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ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties
compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step
toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifica-
tions in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria dis-
play LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A
compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP en-
zyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does
not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides.
Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of
catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of in-
creased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phe-
notype in Gram-negative bacteria.

IMPORTANCE Bacterial communities called biofilms display characteristic properties compared to isolated (planktonic) bacteria,
suggesting that some molecules could be more particularly produced under biofilm conditions. We investigated biofilm-
associated modifications occurring in the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer
membrane. We showed that all tested commensal and pathogenic biofilm bacteria display high incorporation of a palmitate acyl
chain into the lipid A part of LPS. This lipid A palmitoylation is mediated by the PagP enzyme, whose expression in biofilm is
controlled by the regulatory proteins H-NS and SlyA. We also showed that lipid A palmitoylation in biofilm bacteria reduces
host inflammatory response and enhances their survival in an animal model of biofilm infections. While these results provide
new insights into the biofilm lifestyle, they also suggest that the level of lipid A palmitoylation could be used as an indicator to
monitor the development of biofilm infections on medical surfaces.
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Biofilm communities developing on medical and industrial
surfaces constitute a recognized reservoir of bacterial patho-

gens, and control of biofilm-associated infections is a major focus
of microbiology at this time (1, 2). Identification of key biofilm
determinants in several pathogens led to potential antibiofilm
strategies based either on prevention of initial bacterial adhesion,
inhibition of biofilm maturation, biofilm dispersion, or eradica-
tion of highly antibiotic-tolerant biofilm bacteria (3, 4). Study of
gene expression and physiological changes occurring during bio-
film formation suggested that specific molecules might be associ-
ated with the biofilm environment (5–8). Consistently, several
compounds were shown to accumulate within biofilms, including
biofilm matrix components, antiadhesion molecules, and amino
acids (9–11).

We previously showed that formation of biofilms by certain

Pseudomonas aeruginosa strains induced reversible loss of lipo-
polysaccharide (LPS) O antigen and alteration of lipid A that con-
tributes to modulating the host inflammatory response to
P. aeruginosa biofilms (12). LPS is a major component of all
Gram-negative bacterial outer membranes, and although its
structure varies in response to certain environmental stimuli (13),
few studies have investigated modifications in LPS structure in
biofilms (12, 14, 15). Here, we compared Escherichia coli LPS from
biofilm and planktonic bacteria and identified a reversible in-
creased LPS modification corresponding to incorporation of a
palmitate acyl chain to lipid A (palmitoylation) mediated by the
PagP enzyme. While the appearance of this LPS modification is
correlated to the ability of the bacteria to form biofilms, it occurs
progressively and only after several days in very long stationary-
phase culture bacteria. We show that pagP is negatively regulated
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by H-NS, which itself is under the biofilm-regulated control of
the SlyA regulator. We demonstrate that increased lipid A pal-
mitoylation in biofilm bacteria decreases the inflammatory re-
sponse and increases biofilm bacterial survival in an in vivo rat
model of catheter-associated biofilm infection. Since increased
lipid A palmitoylation also occurs in biofilms formed by a wide
range of Gram-negative bacteria, our study therefore identified a
new biofilm phenotype, which could be used as a biofilm bio-
marker to monitor Gram-negative bacterial biofilm-associated
infections.

RESULTS
Evidence for biofilm-associated LPS modification in E. coli bio-
film. To identify potential modifications of LPS in E. coli biofilms,
we compared patterns of rough LPS (Ra, with no O antigen) pro-
duced in biofilm and planktonic E. coli K-12 BW25113 bacteria.
Tricine SDS-PAGE analysis revealed that LPS extracted from 96-h
mature biofilm grown in microfermentors with constant medium
renewal had a higher molecular weight than LPS species extracted
from 15- to 24-h overnight stationary-phase planktonic culture
(Fig. 1A; see Fig. S1 in the supplemental material). An additional

