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Adolescence, defined as a transition phase toward autonomy and independence, is a natural
time of learning and adjustment, particularly in the setting of long-term goals and personal
aspirations. It also is a period of heightened sensation seeking, including risk taking and
reckless behaviors, which is a major cause of morbidity and mortality among teenagers.
Recent observations suggest that a relative immaturity in frontal cortical neural systems
may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors.
However, converging preclinical and clinical studies do not support a simple model of
frontal cortical immaturity, and there is substantial evidence that adolescents engage in
dangerous activities, including drug abuse, despite knowing and understanding the risks
involved. Therefore, a current consensus considers that much brain development during
adolescence occurs in brain regions and systems that are critically involved in the perception
and evaluation of risk and reward, leading to important changes in social and affective
processing. Hence, rather than naive, immature and vulnerable, the adolescent brain,
particularly the prefrontal cortex, should be considered as prewired for expecting novel
experiences. In this perspective, thrill seeking may not represent a danger but rather a
window of opportunities permitting the development of cognitive control through multiple
experiences. However, if the maturation of brain systems implicated in self-regulation is
contextually dependent, it is important to understand which experiences matter most. In
particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse
episodes of stress or unrestricted access to drugs can shape the adolescent brain and
potentially trigger life-long maladaptive responses.
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INTRODUCTION
A common consideration on addiction disorders acknowledges
that individual characteristics may predispose to drug addiction;
meanwhile excessive drug intake still is considered to influ-
ence personal traits and promote compulsive drug consumption
(Swendsen and Le Moal, 2011). The vast majority of drug users
are teenagers and young adults or began consuming during ado-
lescence (O’Loughlin et al., 2009). In particular, a recent report of
the National Survey on Drug Use and Health indicated that 31.2%
of people below the age of 25 had consumed illicit drugs during the
past month, while only 6.3% of older people acknowledged to do
so (Substance Abuse and Mental Health Services Administration,
2010). The younger teenagers start using drugs, the more severe
signs of drug addiction are. Among people in the USA that tried
marijuana before the age of 14, 12.6% developed signs of drug
abuse or dependence, while only 2.1% of those experiencing mar-
ijuana after the age of 18 suffered from severe signs of dependence
(Substance Abuse and Mental Health Services Administration,
2010).

Adolescent risk-taking and reckless behavior is a major public
health concern that increases the odds of poor lifetime outcomes,
including loss of control over drug use. Compelling evidence
based on imaging technologies have shown that brain circuitries

involved in affective and cognitive processes interact dynamically
across development. At the cellular level, these changes correspond
with the marked overproduction of axons and synapses in early
puberty, and rapid pruning in later adolescence and young adult-
hood. The current consensus considers that patterns of neural
connection among systems of emotion, motivation and cogni-
tive processes related to the pursuit of long-term goals undergo
a natural reorganization and a set of maturational refinements
during adolescence (Gogtay et al., 2004; Giedd, 2008). In con-
trast to the relatively early and rapid changes in affective systems
that appear to be linked to pubertal maturation, another set of
cognitive skills and competence in self-control seem to develop
gradually across adolescence and continue to mature long after
puberty is over (Dahl, 2008). This key observation may explain
why adolescence is characterized by an imbalance between the
relative influences of motivational and control systems on behav-
ior (Somerville et al., 2011). As a consequence, the adolescent
brain is a tempted brain as long as the development of execu-
tive functions including relevant decision making and planning,
abstract reasoning and response inhibition remains unfinished
(Dahl, 2008).

In this perspective, taking drugs during adolescence may inter-
fere with the normal brain development, and may increase the
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vulnerability to abuse drugs later during adulthood (Andersen,
2003; Crews et al., 2007). Despite the growing number of preven-
tion campaigns, drug consumption in adolescents remains quite
stable over the past years. Strikingly, a relevant communication
released in 1952 already acknowledged that “drug addiction in
adolescence is not a new phenomenon” (Zimmering et al., 1952),
and the ultimate question was already clearly identified “How-
ever, there is still the question of why, under apparently similar
external conditions, some boys will try the drugs and others won’t,
why some go down the road of addiction while others give up the
drug (. . .).” Sixty years later, this question remains partially unan-
swered. Animal models, especially rodents, have contributed to
a better comprehension of the juvenile state. In particular, con-
verging evidence has pointed out to an enhanced vulnerability
to drug abuse in adolescents, but questions and controversies
remain regarding the relevance of the different animal models
and the interpretation of the data (Schramm-Sapyta et al., 2009).
Interestingly, these authors conclude that even if an increased
recreational drug use is usually observed during adolescence, evi-
dence relating to pathological drug seeking and taking still is
lacking. In this review, we try to summarize the biological fac-
tors relevant to adolescent driving risks and we discuss the clinical
observations in the light of preclinical findings linking impulsiv-
ity and emotional reactivity to initiation of drug use and risks of
abuse.

