the particular pH
and other process parameters that are difficult to achieve and maintain. Moreover, the
adsorbents usually cannot be fully reused without costly regeneration. In addition, the
competing ions show an affinity to the same active parts of the adsorbent, and the excess of
some organic compounds delays the process balance.

In general, the concentration of fluoride ions can be reduced by a number of methods.
Research on new methods for removing fluoride ions is still ongoing. At the same time,
efforts are made to increase the efficiency of existing technologies. The removal of fluoride
ions is a significant problem because they have a negative impact on human health [8].
Extensive research is required to develop and implement low-cost, sustainable hybrid
technologies that can overcome the disadvantages of stand-alone processes.
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zeolite NaA synthesized from by-product silica. Ultrason. Sonochem. 2015, 27, 515–521. [CrossRef]
28. Baltakys, K.; Iljina, A.; Bankauskaite, A. Thermal properties and application of silica gel waste contaminated with F− ions for

C-S-H synthesis. J. Therm. Anal. 2015, 121, 145–154. [CrossRef]
29. Hydrothermal Synthesis of Calcium Sulfoaluminate–Belite Cement from Industrial Waste Materials—Advances in Engineering.

Available online: https://advanceseng.com/hydrothermal-synthesis-calcium-sulfoaluminate-belite-cement-industrial-waste-
materials/ (accessed on 9 January 2022).

http://doi.org/10.1016/j.jes.2015.01.034
http://www.ncbi.nlm.nih.gov/pubmed/26574106
http://doi.org/10.1016/j.wasman.2016.10.045
http://www.ncbi.nlm.nih.gov/pubmed/27838159
http://doi.org/10.1016/j.wasman.2015.11.025
http://www.ncbi.nlm.nih.gov/pubmed/26704064
http://doi.org/10.3390/ijerph15112483
http://www.ncbi.nlm.nih.gov/pubmed/30405058
http://doi.org/10.1016/j.rser.2016.04.005
http://doi.org/10.1080/15567249.2015.1052595
http://doi.org/10.1016/j.jclepro.2018.05.261
http://doi.org/10.1016/j.wasman.2016.12.018
http://doi.org/10.1016/j.wasman.2015.01.032
http://doi.org/10.3390/ijerph16061060
http://doi.org/10.3390/su11030634
http://doi.org/10.1016/j.biortech.2014.02.100
http://www.ncbi.nlm.nih.gov/pubmed/24656549
http://doi.org/10.1016/j.energy.2015.06.106
http://doi.org/10.1016/j.resconrec.2016.09.012
http://doi.org/10.3390/su10051545
http://doi.org/10.1016/j.jenvman.2016.03.045
http://doi.org/10.1016/j.jenvman.2016.06.015
http://doi.org/10.3390/su10113994
http://doi.org/10.1016/j.proeng.2014.12.192
http://doi.org/10.1016/j.proche.2014.11.003
http://doi.org/10.1016/j.jes.2014.10.016
http://www.ncbi.nlm.nih.gov/pubmed/25968254
http://doi.org/10.1016/j.wasman.2015.08.023
http://www.ncbi.nlm.nih.gov/pubmed/26316100
http://doi.org/10.3390/su10124854
http://doi.org/10.1590/S1516-14392012005000082
http://doi.org/10.1007/s10973-016-5412-z
http://doi.org/10.1016/j.ultsonch.2015.06.001
http://doi.org/10.1007/s10973-015-4663-4
https://advanceseng.com/hydrothermal-synthesis-calcium-sulfoaluminate-belite-cement-industrial-waste-materials/
https://advanceseng.com/hydrothermal-synthesis-calcium-sulfoaluminate-belite-cement-industrial-waste-materials/


Materials 2022, 15, 3461 15 of 23

30. Shen, Z.; Jin, F.; O’Connor, D.; Hou, D. Solidification/Stabilization for Soil Remediation: An Old Technology with New Vitality.
Environ. Sci. Technol. 2019, 53, 11615–11617. [CrossRef]

31. Ma, W.; Chen, D.; Pan, M.; Gu, T.; Zhong, L.; Chen, G.; Yan, B.; Cheng, Z. Performance of chemical chelating agent stabilization
and cement solidification on heavy metals in MSWI fly ash: A comparative study. J. Environ. Manag. 2019, 247, 169–177. [CrossRef]

32. Chen, W.; Wang, F.; Li, Z.; Li, Q. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement
solidification and phosphate stabilization process. Waste Manag. 2020, 114, 107–114. [CrossRef] [PubMed]

33. Feng, Y.-S.; Du, Y.-J.; Zhou, A.; Zhang, M.; Li, J.-S.; Zhou, S.-J.; Xia, W.-Y. Geoenvironmental properties of industrially contaminated
site soil solidified/stabilized with a sustainable by-product-based binder. Sci. Total Environ. 2020, 765, 142778. [CrossRef]
[PubMed]

34. Zhang, W.-L.; Zhao, L.-Y.; Yuan, Z.-J.; Li, D.-Q.; Morrison, L. Assessment of the long-term leaching characteristics of cement-slag
stabilized/solidified contaminated sediment. Chemosphere 2020, 267, 128926. [CrossRef]

35. Solidification/Stabilization-ITRC. Available online: https://itrcweb.org/itrcwebsite/teams/projects/solidificationstabilization
(accessed on 2 March 2022).

36. Kizinievic, O.; Kizinievic, V.; Trambitski, Y.; Voisniene, V. Application of paper sludge and clay in manufacture of composite
materials: Properties and biological susceptibility. J. Build. Eng. 2022, 48, 104003. [CrossRef]

37. Jayarathne, T.; Stockwell, C.E.; Yokelson, R.J.; Nakao, S.; Stone, E.A. Emissions of Fine Particle Fluoride from Biomass Burning.
Environ. Sci. Technol. 2014, 48, 12636–12644. [CrossRef] [PubMed]

38. Nayak, B.; Samant, A.; Patel, R.; Misra, P.K. Comprehensive Understanding of the Kinetics and Mechanism of Fluoride Removal
over a Potent Nanocrystalline Hydroxyapatite Surface. ACS Omega 2017, 2, 8118–8128. [CrossRef] [PubMed]

39. Bodzek, M.; Konieczny, K. Open Access (CC BY-NC 4K.0) Fluorki w środowisku wodnym-zagrożenia i metody usuwania
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