FIG 1 LPS modification in E. coli biofilm bacteria. (A) Tricine SDS-PAGE/periodate-silver staining analysis of LPS extracted from planktonic (Pk) or biofilm
(Bf) E. coli K-12 BW25113. The arrows indicate a modified LPS band. To assess whether biofilm bacteria reinoculated in planktonic conditions still display a
modified LPS profile, bacteria grown for 96 h were recultured overnight in planktonic conditions (Bf ¡ Pk). (B) LPS analysis of 24-h planktonic or 96-h biofilm
cultures from pathogenic E. coli strains, including enteroaggregative E. coli (EAEC) strains 55989 and O42 and uropathogenic E. coli (UPEC) strains 536 and
CFT073. (C) Comparison, at different time points, of biofilm biomass produced in continuous-flow microfermentors by E. coli K-12 BW25113 strain with its
closely related derivative BW25113 F, carrying the biofilm-promoting F conjugative plasmid. O.D.600, optical density at 600 nm. (D) Tricine SDS-PAGE/
periodate-silver staining analysis of LPS extracted from corresponding biofilm cultures.
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band was progressively detected along with aging biofilms and
disappeared in LPS extracted from 96-h biofilm bacteria reinocu-
lated under planktonic conditions (Fig. 1A). We also observed an
additional LPS band associated with biofilms formed by various
pathogenic E. coli strains (Fig. 1B). To further investigate the cor-
relation between biofilm formation and appearance of the addi-
tional LPS band, we compared the E. coli BW25113 strain with its
closely related derivative, the BW25113 F strain, forming more
biofilm than BW25113 due to the presence of the biofilm-
promoting F conjugative plasmid (Fig. 1C) (16). Analysis of LPS
extracted from biofilms formed by E. coli BW25113 and BW25113
F strains at different time points showed that the additional LPS
band appeared more rapidly in the BW25113 F strain (48 h versus
72 h) (Fig. 1D). Whereas this suggested a link between biofilm
capacity and LPS modification, monitoring LPS profiles in plank-
tonic cultures (without medium renewal) also revealed the emer-
gence of the additional LPS band in aging planktonic culture (48 h
and beyond) (see Fig. S2A in the supplemental material). In con-
trast, the regular renewal of the growth medium in these very late
stationary-phase cultures, performed to limit nutrient exhaustion
and approximate microfermentor conditions, significantly re-
duced the appearance of this band (Fig. S2B). These results there-
fore suggested that the studied LPS modification occurs in mature
biofilms and under conditions created in unusually long plank-
tonic cultures.

LPS modification associated with Enterobacteriaceae bio-
films corresponds to lipid A palmitoylation. The presence of the
additional band in LPS extracted from rough E. coli K-12, and
enteropathogenic E. coli strains 55989 and O42 and uropatho-
genic 536 and CFT073 smooth E. coli strains (with O antigen)
suggested that the modification occurs in the smallest common
LPS part in all tested strains, corresponding to lipid A and the
inner core. Moreover, detection of the additional band in LPS
extracted from 96-h biofilms formed by E. coli K-12 BW25113
waaC deep rough mutant suggested that the biofilm-associated
modification could take place on lipid A bound to a 3-deoxy-D-
manno-octulosonic acid (Kdo) disaccharide part of the LPS (lipid
A-Kdo2) (Fig. 2A and B). Of the E. coli enzymes potentially in-
volved in chemical modifications of the lipid A-Kdo2 portion, four
are common to E. coli 55989, O42, 536, CFT073, and K-12 strains:
ArnT (amino-arabinose addition to lipid A), EptA (phosphoetha-
nolamine addition to lipid A), EptB (phosphoethanolamine addi-

tion to Kdo) and PagP (palmitate addition to lipid A) (17). We
analyzed LPS extracted from planktonic (24-h) and biofilm (96-h)
bacteria corresponding to arnT, eptA, eptB, and pagP E. coli mu-
tants and detected the biofilm-associated LPS band in biofilm
formed by all mutants except the pagP mutant (data not shown
and Fig. 2B). Complementation of the E. coli pagP mutant by a
plasmid expressing pagP restored LPS modification in 96-h bio-
film bacteria (Fig. 2B). These results suggested lipid A palmitoyl-
ation in biofilm bacteria (18). Matrix-assisted laser desorption
ionization�time of flight mass spectrometry (MALDI-TOF MS)
analysis of lipid A in 24-h planktonic bacteria showed one major
peak at m/z � 1,797.4, corresponding to a hexa-acylated non-
palmitoylated lipid A species and only a minor species at m/z �
2,035.6, corresponding to a hepta-acylated palmitoylated lipid A
species (Fig. 3A and B). In contrast, the spectrum obtained for
96-h biofilm showed two major peaks, at m/z � 1,797.4 and m/z �
2,035.6, thereby indicating significant lipid A palmitoylation un-
der biofilm conditions. We did not detect palmitoylated lipid A in
E. coli �pagP biofilm bacteria (Fig. 3D), while production of
palmitoylated lipid A was restored upon complementation by
plasmid pPagP under planktonic and biofilm conditions (Fig. 3E
and F). MALDI-TOF MS analysis of LPS extracted from E. coli
waaC deep rough (Re) mutant grown under planktonic condition
already showed significant lipid A palmitoylation, potentially due
to increased membrane stress-dependent pagP expression (19).
However, comparison between planktonic and biofilm bacteria
showed that the only detected modification occurring in biofilm is
a difference at m/z � 2,035 and m/z � 2,475 peaks, corresponding
to palmitoylated lipid A and palmitoylated lipid A-Kdo2, respec-
tively (see Fig. S3 in the supplemental material). Finally, biofilm-
associated lipid A palmitoylation is a general feature, since
MALDI-TOF mass spectrometry analysis of lipid A extracted from
biofilms formed by several pathogenic E. coli strains as well as
various Gram-negative bacteria, including Serratia marcescens,
Pseudomonas aeruginosa, Klebsiella pneumoniae, and Citrobacter
koseri species, consistently showed increased levels of lipid A pal-
mitoylation compared to corresponding planktonic cultures (Ta-
ble 1 and Fig. S4A to S4D).