PUBERTY AND ADOLESCENCE
Risk taking during adolescence is the product of an interac-
tion between heightened stimulation seeking and an immature
self-regulatory system that is not yet able to modulate reward-
seeking impulses (Steinberg and Morris, 2001; Steinberg, 2004,
2005). A consensus could put adolescents at risk for emotional
and behavioral disorders. Nevertheless, increased risk and novelty
seeking can be beneficial for learning novel strategies for survival
(Kelley et al., 2004). Indeed, from an anthropologic perspective,
some types of risk taking can be viewed as an adaptive willingness
to demonstrate bravery in order to acquire a better social status.
In many situations, it seems that adolescent do not become more
fearless after puberty but rather they may become more highly
motivated to act boldly despite their fears, particularly when they
perceive that acting in a brave or reckless way might bring them
increased recognition by peers (Dahl, 2008).

The period of adolescence is a time of considerable change, as
sex-specific pubertal hormones bring about changes in physical
stature, reproductive organs and other secondary sexual char-
acteristics. Neuroendocrine changes during puberty influence
behavioral and emotional development (Waylen and Wolke, 2004).
Since testosterone cross the blood brain barrier (Pardridge and
Mietus, 1979), it contributes to the cortical pruning during ado-
lescence, especially in frontal and temporal lobes (Witte et al.,
2010; Nguyen et al., 2013). This observation is of interest and
may explain sexual dimorphism in gray matter and its behavioral
consequences (Neufang et al., 2009; Paus et al., 2010; Bramen et al.,
2012).

A classical strategy to assess this influence is to select adolescents
of similar age, but experiencing different stage of puberty. Mid-
late puberty adolescents differ from adolescents in early puberty

in their emotional regulation of startle response and postauricular
reflex, two physiological measure of defensive and appetitive moti-
vation (Quevedo et al., 2009). Similar results have been reported
with mid/late puberty adolescents displaying an enhanced pupil
dilatation in response to emotional words (Silk et al., 2009).

GRADUAL EMERGENCE OF COGNITIVE SELF-CONTROL
DURING ADOLESCENCE: INSIGHT FROM NEUROIMAGING
The adolescent behavior, marked by intense affective expres-
sion and impulsive responses, has long been studied, but the
most recent imaging technologies have contributed to a bet-
ter knowledge of the developing brain during adolescence. In
particular, it has been shown that proportion of gray mat-
ter decreases whereas white matter increases during transition
from childhood to young adulthood (Paus et al., 1999; Lenroot
and Giedd, 2006). Whereas the enhanced myelination follows
a quite linear pattern all over the brain, with only slight local
variations, the diminution of gray matter, also called synap-
tic pruning, is more selective. Hence, myelination is not only
considered as an electrical insulator that increases the speed of
neuronal signal transmission, but also as a key process that mod-
ulates the timing and synchrony of neuronal firing patterns that
convey meaning in the brain (Giedd, 2008). The main neurobi-
ological changes that account for risky behaviors in adolescence
occur in the mesocorticolimbic system, particularly in the pre-
frontal structures (Chambers et al., 2003; Crews et al., 2007; Crews
and Boettiger, 2009). Studies comparing adult and adolescent
cortical function indicate that adolescent process information
differently, often enlisting different brain regions than adults.
Difficulty with executive cognitive functioning and behavioral
self-control, including difficulties with planning, attention, fore-
sight, abstract reasoning, judgment, and self-monitoring have
been reported in adolescents, and several functional magnetic
resonance imaging (fMRI) studies have examined the functional
neuroanatomy underlying executive processing in children, ado-
lescent and adults (Luna et al., 2010). This growing body of
evidence supports the idea that frontostriatal systems undergo
significant remodeling in the period from adolescence to young
adulthood. Specifically, protracted development of prefrontal
cortex (PFC), in concert with an amplified motivational drive
mediated by the striatum, is thought to be critical to increased
novelty seeking and suboptimal decision making that leads to risky
behavior and experimental drug use. Assuming that orbitofrontal
cortex (OFC) is critical to making value decisions, individual
differences in the development of this region might increase
or decrease sensitivity to reward through suboptimal computa-
tion of incentive value based on reward magnitude coded by
the striatum. Conversely, reduced orbitofrontal modulation of
striatal-mediated motivational drive could lead to increased nov-
elty seeking and impulsive choice. In either case, significant
imbalance in the neurodevelopmental trajectory of this circuit
could lead to loss of self-control during a vulnerable period
(Yurgelun-Todd, 2007).

