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Original Article

Long-term high fat diet aggravates the risk of lung fibrosis and 
lung cancer: transcriptomic analysis in the lung tissues of obese 
mice
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Background: Previous studies reported significant relationships between obesity and pulmonary 
dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced 
obese mouse through transcriptomic and molecular analyses. 
Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for  
12 weeks. We performed RNA sequencing, functional analysis of altered genes using Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway data, Database for Annotation, 
Visualization and Integrated Discovery (DAVID) analysis, protein network analysis, quantitative real-time 
polymerase chain reaction, and Western blotting. 
Results: We performed RNA sequencing analysis in the lung tissue of HFD mice. GO and KEGG pathway 
data presented higher expressions of genes related to lung fibrosis, and the changes of several pathways 
including regulation of nitrogen compound metabolic process, G protein-coupled receptor signaling, cancer 
pathway, and small cell lung cancer pathway. DAVID analysis and protein network analysis showed the 
changes of vascular endothelial growth factor, hypoxia-inducible factor-1 and rat sarcoma virus signaling 
related to vascular permeability, and protein network of MYC proto-oncogene gene related to cancer. In 
addition, we found increased protein and mRNA levels of the growth/differentiation factor 15 and alpha 
smooth muscle actin genes related to lung fibrosis in lung tissue of HFD mice. 
Conclusions: HFD contributes to an increased risk of lung fibrosis and lung cancer. Thus, we propose that 
the genetic modulation and the molecular regulation of target pathways are essential to suppress pulmonary 
fibrosis in obese patients.
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Introduction

The prevalence of obesity and overweight is dramatically 
increasing worldwide, with a greater acceleration than 
ever before (1). Obesity is linked to the development 
of metabolic diseases, such as type 2 diabetes and 
cardiovascular disease, and the increased risk of various 
cancers, including lung cancer (2). Recent study has focused 
on the relationship between central obesity and lung cancer 
progression and many have attempted to understand their 
relationship (3). However, the relationship between obesity 
and lung cancer has remained controversial until now. Some 
cohort study has reported that a high body mass index 
(BMI) may reduce the risk of lung cancer (4), while a low 
BMI increases the risk of lung cancer (5). In contrast, other 
studies have demonstrated that the body fat distribution is a 
more sensitive contributor to respiratory function than BMI 
alone (3,6). Lung fibrosis, which leads to lung structure 
remodeling and functional respiratory impairment, is 

observed approximately twice as often in obese people than 
in healthy people (7). Indeed, a previous study reported that 
high fat intake, particularly a high consumption of saturated 
fatty acids, increases the risk of idiopathic pulmonary 
fibrosis, a type of interstitial lung disorder (8).

In overweight and obese individuals, the mechanical 
features of the lungs and chest wall are considerably changed 
owing to excessive fat deposits in the mediastinum and 
abdominal cavities, which subsequently lead to impaired 
respiratory symptoms such as wheeze and dyspnea (9). Obesity 
also reduces functional residual capacity, expiratory reserve 
volume, and total lung capacity (10). Obese animals also 
exhibit a reduced nasopharyngeal volume, smaller airways (11),  
and pulmonary inflammation (12). As mentioned above, 
numerous studies have provided extensive evidence for the 
relationship between obesity and lung function; however, 
the specific genetic alterations in the lung tissues of 
obese status induced by a high fat diet (HFD) are poorly 
understood. Therefore, in this study, we investigated the 
transcriptomic analysis and molecular analysis in the lung 
tissues of HFD induced obese mouse model. We present 
this article in accordance with the ARRIVE reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-659/rc).

Methods

Preparation of samples from HFD induced obese mice 
model

Eight-week-old male C57BL/6J mice maintained by 
Jackson Laboratories (Orient Science, Bar Harbor, ME, USA) 
were used for the experiments. The mice were fed either 
normal chow diet (NCD) 6 mice or HFD 6 mice (Rodent 
Diet with 45 kcal % fat, research diets) for 12 weeks  
(Figure S1A). Body weight and glucose levels in blood were 
checked every week for the 12-week NCD or HFD treatment. 
Mouse glucose level was measured once a week. Blood samples 
were collected from the tip of tail, and the immediately 
glucose level was measured using a glucocare (G400 
glucocare blood glucose monitoring system, GCbiopharma, 
Yongin, Republic of Korea) (13). To take out lung tissues, 
the mice were sacrificed under their anesthesia using 
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Highlight box

Key findings
• Our results showed the genetic alteration and the changes of 

significant molecular signaling of the lung tissue in the high fat 
diet (HFD) fed mice.