H-NS represses pagP transcription in planktonic cultures.
To investigate regulation of lipid A palmitoylation in biofilm, we
introduced a lacZ transcriptional fusion downstream of the pagP
stop codon in E. coli BW25113 (transcriptional operon fusion)
and observed a 3-fold increase in �-galactosidase activity in 96-h
biofilm compared to planktonic culture (Fig. 4A). Moreover, con-
stitutive expression of pagP in E. coli BW25113 PcL-pagP led to
production of the additional LPS band under both planktonic and
biofilm conditions (Fig. 4B), suggesting that lipid A palmitoyl-
ation is regulated at the transcriptional level. Previous studies in-
volved PhoP and EvgA as positive regulators of pagP expression in
response to magnesium limitation (19, 20); however, deletion in
these 2 genes had no effect on pagP expression or on the LPS
profile, demonstrating that biofilm-associated palmitoylation is
PhoP and EvgA independent (Fig. 4A and C). Interestingly, the
emergence of the additional LPS band under very late stationary-
phase conditions (96 h of planktonic culture) is also PhoP and
EvgA independent and is not inhibited upon supplementation
with excess magnesium in the culture medium (see Fig. S5A in the
supplemental material). Moreover, inactivation of various stress
response regulators, including cpxR, rcsB, pspF, oxyR, soxR, arcA,
rpoS, relA, and luxS, had no impact on lipid A palmitoylation

FIG 2 The LPS modification in E. coli biofilm bacteria is pagP dependent. (A)
Schematic representation of rough LPS from wild-type (WT) E. coli K-12
BW25113, �waaC mutant, and �pagP mutant complemented with pPagP
plasmid. (B) LPS analysis of 24-h planktonic (Pk) or 96-h biofilm (Bf) cultures
from wild-type pathogenic E. coli K-12 strain and �waaC mutant, �pagP mu-
tant, and �pagP mutant complemented with plasmid pPagP.

Increased Lipid A Palmitoylation in Bacterial Biofilms

July/August 2014 Volume 5 Issue 4 e01116-14 ® mbio.asm.org 3

mbio.asm.org


(Fig. S5B). To identify regulators of pagP expression in E. coli, we
took advantage of the white color displayed by E. coli BW25113
pagP-lacZ colonies on 5-bromo-4-chloro-3-indolyl-�-D-
galactopyranoside (X-Gal) agar plates, and we used TnSC189
mariner-based transposon mutagenesis to screen for blue
BW25113 pagP-lacZ mutants derepressed for pagP expression.
We identified 7 dark blue colonies corresponding either to trivial
TnSC189 insertion upstream of the pagP-lacZ fusion or to inser-
tion into the hns gene, which encodes the global silencing protein
repressor H-NS (21). To confirm the role of H-NS in pagP expres-
sion, we monitored pagP expression in E. coli BW25113 �hns
pagP-lacZ planktonic cultures and observed 18-fold-increased
pagP expression in the hns deletion mutant compared to the pa-
rental strain (Fig. 4A). Consistent with this result, the previously
biofilm-associated LPS band could be detected in 24-h planktonic
bacteria in LPS extracted from E. coli �hns pagP-lacZ mutant
(Fig. 4C). Since the ability of this mutant to form a biofilm was
strongly affected, we could not meaningfully monitor pagP ex-
pression or LPS palmitoylation in biofilms. Complementation of
the �hns pagP-lacZ mutant with plasmid pBAD33-hns decreased

FIG 3 E. coli biofilm bacteria add a palmitate chain to their lipid A. (A)
Proposed structures corresponding to major peaks detected by MALDI-TOF
mass spectrometry, according to previously reported structures of Gram-
negative bacterial lipid A. (B to F) MALDI-TOF analysis of lipid A extracted
from E. coli K-12 BW25113 bacteria. The E. coli K-12 BW25113 bacteria were

(Continued)

Figure Legend Continued

24-h planktonic bacteria (B), 96-h BW25113 biofilm bacteria (C), 96-h
BW25113 �pagP biofilm bacteria (D), 96-h BW25113 �pagP mutant biofilm
bacteria complemented with plasmid pPagP (E), and 96-h BW25113 �pagP
mutant planktonic bacteria complemented with plasmid pPagP (F).