The immature connections between the PFC, the nucleus
accumbens (Nacc) and the amygdala have been proposed to
largely influence goal-directed behaviors in adolescents (Galvan
et al., 2006; Ernst et al., 2009). In particular, it has been shown
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that teenagers engage the orbitofrontal cortex to a much lesser
extent compared to adults when facing risky choices. Similarly,
adolescents have been also shown to display a decreased and
uncoordinated neuronal processing in the OFC during simple
reward-related behavior (Sturman and Moghaddam, 2011). These
types of observation may partially explain the increased propen-
sity for reckless behaviors during adolescence (Eshel et al., 2007).
Finally, in order to emphasize the adolescent brain immaturity
upon reward expectations, compelling evidence recently demon-
strated a linear reduction of insular activation along with age, with
early adolescents displaying the higher activation and late adoles-
cents exhibiting the most reduced signal while gambling in a slot
machine task (Van Leijenhorst et al., 2010).

Several epidemiological researches support the idea that adoles-
cence is the life period with the highest rate of impulsive behavior
(Steinberg et al., 2008; Romer et al., 2009). Steinberg and col-
leagues described a linear decrease of impulsivity from the age
of 10–30: using different age cohorts, steeper delay discounting
and weaker performances on the IOWA gambling task (IGT) have
been reported in adolescents, compared to adults (Steinberg et al.,
2009; Cauffman et al., 2010). A longitudinal study using the IGT
in adolescents aged from 11 to 18 confirmed this result by show-
ing that performance improved continuously with age (Overman
et al., 2004). These observations are thought to mirror the matu-
ration of the PFC, which allows the transition from impulsive to
more controlled choices. Conversely, an inverted-U shape curve
for sensation seeking has been reported as well, with a peak around
age 14 (Steinberg et al., 2008). Again, the dissociation between the
progressive development of impulse control and the non-linear
development of the reward system may result in a misbalance that
enhances impulsive choices for reward (Ernst et al., 2009).

Converging fMRI studies exploring decision-making tasks have
shown that adolescents and adults share many similarities in neu-
rocircuitry activation, but they also display intriguing differences.
A greater response in the left Nacc was reported in teenagers while
adults displayed an increased activation in the left amygdala (Ernst
et al., 2005). Galvan et al. (2006) also reported enhanced Nacc
response to reward in adolescent compared to adults, as well as
reduced activation in areas of the frontal cortex. Most recently,
in a study examining risk taking in monetary decision-making,
it has been shown that adolescents displayed a reduced activa-
tion in regions of the OFC compared with adults, and reduced
activity in these frontal brain regions was correlated with greater
risk-taking tendencies in teens (Eshel et al., 2007). These findings
suggest that adolescents engage relatively fewer prefrontal regula-
tory processes than adults when making decisions. Consequently
teenagers may be more prone to risk taking in certain situations.
In other words, reduced prefrontal cognitive control may autho-
rize a greater influence of affective systems that dictate decision
making and behavior which, in turn, increases adolescent vul-
nerability to social and peer contexts that activate strong feelings
(Dahl, 2008).

In a recent study aiming at assessing adolescent and adult
behaviors in a video driving game, it has been shown that
adolescent participants took more risks, focused more on the
benefits than the costs of risky behavior, and made riskier deci-
sions when surrounded by peers compared to adults (Gardner

and Steinberg, 2005). These findings confirm that adolescents
may be more prone to peer influences on risky decision-making,
and that peer influence (and other social-context variables)
may play an important role in explaining reckless behaviors
during adolescence. Interestingly, it has been established that
young adolescents, categorized as highly resistant to peer influ-
ence, displayed enhanced brain connectivity, especially in the
frontal cortex, compared to adolescents categorized as highly
influenced by peers (Grosbras et al., 2007). Resistance to peer
influence has also been positively correlated with ventral stria-
tum activation, but negatively correlated with activation in the
amygdala (Pfeifer et al., 2011). Specific pattern of cortical acti-
vation in adolescents has been reported by using mentalizing,
face recognition and theory of mind tasks. For example, early
adolescents aged from 10 to 14 engaged more their medial PFC
than adults to analyze the intent of a drawing (sincere or ironic),
despite similar performance on the task (Wang et al., 2006).
This might reflect a greater effort for the youngsters to perceive
social emotional situations they are not yet used to, while adults
analyze these situations more effectively, based upon previous
experiences.