• HFD-induced obesity contributes to an increased risk of lung 
fibrosis and lung cancer.

What is known and what is new? 
• Obesity is related to the development of metabolic diseases such as 

type 2 diabetes and cardiovascular disease, as well as increased risk 
of cancers including lung cancer.

• Furthermore, high fat intake may increase the risk of several lung 
diseases. 

• We found significantly distinct alteration of the genes and proteins 
related to lung fibrosis and lung cancer expressed in the lung tissues 
of HFD-induced obese mice compared to those in control tissues.

What is the implication, and what should change now? 
• These results propose that the genetic modulation and the 

molecular regulation of target pathways are essential to suppress 
pulmonary fibrosis in obese patients.

• Further studies are needed to elucidate the effect of HFD-induced 
obesity on the risk of lung fibrosis and lung cancer in humans 
including healthy people and patients with lung disease.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-659/rc
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2,2,2-tribromoethanol/2-methyl-2-butanol (Sigma Aldrich, 
St. Louis, MO, USA) 0.2 mg/g (body weight) through an 
intraperitoneal injection. Experiments were performed 
under a project license (CNU IACUC-H-2022-8) granted 
by Animal Ethics Committee of Chonnam National 
University (CNU), in compliance with the 96 Guidance for 
Animal Experiments for the care and use of animals.

RNA sequencing analysis

Total RNA was extracted from the lung tissue of HFD fed 
mice using TRIzol reagent (Thermo Fisher, Waltham, MA, 
USA) and RNA’s integrity was measured using an Agilent 
2100 BioAnalyzer (Agilent, Santa Clara, CA, USA). Total 
RNA was applied to a Ribo-Zero Gold rRNA Removal Kit 
(Illumina, San Diego, CA, USA) to eliminate ribosomal 
RNA. The RNA sequencing libraries were ready using 
a TruSeq Stranded Total RNA Kit (Illumina). The RNA 
libraries were paired-end sequenced with 100 sequencing 
cycles on a HiSeq 2500 system (Illumina).

General analysis of RNA sequencing data

Low-quality reads from the RNA sequencing data were 
deleted using Trimmomatic (11). The trimmed sequences 
were aligned to the mouse genome (mm10) through the 
spliced transcripts alignment to a reference (STAR) aligner (14).  
Cuffnorm was used to test the normalized fragments per 
kilobase of transcript per million mapped reads (FPKM) 
values regarding the GENCODE annotation (Release M17, 
GRCm38.p6) (15). Transcripts with mean FPKM values <1 
and those that were not assessed in any samples were left 
out from further analysis. 

Functional analysis of altered genes

Differential gene expression analysis was performed using 
Student’s t-test to identify genes showing significant 
expression changes between HFD and control groups 
(P<0.05). This analysis identified 1,506 genes with significant 
expression alterations. From these statistically significant 
genes, we selected the top ten increased and decreased genes 
based on their fold changes. We conducted Gene Ontology 
(GO) analysis using the Molecular Signatures Database (16) 
by sequentially applying 500 genes selected from lung tissues 
in the order of statistical significance. Among the significantly 
altered genes, gene-gene interaction network analysis was 
performed using STRING (http://string-db.org) for the 

top 200 significant genes, and the GeneMANIA plugin in 
Cytoscape was used for visualization (17,18). Functional 
annotation clustering was conducted using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
tool (19) for the top 500 significant genes.