TABLE 1 Lipid A palmitoylation level in 24-h planktonic and 96-h
biofilm bacteria of different Gram-negative bacterial speciesa

Bacterial species

Palmitoylation levelb

Bf/Pk ratiocPk Bf

E. coli strains
K-12 BW25113 0.1 0.6 6
K-12 BW25113 �waaC 0.94 1.35 1.4
55989 0.3 1.1 3.7
O42 0.62 1.3 2.1
536 1 1.35 1.35
CFT073 0.96 1.72 1.8

Citrobacter koseri 1.2 2.7 2.3

Serratia marcescens SM365 2.4 4.3 1.8

Klebsiella pneumoniae strains
LM21 0.6 1.4 2.3
CH994 0.9 1.5 2.3
CH995 0.6 1.4 1.6
CH996 0.6 1.2 2.3

Pseudomonas aeruginosa strains
PA14 0.12 0.16 1.3
BJN8 0.23 0.5 2.17
BJN33 0.6 1.1 1.83
BJN53 0.1 0.34 3.4

a Some of the corresponding spectra can be found in Fig. 2 and in Fig. S3 and S4 in the
supplemental material.
b The palmitoylation level was determined as the peak area of the major palmitoylated
species, normalized by the peak area of the corresponding nonpalmitoylated species
(Fig. S4).
c Ratio of the palmitoylation level in biofilm to the palmitoylation level in planktonic
conditions, with all other conditions identical in the analysis.
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expression of pagP (Fig. S6A), therefore demonstrating that H-NS
represses lipid A palmitoylation in E. coli planktonic bacteria.

The anti-H-NS factor SlyA activates pagP transcription in
mature biofilms. Increased pagP expression under mature bio-
film conditions suggested potential alleviation of H-NS repression
by another E. coli regulator. Analysis of the pagP promoter region
actually revealed three sequences closely matching the proposed
consensus binding site for SlyA, an anti-H-NS factor that antago-
nizes H-NS binding on a number of cell envelope E. coli genes (see
Fig. S6B in the supplemental material) (22–25). We therefore
tested the contribution of SlyA to pagP regulation and compared
pagP expression in E. coli BW25113 pagP-lacZ and BW25113
�slyA pagP-lacZ both under planktonic and biofilm conditions.
We observed that a slyA deletion very significantly reduced pagP
induction in biofilm, with only a 1.3-fold induction of pagP ex-
pression in the �slyA background, compared to 2.9-fold induc-
tion observed in the wild-type (WT) background (Fig. 4A). Con-
sistent with this result, analysis of LPS extracted from the �slyA
mutant showed only a minor modification of the LPS profile be-
tween planktonic and biofilm conditions (Fig. 4C). However,
complementation of the slyA mutation in E. coli �slyA pagP-lacZ
mutant with plasmid pCA24N-slyA partially restored biofilm-
associated induction of pagP expression (Fig. S6C). Finally, we
compared slyA expression under planktonic and biofilm condi-
tions, and we observed a 1.7-fold induction of slyA expression in
biofilm, therefore confirming the role of SlyA in biofilm-
associated pagP expression (Fig. 4D).

Lipid A palmitoylation increases in vivo survival of biofilm
bacteria. To investigate the role of lipid A palmitoylation in bio-
film bacteria, we first compared E. coli wild-type and �pagP and
PcL-pagP mutant capacities to form in vitro biofilm on microtiter
plates or continuous-flow microfermentors. We observed that
neither the lack of, nor constitutive PagP-dependent palmitoyl-
ation, affected commensal E. coli BW25113 or pathogenic E. coli

55989 in vitro biofilm formation (see Fig. S7A and S7B in the
supplemental material). We then used our previously described in
vivo rat model of biofilm-associated infection in a totally im-
planted venous access port (TIVAP) (26) to compare the extent of
in vivo biofilm development of bioluminescent wild-type, �pagP,
or PcL-pagP E. coli 55989 derivatives in an inoculated TIVAP
(Fig. 5A). Monitoring of bioluminescent biofilm biomass formed
in an implanted TIVAP during the 7 days of the experiment
showed a decrease in luminescence in the TIVAP colonized by
E. coli 55989 �pagP compared to wild-type and PcL-pagP strains
(Fig. 5B and C). However, inoculated TIVAP showed no initial
difference in CFU recovered 3 h after inoculation, indicating that
the lack of lipid A palmitoylation has no effect on initial adhesion
on TIVAP in vivo (Fig. S7C). Nevertheless, we observed a signifi-
cant decrease in 55989 �pagP bacterial number at day 7 compared
to TIVAP colonized with wild-type 55989 bacteria (Fig. 5D). Since
in vivo formation of E. coli 55989 biofilm in the chamber of the
implanted device also led to PagP-dependent modifications of the
LPS profile (Fig. 5E), we investigated the potential contribution of
lipid A palmitoylation to control of biofilm infection dynamics by
the host.

Lipid A palmitoylation in E. coli was previously shown to de-
crease the inflammatory activity of lipid A (27). To test in a con-
trolled manner whether nonpalmitoylated E. coli 55989 �pagP
lipid A triggers a higher inflammatory response than palmito-
ylated biofilm bacteria, we injected E. coli 55989 wild-type �pagP
and PcL-pagP biofilm bacteria intravenously into rats. Two hours
after injection, we used rat serum enzyme-linked immunosorbent
assay (ELISA) to measure the amount of interleukin-6 (IL-6) pro-
inflammatory cytokine and observed a significant increase in the
IL-6 level induced by E. coli 55989 �pagP biofilm bacteria com-
pared to wild-type and PcL-pagP bacteria (Fig. 6A). We consis-
tently observed a 2-fold reduction in the release of IL-6 by the
macrophage when brought into contact with bacteria producing