Noteworthy, adolescence also represents a particular period of
emotional perception and regulation. Cognition and decision-
making processes in adolescents are highly influenced by their
emotional state, a phenomenon called hot cognition (in opposi-
tion to cool cognition, in which decision-making occurs under
low emotional level). Adolescents also seem to be more sensitive
to stressful stimuli. The rate of cortisol release after a stressful
task displayed a linear increase with age, in young adolescents
aged from 9 to 15 years (Gunnar et al., 2009; Stroud et al., 2009).
Presenting fearful faces, induced a higher reactivity of the amyg-
dala in adolescents compared with children and adults (Hare et al.,
2008). Interestingly, the habituation of amygdala activity to these
fearful faces was lower in subjects screened for high trait anxi-
ety. This enhanced sensitivity to stressful stimuli, together with a
higher proportion of hot cognition, constitutes another support
for adolescents’ reckless behaviors when coping with anxiogenic
situations.

ARE TEENS MORE VULNERABLE TO DRUG ABUSE THAN
ADULTS?
Higher impulsivity is considered to promote drug first use, and
eventually may lead to an increased vulnerability to develop drug
addiction, defined as a loss of control over drug consumption and
a compulsive pattern of drug use (Belin et al., 2008). Impulsivity
is not easily defined (Evenden, 1999; Chamberlain and Sahakian,
2007), but a broad definition would include lack of attention, dif-
ficulty to suppress or control a behavioral response, pronounced
novelty-seeking behavior, inability to anticipate consequences, dif-
ficulty to plan actions or reduced problem-solving strategies as
key features. Because adolescents display more impulsive behav-
iors, the link between impulsivity and drug consumption has been
extensively studied.

Converging studies using self-report questionnaire in teens
demonstrated that impulsivity during adolescence was predictive
of drug use and gambling (Romer et al., 2009), smoking initi-
ation (O’Loughlin et al., 2009) and later alcohol abuse (Ernst
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et al., 2006; von Diemen et al., 2008). Reciprocally, impulsivity
appeared to be exaggerated in adolescents with alcohol use dis-
orders compared to healthy control (Soloff et al., 2000). Further,
a study assessing genetic polymorphism has also demonstrated
that a particular allele (A1) from the Taq1a polymorphism of the
dopamine D2 receptor gene was positively correlated with alco-
hol and drug use (Esposito-Smythers et al., 2009). Concomitantly,
impulsive carriers of the allele reported significantly more alcohol
and drug-related problems than impulsive non-carriers. These
findings highlight the interaction between vulnerability factors in
the propensity to develop psychiatric troubles.

Cognitive impulsivity, defined as an inability to consider future
outcomes, is a subdivision of impulsivity that takes into account
emotional subjective representation of a delayed outcome. This
concept is known as the discounting value of a reward (Rach-
lin, 1992). The use of the delay discounting, which offers to
choose between immediate low rewards and future higher rewards,
has contributed to better understand the neurobiological under-
pinnings of economic choice and decision-making. Adolescent
tobacco smokers were found to be more impulsive than their
non-smoker couterparts in a delay discounting task, and more
prone to novelty seeking (Peters et al., 2011). Interestingly, the
same group of adolescent smokers showed a marked decrease of
striatal activation during a reward anticipation paradigm, which
was positively correlated with smoking frequency. It is important
to note that the increased impulsiveness reported in adolescent
smokers might be a consequence, and not a predictor, of the
addicted behavior. Studies comparing current and ex-smokers
suggested that enhanced delay discounting curve concerns only
current smoker (Bickel et al., 1999, 2008). However, other stud-
ies revealed that cognitive impulsivity could constitute a possible
predictor of later substance use. Naïve adolescents, having a first
cigarette smoking experience, were more impulsive in a delay
discounting task (Reynolds and Fields, 2012). Nicotine intox-
ication is most likely not responsible for such results; it may
rather reflect a personality trait shared by most of the adolescent
smokers. Higher propensity to impulsive choices was also found
to be predictive of the first ecstasy use in females (Schilt et al.,
2009), and was also associated with binge drinking (Xiao et al.,
2009).

It has been suggested that impulsivity represents a good index
to predict the outcome of a smoking-cessation program: ado-
lescents screened for higher impulsive trait significantly failed
to maintain abstinence compared their non-impulsive counter-
parts (Krishnan-Sarin et al., 2007). Cognitive therapies targeting
impulsivity, as reviewed elsewhere (Moeller et al., 2001), may con-
stitute untapped opportunities for developing new approach to
develop effective self-control in adolescents. This may contribute
to prevent reckless behaviors occurring during this period of
important morbidity.