Quantitative real-time polymerase chain reaction  
(RT-PCR)

Total RNA was gained using TRIzol reagent (Ambion, 
Austin, TX, USA) following the manufacturer’s instructions, 
and complementary DNA (cDNA) was reverse-transcribed 
from the extracted RNA using RevertAid reverse 
transcriptase (Thermo Fisher Scientific, Waltham, MA, 
USA). The cDNA quantification was carried out using 
a NanoPhotometer (IMPLEN, Westlake village, CA, 
USA). Quantitative RT-PCR was carried out using 10 ng 
of cDNA with the SYBR green PCR master mix and the 
Step One Plus real-time PCR system (Applied Biosystems, 
Foster City, CA, USA). Each gene expression level was 
normalized relative to the expression level of glyceraldehyde 
3-phosphate dehydrogenase (Gapdh). The mRNA levels 
of transforming growth factor β (Tgfβ), α-smooth muscle 
actin (αSMA), collagen type I alpha 1 chain (Col1a1), 
platelet-derived growth factor receptors (Pdgfr), Tissue 
inhibitor matrix metalloproteinase 1 (Timp1), growth 
differentiation factor 15 (Gdf15), and glial cell-derived 
neurotrophic factor family receptor alpha-like (Gfral) 
genes were normalized to the Gapdh expression levels. 
The following PCR primers were used: Tgfβ (mouse), 
5'-CTCCCGTGGCTTCTAGTGC-3' (forward) and 
5'-GCCTTAGTTTGGACAGGATCTG-3' (reverse); 
αSma (mouse), 5'-AACGCCTTCCGCTGCCC-3' (forward) 
and 5'-CGATGCCCGCTGACTCC-3' (reverse); Col1a1 
(mouse), 5'-GCTCCTCTTAGGGGCCACT-3' (forward) 
and 5'-CCACGTCTCACCATTGGGG-3' (reverse); Pdgfr 
(mouse), 5'-TTCCAGGAGTGATACCAGCTT-3' (forward) 
and 5'-AGGGGGCGTGATGACTAGG-3' (reverse); Timp1 
(mouse), 5'-GCAACTCGGACCTGGTCATAA-3' (forward) 
and 5'-CGGCCCGTGATGAGAAACT-3' (reverse); Gdf15 
(mouse), 5'-AGCCGAGAGGACTCGAACTCAG-3' 
(forward) and 5'-GGTTGACGCGGAGTAGCAGCT-
3 ' ( r e v e r s e ) ;  G f r a l  ( m o u s e ) , 
5'-TTCCTGGCTGTTACGTTAAGC-3' (forward) and 
5'-GCCATTTGCATCAATCAAGCA-3' (reverse); Gapdh 
(mouse), 5'-AATGTGTCCGTCGTGGATCT-3' (forward) 
and 5'-AGACAACCTGGTCCTCAGTG-3' (reverse) 
(Table S1).

https://cdn.amegroups.cn/static/public/TLCR-24-659-Supplementary.pdf
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Western blot analysis

The lung tissues of mice were lysed with RIPA buffer 
(Translab, Bangalore, KA, India) with 1× phosphatase 
inhibitor and 1× protease inhibitor for 20 min. The protein 
concentrations were quantified using a BCA assay kit 
(Thermo Fisher Scientific) following the manufacturer’s 
instructions. Proteins (25 μg) were electrophoresed 
on 8–10% sodium dodecyl sulfate-polyacrylamide gel 
(SDS-PAGE), before transferring onto a methanol-
activated polyvinylidene difluoride (PVDF) membrane. 
The membrane was blocked with 5% bovine serum 
albumin (GenDEPOT, Altair, TX, USA) or 5% skim milk 
(BDsciences, Franklin Lakes, NJ, USA) for 1 h 30 min at 
room temperature, continually incubation with primary 
antibodies (1:1,000) against phospho-AKT (Ser473, Cell 
Signaling, Danvers, MA, USA), AKT (Cell Signaling), 
β-catenin (Cell Signaling), GDF15 (Abcam), αSMA 
(Cell Signaling), matrix metalloproteinase-9 (MMP-9)  
(Cell Signaling), PDK4 (Novus biologicals, Littleton, 
CO, USA), leucine zipper tumor suppressor 1 (LZTS1) 
(Novus biologicals), cytochrome p450 cytochrome p450 
26b1 (Cyp26b1) (Novus biologicals) and GAPDH (Santa 
Cruz, CA, USA) overnight at 4 ℃. Next, the membranes 
were incubated with HRP-conjugated secondary antibody 
(1:5,000) for 2 h at room temperature. Finally, ECL solution 
(Thermo Fisher Scientific) was treated to the membranes, 
and then visualized using Fusion Solo software (Vilber, 
Marne-la-vallée, Ile-de-France, France). Protein expression 
was assessed using ImageJ software and normalized to 
GAPDH and native protein expression levels.