FIG 4 Lipid A palmitoylation is transcriptionally regulated by H-NS and SlyA. (A) E. coli BW25113 pagP-lacZ strains with the phoP, evgA, hns, or slyA gene
deleted were grown overnight in planktonic conditions (Pk) or in biofilms (Bf) for 96 h. �-Galactosidase activity was measured. Values are means plus standard
deviations (SDs) from three independent experiments. Statistical significance was assessed using an unpaired t test. Values for planktonic bacteria that are
significantly different from the values for biofilm bacteria are indicated by asterisks as follows: **, P � 0.01; ***, P � 0.001. ND, not determined. (B) Tricine
SDS-PAGE analysis of LPS from E. coli BW25113 and BW25113 PcL-pagP, which constitutively expresses the pagP gene, grown in planktonic cultures (Pk)
overnight or in biofilms (Bf) for 96 h. (C) LPSs from the strains shown in panel A were analyzed by Tricine SDS-PAGE. (D) The E. coli BW25113 slyA-lacZ strain
was grown overnight under planktonic conditions (Pk) or in biofilms (Bf) for 96 h, and �-galactosidase activity was measured.
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palmitoylated lipid A (Fig. 6B). Moreover, palmitoylated E. coli
biofilm bacteria also displayed resistance to the antimicrobial pep-
tide protegrine-1 (PG-1) compared to unpalmitoylated bacteria
(see Fig. S8 in the supplemental material). Taken together, these
results showed that lipid A palmitoylation increased biofilm bac-
teria survival in vivo, potentially by damping the inflammatory
response to and host immune defenses against biofilm bacteria.

DISCUSSION

LPS is a major structural component of the outer membrane of the
Gram-negative bacterial envelope composed of three covalently
linked domains, including the lipid A (or endotoxin) hydrophobic
anchor, the core region, and the O-antigen polymer (28). LPS size
and composition are highly dynamic and vary according to the
strain and growth conditions, contributing to bacterial adaptation

to changing environments (29). Here we identified a new biofilm
phenotype corresponding to a high level of lipid A palmitoylation
in biofilms formed by various Gram-negative bacteria and de-
pending on the outer membrane �-barrel palmitoyl transferase
PagP.

Regulation of lipid A palmitoylation was previously studied as
a response to a variety of host factors or conditions and shown to
be both transcriptional and posttranslational (19, 30–32). Indeed,
the PagP enzyme can remain dormant until its phospholipid sub-
strates reach the external leaflet of the outer membrane, where the
PagP active site is located. Migration of phospholipids to the ex-
ternal leaflet occurs in response to a variety of membrane pertur-
bations, including antimicrobial peptides, chelating agents, or
temperature shift (32). Alternatively, pagP transcription can also
be induced in response to several cues, for instance to magnesium

FIG 5 pagP-dependent lipid A palmitoylation increases in vivo survival of biofilm bacteria. (A) Totally implanted venous access ports (TIVAPs) implanted in
rats were inoculated with wild-type bioluminescent E. coli 55989, �pagP, or PcL-pagP strain. The bioluminescent signal was monitored for 7 days after
inoculation. T0, just before injection; T3, 3 h after injection. (B) Seven days after inoculation, the TIVAPs were flushed, rats were sacrificed 2 h after the TIVAPs
were flushed, and the TIVAPs were removed. (C and D) The biofilm biomass was assessed by bioluminescence measurement (log relative luminescence units
[RLU] [p/s/cm/s2]) (C) and by CFU count (n � 8) (D). Each value represents the value for an individual rat. The means (short black lines) � standard deviations
(error bars) for the groups of rats are shown in panel C. In panel D, the means (short black lines) for the groups of rats are shown. Values that are statistically
significantly different (P � 0.01) by an unpaired t test are indicated by bars and two asterisks. Values that are not significantly different are indicated by bars
labeled ns. (E) E. coli 55989 was grown in 24-h planktonic cultures (Pk), in 96-h biofilm culture on a glass spatula (biofilm in vitro), or in TIVAPs implanted in
rats for 7 days (biofilm in vivo). LPS extracts were analyzed by Tricine SDS-PAGE.
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limitation, triggering the PhoP-PhoQ two-component regulatory
system (32, 33).