MODELING THE ADOLESCENT VULNERABILITY TO DRUG
ABUSE
Brain development in juvenile rodents has been reported to display
similar patterns resembling those of human beings, suggesting that
the rodent model might be relevant to study the neurobiological
underpinnings of teenage brain maturation (Spear, 2000). The

juvenile period in rodents lasts from day 28 to day 42 after birth,
but these limits, a bit restrictive, are usually extended to include
a larger period from day 25 to day 55 (Tirelli et al., 2003). Neu-
roanatomical studies have described a massive synaptic pruning
of dopamine receptors during adolescence in rodents (Andersen
et al., 2000): D1 and D2 receptors density increased in the Nacc, the
striatum and the PFC until the age of 40 days, and then progres-
sively declined during early adulthood. Conversely, D3 receptors
increased until 60 days (Stanwood et al., 1997). Another study
revealed an increase of dopamine fibers in the medial PFC soon
after weaning (Benes et al., 2000), that was in part controlled by
the serotoninergic system: neonatal lesion of the raphe nucleus led
to an increase of dopamine (DA) fibers sprouting from the ventral
tegmental area (VTA) and the substantia nigra. Additionally, gluta-
matergic innervations from the PFC to the Nacc (Brenhouse et al.,
2008) and to the amygdala (Cunningham et al., 2002) has been
shown to follow a linear sprouting from weaning age to early adult-
hood. Dopaminergic modulation during adolescence appeared to
be not entirely functional: the effects of D1 and D2 agonist on
GABAergic interneurons in the PFC were weaker in adolescent,
suggesting an uncompleted maturation of this modulatory system
(Tseng and O’Donnell, 2007).

Behavioral studies comparing juvenile and adult rodents
revealed that mice displayed a greater preference for a novel envi-
ronment (Adriani et al., 1998), and enhanced impulsive responses
compared to adults in a delay discounting task (Adriani and Lavi-
ola, 2003). Juvenile rodents also expressed a higher level of social
interaction since social interactions were found to be more reward-
ing in juvenile than in adults rodents in a conditioned place
preference (CPP) paradigm (Douglas et al., 2004). In line with
this observation, a study reported that juvenile rats had lesser
activation of dopamine signaling in the Nacc when facing non-
social stimuli, but a more persistent response to social stimuli
compared with adults (Robinson et al., 2011). This might reflect
the importance of social interaction in juvenile animals.

In the elevated plus maze, adolescent rats spent a reduced
period of time in the open arms, indicating a higher anxiety
(Doremus et al., 2003; Estanislau and Morato, 2006; Lynn and
Brown, 2010) although mice displayed a reversed profile (Macrì
et al., 2002). Similar observations were reported using a contex-
tual fear conditioning: adolescent rats froze significantly more
than adults (Anagnostaras et al., 1999; Brasser and Spear, 2004;
Esmoris-Arranz et al., 2008), but again adolescent mice froze less
than adults (Pattwell et al., 2011).

With regards to the aversive effects of drugs, it has been shown
that nicotine, ethanol, THC, amphetamine and cocaine induced
less aversive effects in adolescent than in adult animals. In addi-
tion, conditioned taste aversion performed with a non-addictive
substance (lithium chloride that induces abdominal pain after i.p.
injections) is reduced in adolescent rats suggesting that insensitiv-
ity to aversive effects may be a generalized feature of adolescence
(Philpot et al., 2003; Wilmouth and Spear, 2004; Schramm-Sapyta
et al., 2006, 2007; Quinn et al., 2008; Drescher et al., 2011).

Meanwhile, several studies have reported increased reward sen-
sitivity in juvenile animals. Nicotine and alcohol were found to be
more rewarding in young rodents compared with adults (Philpot
et al., 2003; Brielmaier et al., 2007; Kota et al., 2007; Torres et al.,
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2008; Spear and Varlinskaya, 2010). Similarly, increased sweet-
ened condensed milk consumption (relative to body weight) was
observed in adolescent rats compared with older ones. This behav-
ioral observation was correlated with an increased c-fos expression
in the Nacc core and the dorsal striatum (Friemel et al., 2010).
Investigations assessing the effect of psychostimulants in adoles-
cent rats using a CPP task remain a bit controversial, but a greater
reward sensitivity in adolescents rats, particularly at lower doses,
has been claimed in specific conditions (Badanich et al., 2006;
Brenhouse et al., 2008; Zakharova et al., 2009).