Statistical analysis

All data from the animal study are exhibited as the group 
mean ± standard error (SE). Statistical analysis was 
performed using an unpaired two-tailed t-test with Welch’s 
correction in GraphPad Prism 8 (GraphPad Software Inc, 
USA) and Mann-Whitney test (non-parametric t-test) in 
SPSS version 27.0 (SPSS Inc., Chicago, IL, USA). Data 
were regarded as significant at P<0.05.

Results

Metabolic changes of NCD or HFD fed mice

Body weight and blood glucose levels were measured 
every week for the 12-week NCD or HFD treatment  

(Figure S1B,S1C). Body weights of the HFD fed mice 
(C57BL/6J) were significantly and gradually increased than 
those of the NCD fed mice since 6th week of the treatment. 
Blood glucose levels were generally higher in the HFD fed 
mice than the NCD fed mice. Statistical significances were 
observed at 2nd, 4th, and 9th–12th week of the treatment.

Transcriptome analysis in the lung tissue of NCD or HFD 
fed mice

The RNA sequencing analysis was performed in the 
lung tissues of the NCD or HFD fed mice. The RNA 
sequencing data were well grouped by diet type (NCD and 
HFD) (Figure 1A). The genes with higher expression levels 
and statistically significant alterations in each diet group 
were shown as volcano plots (Figure 1B). As depicted in the 
volcano plot, the expression of alpha tocopherol transfer 
protein (Ttpa), pyruvate dehydrogenase kinase 4 (Pdk4), 
angiopoietin like 4 (Angptl4), transformation related protein 
53 inducible nuclear protein 1 (Trp53inp1), ribosomal 
protein L10, pseudogene 3 (Rpl10-ps3), fk506 binding 
protein 5 (Fkbp5), predicted gene 13940 (Gm13940), serine 
peptidase inhibitor clade A, member 3f (Serpina3f), zinc 
finger and BTB domain containing 16 (Zbtb16), Gm42929, 
pleckstrin homology domain containing A6 (Plekha6), 
transmembrane protein 151A (Tmem151a), Gm37539, 
Gm43506, Lzts1, thyroid hormone responsive (Thrsp), 
Gm11719, Cyp26b1, Gm20631, retinol binding protein 
7 (Rbp7) were significantly changed in the lung tissues of 
HFD fed mice (Figure 1B). Analysis of the HFD fed mice 
revealed 626 and 880 genes with significantly increased and 
decreased expression, respectively (P<0.05). 

Among the genes with a P value ≤0.05 in the lung tissues 
of the HFD fed mice, we selected the top 15 increased and 
decreased genes in order of the largest and smallest fold 
change, respectively (Figure 1C,1D). The top 15 increased 
genes included Serpina3f, Rpl10-ps3, Zbtb16, Gm13940, 
Fkbp5, H2A clustered histone 7 (H2ac7), hypoxia inducible 
factor 3 subunit alpha (Hif3a), heat shock protein family 
E (Hsp10) member 1, pseudogene 2 (Hspe1-ps2), Pdk4, 
G protein-coupled receptor class C group 6 member A 
(Gprc6a), Angptl4, lysyl oxidase (Lox), cadherin 17 (Cd17), 
phosphodiesterase 2A (Pde2a), and Gm15501 (Figure 1C). The 
top 15 decreased genes included Thrsp, Rbp7, Gm20631, 
Gm11719, Lzts1, Gm37539, Gm37612, Gm42929, Cyp26b1, 
neurexophilin 3 (Nxph3), Gm6855, wingless-related 
integration site family member 7A (Wnt7a), glucagon like 