Whereas the basal level of lipid A palmitoylation in E. coli LPS
is very low in planktonic batch cultures (31), here, we identified
biofilm as an environment naturally inducing palmitoylation of
lipid A. We show that the PhoPQ system is not involved in
biofilm-associated PagP-dependent lipid A palmitoylation, which
is also not inhibited upon supplementation with excess magne-
sium in the culture medium. In contrast, we show that pagP ex-
pression is repressed by H-NS and that biofilm-associated induc-
tion of SlyA, a DNA binding protein that inhibits H-NS activity,
leads to pagP derepression. Although the signal-inducing slyA and
pagP expression in mature biofilm formed under continuous cul-
ture conditions is as yet unknown, we observed that lipid A pal-
mitoylation was also SlyA and H-NS dependent and PhoP and
EvgA independent in very late stationary-phase cultures grown
over long incubation time (48 h and beyond). Interestingly, regu-
lar medium renewal in these extended planktonic cultures very
significantly reduced lipid A palmitoylation. This suggests that
lipid A palmitoylation could be induced by extreme physicochem-
ical conditions present in both biofilm and very late stationary-
phase planktonic cultures. Such conditions could correspond to
general stress induced within inner biofilm layers, potentially in-
cluding major nutrient starvation or microaerobic conditions. In
this study, we showed, however, that inactivation of various enve-
lope stress and general response regulators, including cpxR, rcsB,
pspF, oxyR, soxR, arcA, rpoS, relA, and luxS, had no impact on lipid
A palmitoylation. Alternatively, slyA and resulting pagP induction
could also be triggered by the production of yet uncharacterized
metabolites or a physiological process produced within biofilm
and very late stationary-phase planktonic cultures. The contribu-
tion of other factors or conditions inducing lipid A palmitoylation
in biofilm is under investigation.

Lipid A palmitoylation is known to stabilize the LPS outer
membrane leaflet by increasing hydrophobic interactions be-
tween neighboring LPS molecules (34). Hence, palmitoylation of

lipid A could correspond to an adaptation to LPS destabilization
potentially occurring under biofilm conditions wherein bacteria
are subjected to various physical and chemical stresses (7, 35).
However, we showed that lipid A palmitoylation does not contrib-
ute to the ability of E. coli to form biofilms in vitro. Although the
biofilm biomass of a PcL-pagP strain that constitutively synthe-
sizes palmitoylated lipid A is not significantly altered, measures
were variable compared to those of the wild-type strain. This dif-
ference could indicate that deregulation of pagP expression and
lipid A palmitoylation could be slightly detrimental for biofilm
formation. In contrast, the absence of pagP reduces biofilm for-
mation in a clinically relevant in vivo model of device infection in
rat (26, 36). Palmitoylation of lipid A was shown to attenuate the
Toll-like receptor 4 (TLR4)-mediated inflammatory response in-
duced by lipid A (37). This is consistent with the fact that biofilm
bacteria with palmitoylated lipid A also displayed decreased cyto-
kine responses in macrophage culture cell lines and in vivo. Our
results therefore suggest that lipid A palmitoylation protects bio-
film bacteria from the host immune response and thus contributes
to the general tolerance of bacterial biofilms during infections.

A biofilm is a highly heterogeneous environment in which bac-
teria undergo phenotypic differentiation, raising the question of
the distribution of bacteria with palmitoylated lipid A within the
biofilm population. Since our lipid A analyses were performed on
all bacteria composing the biofilm, they likely reflect the average
level of palmitoylation within a population composed of palmi-
toylated and nonpalmitoylated bacteria. Use of increased pagP
and slyA expression as reporter tools will help clarify the spatial
patterns of palmitoylation within biofilm microniches or layers.

Biofilm bacteria shed from colonized devices are sources of
systemic bloodstream infections (38). In the absence of efficient
methods to treat biofilms, replacement of contaminated devices is
required in many clinical situations in order to prevent biofilm-
associated infections (39, 40). Removal of implanted devices sus-
pected of infection constitutes a difficult therapeutic decision,
based as much on the nature of the pathogen colonizing the device
than on actual evidence for the presence of biofilms (5). Currently,
there is no routine approach to demonstrate the presence of bio-
films on medical devices, and development of simplified detection
methods could therefore assist clinicians in evaluating the extent
of biofilm-associated risk of medical device infections (5). Our
findings suggest that monitoring the lipid A palmitoylation level
could be used as an indicator of the presence of high-density pop-
ulation of Gram-negative bacterial pathogens. While sensitivity
and specificity issues will need to be addressed, we are currently
evaluating whether clinical samples withdrawn from totally im-
plantable venous access port of infected patients can be used to
detect lipid A palmitoylation using immunoassay or mass spec-
trometry.

We showed that increased lipid A palmitoylation could be a
widespread characteristic of Gram-negative bacterial biofilms.
While the pagP gene is present in all sequenced E. coli and enter-
obacterial genomes, sequence analyses indicate that PagP ho-
mologs are also present in numerous other Proteobacteria, espe-
cially beta- and gammaproteobacteria. Interestingly, P. aeruginosa
has a divergent homolog of enterobacterial PagP, and the analysis
of four clinical strains showed increased level of lipid A palmitoyl-
ation in biofilms. Consistently, cystic fibrosis (CF) isolates that
form biofilms in the lungs of CF patients also display palmito-
ylated lipid A, while isolates from patients with other conditions