FACTORS INFLUENCING DRUG ABUSE IN ADOLESCENT
RODENTS
Motor impulsivity refers to behavioral disinhibition and loss of
impulse control, without necessary integration of emotional pro-
cessing (Brunner and Hen, 1997). In animals, many behavioral
tests have been shaped to assess this form of impulsivity, such as
the five-choice serial reaction time task (5-CSRTT) and the dif-
ferential reinforcement of low-rate (DRL). To our knowledge, the
only study comparing impulsivity in non-treated normal adult
and adolescent rats revealed that the latter were more impulsive
in a DRL schedule (Andrzejewski et al., 2011). Prenatal exposure
to nicotine has been shown to increase impulsivity in a 5-CSRTT
during adolescence (Schneider et al., 2012), and chronic exposure
to nicotine in adolescent rats produced long-lasting increase of
motor impulsivity during adulthood (Counotte et al., 2009, 2011).
In this study, nicotine chronic treatment was able to induce more
impulsive behaviors on the 5-CSRTT when occurred during ado-
lescence than during adulthood. This specific alteration, which
did not affect cognitive impulsivity in a delay discounting task, has
been correlated with a stronger nicotine-induced dopamine release
in the PFC in adolescent rats. Similarly, impulsive adolescents,
screened with the latency to approach a novel object, displayed an
enhanced DA response to a cocaine challenge compared to non-
impulsive adolescents or impulsive young adults (Stansfield and
Kirstein, 2005).

However, prenatal treatment with nicotine, shown to alter
motor impulsivity, failed to alter behavioral responses in a delay-
discounting task (Schneider et al., 2012). While the influence
between cognitive impulsivity and drug-seeking behaviors has
been well established in humans, supplementary observations
will be necessary to understand how it works in rodents. Dier-
gaarde et al. (2008) have proposed that, at least in adult rats,
motor impulsivity may be related to the initiation of drug seeking,
while cognitive impulsivity may be associated with a decreased
ability to suppress an acquired nicotine-seeking behavior and
increased vulnerability to relapse. Ultimately, motor impulsivity,
but not cognitive impulsivity might be more appropriate to assess
drug-seeking vulnerability in juvenile rats.

Some basal differences of Hypothalamo-Pituitary-Adrenal
(HPA) axis regulation may underlie an increased sensitivity to
stressful stimuli in adolescent rodents. After an acute stress,
adolescent rats displayed a higher adrenocorticotropic hormone
(ACTH) and corticosterone release compared to adults (Romeo
et al., 2006a,b). After a 30-min chronic restraint stress every
day during 7 days, juvenile rats exhibited higher corticosterone
levels immediately after the stressor, but corticosterone levels

return to baseline values faster in adolescent than in adult rats
(Romeo et al., 2006a). Male rats have been found to be more
sensitive than females to the deleterious effects of maternal
separation on PFC thickness (Spivey et al., 2009). Given the rela-
tions between stress and drug-seeking behaviors (Shaham et al.,
2000; Koob and Le Moal, 2001), this increased sensitivity of the
stress system may explain why some adolescents persist in drug
abuse. A chronic cocaine treatment during adolescence increased
several measures of anxiety when animals had become adults
(Stansfield and Kirstein, 2005), which may further explain this
persistence.

Compared to controls, rats stressed for 7 consecutive days dur-
ing adolescence showed higher nicotine-induced enhancement
of locomotor activity; this effect was not reported when stress
occurred during adulthood (Cruz et al., 2008). Adolescent rats
exposed to either a chronic restraint stress or a multiple-stress
protocol showed higher locomotor response to cocaine challenge,
and higher basal corticosterone level as well (Lepsch et al., 2005).
Social stresses during adolescence increased behavioral sensitiza-
tion to amphetamine (Mathews et al., 2008), but opposite effects
were also reported (Kabbaj et al., 2002). Maternal separation was
shown to increase impulsivity and reward-seeking behaviors (Col-
orado et al., 2006). Three hours of maternal separation between
PND 0 and PND 14 increased the locomotor sensitization to
cocaine, which was associated with an increase in D3R mRNA
in the Nacc shell (Brake et al., 2004). Nevertheless, another study
found no effect using a chronic social isolation on the locomotor
response to psychostimulants either in adolescent or adult male
rats (McCormick et al., 2005).