FIG 6 Lipid A palmitoylation decreases the inflammatory response to biofilm
bacteria. (A) Biofilms of E. coli 55989 derivatives were grown on a glass spatula
for 96 h and injected intravenously in rats (6.5 � 108 wild-type bacteria, 4 �
108 �pagP bacteria, 4 � 108 PcL-pagP bacteria). Sera were collected 2 h after
injection, and the amount of IL-6 was measured by ELISA (mean plus SD; n �
4). (B) J774A.1 macrophage-like cells were infected at a multiplicity of infec-
tion of 0.3 for 2 h with E. coli 55989 derivatives grown on a glass spatula for
96 h. The amount of IL-6 in the supernatants was measured by ELISA (mean
plus SD; n � 3). Statistical significance was assessed using an unpaired t test.
Values that are significantly different are indicated by bars and asterisks as
follows: *, P � 0.05; **, P � 0.01. Values that are not significantly different are
indicated by bars labeled ns.
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and isolates from the environment do not (41, 42). Interestingly,
Salmonella enterica serotype Typhimurium PagP enzyme was also
recently shown to palmitoylate outer membrane glycerophospho-
lipids and generate triacylated palmitoyl-glycerophospholipids
(43). This therefore suggests that increased PagP activity in bio-
films could also lead to increased palmitoylation of glycerophos-
pholipids.

In conclusion, we showed that, in addition to known charac-
teristic properties of biofilm bacteria, including tolerance to stress,
3-dimensional architecture, and production of extracellular ma-
trix components, increased level of PagP activity leading to palmi-
toylation remodeling of lipid A constitutes a new biofilm-
associated phenotype potentially contributing to resistance of
Gram-negative bacterial biofilms to stress and host immune re-
sponses.

MATERIALS AND METHODS
Ethics statement. Animals were housed in the Institut Pasteur animal
facilities, accredited by the French Ministry of Agriculture for performing
experiments on live rodents (permit A-75-1061). Work on animals was
performed in compliance with French and European regulations on care
and protection of laboratory animals (European Commission directive
2010/63; French law 2013-118, 6 February 2013). The protocols used in
this study for the animal model, catheter placement, in vivo biofilm for-
mation, and in vivo study of inflammatory responses were approved by
the ethics committee of “Paris Centre et Sud no. 59” under reference no.
2012-0045.

Bacterial strains and growth conditions. Bacterial strains used in this
study are described in Table S1 in the supplemental material. Antibiotics
were used at the following concentrations: kanamycin, 50 �g/ml; chlor-
amphenicol, 25 �g/ml; ampicillin, 100 �g/ml; and zeocin, 50 �g/ml. Bio-
film formation in continuous-flow microfermentors was performed as
previously described in reference 16. Briefly, continuous-flow microfer-
mentors containing a removable glass spatula were used as described
(http://www.pasteur.fr/recherche/unites/Ggb/matmet.html) to maxi-
mize biofilm development and minimize planktonic growth. Inoculation
was performed by dipping the glass spatula for 2 min in a culture adjusted
to an optical density at 600 nm (OD600) of 1 from overnight bacterial
cultures grown in M63B1 minimal medium [KH2PO4 100 mM,
(NH4)2SO4 15 mM, MgSO4 0.8 mM, vitamin B1 3 �M, pH 7.4] supple-
mented with 0.4% glucose and the appropriate antibiotics. The spatula
was then reintroduced into the microfermentor, and biofilm culture was
performed at 37°C in M63B1 with glucose. Biofilm biomass produced at
different time points was rapidly resuspended in 15 ml of microfermentor
medium (OD600 � 0.01), and biofilm bacterial LPS was analyzed after
centrifugation and elimination of the resuspension supernatant.

Planktonic and biofilm cultures were performed in M63B1 medium
supplemented with 0.4% glucose at 37°C.

Transposon mutagenesis, strain construction, and molecular tech-
niques. TnSC189 mariner-based transposon of E. coli pagP-lacZ was per-
formed as described in reference 44. Transposon insertion sites were de-
termined as described in reference 45. Constitutive expression of the pagP
gene was carried out by insertion of the previously described ampPcL
genetic element in front of pagP at its native chromosomal location, lead-
ing to the constitutive expression of the pagP gene from the phage lambda
constitutive promoter (�Pr) (23). Insertion of the ampPcL cassette and
deletion of the pagP gene were performed using the �-Red recombinase
gene replacement system and a three-step PCR procedure described pre-
viously (46, 47). The primers used are listed in Table S2 in the supplemen-
tal material. When necessary, the antibiotic resistance marker of the in-
serted cassette was removed using the flippase-encoding pCP20 plasmid.
For construction of pagP-lacZ and slyA-lacZ fusions, the same principle
was used. The lacZ-zeo cassette was inserted downstream of the stop
codon of the target gene. To construct pagP-lacZ derivatives, mutations

were transferred by P1vir transduction from Keio collection E. coli
JW1116 (�phoP), JW2366 (�evgA), JW1225 (�hns), and JW5267 (�slyA)
(48) mutants into the E. coli BW25113 pagP-lacZ strain. All constructs
were confirmed by PCR and sequencing.