THE JUVENILE RODENT MODEL: PROMISES AND PITFALLS
Most studies point out to an increased drug-seeking behavior
in juvenile rodents, suggesting work hypotheses to explain why
teens are at risk to lose control over drug intake. First, enhanced
sensitivity to drug reward and two, lowered drug-induced aver-
sive side effects provide a good rationale for studying juvenile
rats vulnerability to drug abuse. However, no animal study has
so far directly demonstrated an increased susceptibility to com-
pulsive drug intake when first drug intoxication occurs during
adolescence. Some methodological issues may also promote some
misinterpretations, such as the lack of appropriate adult controls.
As mentioned above, rats and mice appear to exhibit opposite anx-
iety profiles, with juvenile rats more anxious and juvenile mice
less anxious than adults (Macrì et al., 2002; Lynn and Brown,
2010). Importantly, a few studies illustrated behavioral differences
between early, mid and late adolescence (Tirelli et al., 2003; Wilkin
et al., 2012), but most studies actually used juvenile rats of differ-
ent ages that differed from one lab to the other. Further, the lack of
consideration of social influence on drug consumption and related
behavior may constitute another important confounding factor.
Indeed, social interactions have been shown to highly influence
risky behaviors and drug abuse. In particular, it has been reported
that social interaction linked to a suboptimal cocaine dose could
produce a CPP (Thiel et al., 2008). Meanwhile, the presence of
counterparts decreased the aversive effect of ethanol in a condi-
tioned taste aversion paradigm in male adolescent rats, but not in
adults (Vetter-O’Hagen et al., 2009).
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Ventral tegmental area dopaminergic neurons have been
claimed to fire at a higher rate in adolescent rats, which is consis-
tent with the hypothesis of adolescent vulnerability to drug abuse
(McCutcheon et al., 2012). In line with this observation, a higher
drug-induced dopamine release has been reported in adolescent
rodents (Laviola et al., 2001; Walker and Kuhn, 2008). However,
behavioral response to drugs does not fit with this conclusion.
In particular, subchronic treatment with psychostimulants failed
to induce an increased locomotor sensitization in adolescent rats
(Frantz et al., 2007). Of particular importance, Frantz et al. (2007)
reported similar dopamine release in the Nacc between adoles-
cents and adults rats treated with psychostimulants. Conversely,
one study reported a locomotor sensitization to cocaine in juve-
nile mice and not in adults (Camarini et al., 2008); however, a
cocaine challenge performed 10 days after this experiment showed
a lower dopamine release in the Nacc of juvenile mice, despite a
faster onset peak. Further studies will be necessary to determine
the relation between DA release and locomotor sensitization to
psychostimulants in adolescent rats.

Although stress and impulsivity have been shown separately
to promote drug use, a few studies established cross-regulations
between both. Intracerebroventricular injections of corticotropin-
releasing factor (CRF) did not increase impulsivity in the 5-
CSRTT, but increased accuracy responding (Ohmura et al., 2009).
A chronic treatment with corticosterone during adolescence failed
to affect premature responses in this task, and even decreased
the number of impulsive behaviors in a Stop signal task (Torre-
grossa et al., 2012). More studies are needed to fully understand
this interaction, which is considered as a key element exaggerating
the emergence of psychiatric disorders in human (Fox et al., 2010;
Somer et al., 2012; Hamilton et al., 2013).

Another source of controversy is the conjecture according to
which the juvenile rodents would exhibit reduced self-control and
increased attraction to cues predicting reward (Ernst et al., 2009;
Burton et al., 2011). In opposition with this statement, juvenile
rats were shown to display a lower cue-induced reinstatement of
cocaine intake (Anker and Carroll, 2010). Further contrasting with
the above mentioned conjecture, juvenile mice (26–27 days) were
shown to exhibit enhanced flexibility compared to adults in an
odor-cue based procedure (Johnson and Wilbrecht, 2011). Given
the immaturity of the PFC in juvenile rats, as well as the key role of
this structure in cognitive flexibility (Baxter et al., 2000; Schoen-
baum et al., 2006; Gruber et al., 2010), this result might appear
counterintuitive. Nonetheless, an enhanced flexibility of adoles-
cents might help to promote a switch between a large number of
options, such as quitting drug intake in favor of a less detrimen-
tal behavior. It therefore tends to alleviate the omnipresence of
vulnerability elements in juvenile rodents, since cognitive flexibil-
ity is mandatory to acquire a behavioral repertoire necessary for
survival and autonomy.