LPS analysis by Tricine SDS-PAGE. Bacteria (108) were pelleted and
resuspended in 100 �l of lysing buffer (Bio-Rad) containing 1% SDS, 20%
glycerol, 100 mM Tris (pH 6.8), and Coomassie blue G-250. Lysates were
heated at 100°C for 10 min; then, proteinase K was added at 1 mg/ml and
incubated at 37°C for 1 h. These samples (4 �l) were electrophoresed in a
tricine SDS-PAGE system, which improves resolution of the low-
molecular-weight LPS band, using a 4% stacking gel and a 20% separating
gel (49). LPSs were then visualized by the periodate-silver staining method
adapted from reference 50. Gels were immersed in fixing solution (30%
ethanol, 10% acetic acid) for 1 h, washed three times for 5 min each time
in water, oxidized in 0.7% periodic acid for 10 min, and washed three
times for 5 min each time in water. Gels were then immersed for 1 min in
0.02% thiosulfate pentahydrate, rinsed quickly in water, and stained in
25 mM silver nitrate for 10 min. After a 15-s wash in water, gels were
developed in 3.5% potassium carbonate and 0.01% formaldehyde. Devel-
opment was stopped in 4% Tris base and 2% acetic acid for 30 min.

Direct lipid A isolation from bacterial cells. Lipid A was isolated di-
rectly by hydrolysis of bacterial cells as described in references 51 and 52.
Briefly, 5 mg of lyophilized bacterial cells was suspended in 100 �l of a
mixture of isobutyric acid�1 M ammonium hydroxide (5:3 [vol/vol])
and kept for 1.5 h at 100°C in a screw-cap test tube in a Thermomixer
system. The suspension was cooled in ice water and centrifuged (2,000 �
g, 5 min). The recovered supernatant was diluted with 2 volumes of water
and lyophilized. The sample was then washed once with 100 �l of meth-
anol (by centrifugation at 2,000 � g for 5 min). Finally, lipid A was ex-
tracted from the pellet in 50 �l of a mixture of chloroform, methanol, and
water (3:1.5:0.25 [vol/vol/vol]).

MALDI-TOF MS analysis. LPS samples were dispersed in water at
1 �g/�l. Lipid A extracts in chloroform-methanol-water were used di-
rectly in this mixture of solvents. In both cases, a few microliters of sample
solution was desalted with a few grains of ion-exchange resin Dowex
50W-X8 (H�). Aliquots of 0.5 to 1 �l of the solution were deposited on
the target, and the spot was then overlaid with matrix solution and left to
dry. Dihydroxybenzoic acid (DHB) (Sigma-Aldrich) was used as the ma-
trix. It was dissolved at 10 mg/ml in 0.1 M citric acid solution in the same
solvents as those used for the analytes (53). Different analyte/matrix ratios
(1:2, 1:1, and 2:1 [vol/vol]) were tested to obtain the best spectra.
Negative- and positive-ion mass spectra were recorded on a PerSeptive
Voyager-DE STR time of flight mass spectrometer (Applied Biosystems)
in the linear mode with delayed extraction. The ion-accelerating voltage
was set at [minus]20 kV, and the extraction delay time was adjusted to
obtain the best resolution and signal-to-noise ratio.

�-Galactosidase activity assay. To determine the level of
�-galactosidase enzyme activity, bacteria were grown in M63B1 minimal
medium supplemented with 0.4% glucose for 24 h under planktonic con-
ditions or for 96 h under continuous-flow biofilm conditions.
�-Galactosidase activity was assayed in triplicate as described previously
(54) and expressed in Miller units.

Animal model. (i) Catheter placement. Totally implanted venous ac-
cess ports (TIVAPs) were surgically implanted in CD/SD (IGS:Crl) rats
(Charles River) as described previously (26). Briefly, the port was im-
planted at dorsal midline toward the lower end of the thoracic vertebrae,
and the catheter was inserted into the jugular vein. Prior to inoculation of
clinical strains, all rats were checked for the absence of infection by plating
100 �l blood and by monitoring rats for the absence of luminescence
signals.

(ii) TIVAP contamination in rats and in vivo biofilm formation. The
inoculum dose of 104 cells for overnight grown cultures of E. coli 55989
pAT881 wild type (WT), �pagP, or PcL-pagP were injected into the port
in a 50-�l volume. Planktonic bacteria were removed after 3 h of injection.
Progression of colonization was monitored using an IVIS100 imaging
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system. Rats were sacrificed either 3 h or 7 days postinjection, and TIVAPs
were harvested. Serial dilutions from samples were plated on LB agar
medium for enumerating CFU/ml.

(iii) In vivo inflammatory response. To estimate the host inflamma-
tory response due to LPS palmitoylation, E. coli 55989 WT, �pagP, or
PcL-pagP grown in a microfermentor for 4 days were adjusted to 109 cells
per 500 �l and injected into rats intravenously. Rats were sacrificed 2 h
after injection, and blood was harvested aseptically and analyzed for IL-6
cytokine release in serum using ELISA.

Statistical analysis. Two-tailed unpaired Student t test analyses were
performed using Prism 5.0 for Mac OS X (GraphPad Software, Inc.). Each
experiment was performed at least 3 times. Statistical significance was
indicated as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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