It is important to acknowledge that only a minority of young-
sters experiencing recreational drugs will later develop clinical
symptoms of drug addiction and dependence, although the con-
tribution of fundamental research using animal models remains
quite limited to support this assertion. A current consensus sug-
gests that interindividual variations in brain maturation might
explain excessive behavioral outputs. Of particular interest, recent

evidence demonstrated that first, individuals with pronounced
impulsive traits displayed a thinner cortex (Shaw et al., 2011)
and second, the activation of the mesolimbic neurocircuitry of
adolescents trained to gamble in a monetary incentive task corre-
lated positively with their psychosocial and behavioral difficulties
(Bjork et al., 2011). The authors of this study elegantly acknowl-
edge that correlation most likely does not imply causality but,
nonetheless, these observations suggest that increased engagement
in problematic behaviors may partly result from mesolimbic sensi-
tivity to reward-predictive cues. And they conclude that increased
mesolimbic sensitivity may represent a trait that, in line with the
general immaturity of the adolescent brain, could partly explain
behavior-related injury or death in “at-risk” adolescents (Bjork
et al., 2011).

Some external factors, like sociodemographic status or famil-
ial environment, have also been considered to play a role in this
variability. Adverse events in childhood were shown to be predic-
tive of later alcohol dependence (Pilowsky et al., 2009). Converging
evidence has established the negative influence of parental miscon-
ducts (including substance use disorders) on children propensity
to develop similar disorders (Verdejo-Garcia et al., 2008). Gene
polymorphisms among adolescents with alcohol-related disor-
ders have been proposed to explain interindividual differences
in attentional bias toward alcohol (Pieters et al., 2011), or in
stress responsivity to drugs (Kreek et al., 2005). Although genetic
factors have been thought to explain between 30 and 60% of
addictive disorders (Kreek et al., 2005), gene influence mainly
depends on interaction with environmental factors. In partic-
ular, a gene polymorphism was shown to be closely related to
alcoholism in adults, and also in a subpopulation of adolescents
that were exposed to high psychosocial stress during childhood
(Clarke et al., 2011). A similar correlation has been found with
a specific genotype of the serotonin transporter (Kaufman et al.,
2007). In adolescents diagnosed for anxiety disorders, depression,
or in healthy controls, amygdala pattern of activation in response
to emotional faces was dependent of the pathology diagnosed
(Beesdo et al., 2009).

CONCLUSION
Risk taking and sensation seeking have long been considered hall-
marks of typical adolescent behavior and, meanwhile, have been
thought to represent vulnerability factors for developing substance
abuse disorders. Strikingly, despite a large number of preclini-
cal investigations delineating the brain circuitries underpinning
enhanced impulsiveness and increased emotional reactivity con-
stitutive of an extended behavioral repertoire, very few studies
support a specific vulnerability of juvenile rodents to lose control
over drugs of abuse. A provocative statement would argue that sci-
ence should better see the adult world with adolescent eyes, rather
than seeing the adolescent world using an adult watch. Indeed,
juvenile behaviors present adaptive benefits to acquire appropri-
ate skills for survival in absence of parental protection. Meanwhile,
it is true that these externalizing behaviors make adolescents, or at
least a subset of teens, more vulnerable to reckless conducts and
potential injuries. Objectively, the adolescent brain is prewired for
sensation seeking and risk taking which, in line with the height-
ened motivation for reward, often leads to careless behaviors.
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The development of self-regulatory competence is a normative
process (that depends on both brain maturation and social experi-
ences) at the end of which young adults have acquired the aptitude
to better regulate their emotions and impulsiveness.

A major aim for future researches consists in finding endophe-
notypes and vulnerability markers of substance use disorders and
drug abuse. It has been recently demonstrated that people suffer-
ing from substance abuse disorders shared with their non-addict
siblings similar behavioral traits, including high impulsivity and
sensation-seeking (Ersche et al., 2010). This study also revealed
that abnormal prefrontal and striatal connectivity might under-
pin risks of drug addiction (Ersche et al., 2012). In complement,
converging evidence have revealed that interindividual differences
arise from heterogeneity in the PFC function (George and Koob,
2010). Therefore, deeper investigations assessing PFC interindi-
vidual adaptations during adolescence are required to understand

how only specific developmental trajectories can lead to drug
addiction. In particular, understanding whether (and if true,
how) deficient brain maturation processes might be responsible
for sustained reward seeking and poor decision-making (mean-
ing persistence in risk taking despite adverse consequences) is of
the highest importance to better protect “at-risk” young adults. A
current consensus already acknowledges that the developing ado-
lescent brain is fragile and vulnerable to neurobiological insults
concomitant to drug abuse, in particular those related to alco-
hol intoxication (Crews et al., 2004). But, further preclinical and
clinical studies focusing on the adolescent PFC are required to
better understand how genes, environment, stress and individ-
ual temperament interact together to shape the neurobiological
mechanisms underpinning the vulnerability to lose control over
reward seeking, and potentially excessive drug taking, during the
transition from the adolescent world to the adult universe.
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