https://cdn.amegroups.cn/static/public/TLCR-24-659-Supplementary.pdf
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Figure 1 Analysis of the transcriptomic data from the lung tissues from HFD model mice. (A) Heatmap confirming the grouping between 
groups; (B) volcano plots of the HFD mouse group. The X-axis indicates the log2-transformed fold change in each group, and the Y-axis 
represents the −log10(P value) value. The vertical yellow bar indicates the −log2(fold change) of 1, while the horizontal yellow bar indicates 
the −log10(P value) of 1.3, respectively. Blue dots depict all genes expression. Yellow dots depict the significantly changed genes. (C,D) The 
top 15 genes with significant changes in expression in the lung tissues of HFD model mice. The graphs depict the top 15 genes with the 
highest fold change (C) and smallest fold change (D) among genes with P values <0.05. (E) The protein levels of PDK4, and (F) LZTS1 and 
cytochrome p450 Cyp26b1 in the lung tissues of NCD and HFD mice (n=3) using western blot analysis. Data are presented as the mean ± 
SEM (n=3). An unpaired two-tailed t-test with Welch’s correction was used for statistical analysis. *, P<0.05. HFD, high-fat diet mice group; 
PDK4, pyruvate dehydrogenase kinase; LZTS1, leucine zipper tumor suppressor 1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 
NCD, normal chow diet mice group; SEM, standard error of the mean.
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peptide 1 receptor (Glp1r), Gm43506, and 2610306O10Rik 
(Figure 1D). Among top 15 increased genes, we confirmed 
the protein level of PDK4 (Figure 1E). The protein level of 
PDK4 was significantly increased in the lung tissue of HFD 
fed mice (Figure 1E). Also, among top 15 decreased genes, 
we detected the protein levels of LZTS1 and cytochrome 
p450 Cyp26b1 as a representative (Figure 1F). The protein 
level of LZTS1 was slightly decreased in the lung tissue of 
HFD, while the protein level of cytochrome p450 Cyp26b1 
was increased in the lung tissue of HFD (Figure 1F).

GO and KEGG analyses for the cellular pathways of 
associated changed genes in the lung tissue of the HFD fed 
mice

GO and KEGG analyses in MSigDB were performed to 
identify the cellular pathways associated with the genes 
that were altered in the lung tissues of HFD fed mice  
(Figure 2A,2B). Among the genes with a P value ≤0.05, 
500 genes were selected in order of decreasing p-value. 
GO analysis of the significantly changed genes revealed 

GO analysis of significantly changed genes in lung
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Figure 2 Functional analysis of the changed genes in the lung tissues of HFD model mice. (A) GO analysis of the changed genes in the lung 
tissues of HFD model mice. The top 20 GO terms based on the FDR q-value are shown. (B) KEGG pathway for the changed genes in lung 
tissues of HFD model mice. KEGG pathway terms based on FDR q-value are shown. GO, Gene Ontology; HFD, high-fat diet mice group; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate; VEGF, vascular endothelial growth factor; NOTCH, 
neurogenic locus notch homolog protein; WNT, wingless-related integration site; NK, natural killer; NOD, nucleotide oligomerization 
domain; FC, fragment crystallizable.
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that there were the most significantly enriched GO terms 
related to positive regulation of the nitrogen compound 
metabolic process, macromolecular biosynthetic process, 
macromolecular metabolic process, and metabolic 
process, as well as G protein coupled receptor signaling 
pathway, regulation of telomerase activity, epithelial 
tube morphogenesis, morphogenesis of an epithelium, 
circulatory system development (Figure 2A). Additionally, 
KEGG analysis of the significantly changed genes in HFD 
fed mice revealed enrichment in cellular pathways in cancer, 
small cell lung cancer, fragment crystallizable (FC) gamma 
R mediated phagocytosis, N-glycan biosynthesis, focal 
adhesion, nucleotide oligomerization domain (NOD)-like 
receptor signaling pathway, adipocytokine signaling pathway, 
T-cell receptor signaling pathway, WNT signaling pathway, 
vascular endothelial growth factor (VEGF) signaling 
pathway, neurogenic locus notch homolog protein (NOTCH) 
signaling pathway, apoptosis, non-small cell lung cancer, and 
natural killer cell (NK-cell) mediated cytotoxicity (Figure 2B).

Functional clustering analysis of significant genes in the 
lung tissue of the HFD fed mice using DAVID analysis 
and protein network analysis

The DAVID functional annotation tool was conducted for 

functional clustering analysis of significant genes among 500 
genes selected in order of decreasing P value among genes 
with a P value of ≤0.05 for the change in expression in HFD 
fed mice (Figure 3A). As a result, we observed four highly 
enriched clusters, one of which was related to apoptosis 
and cancer pathways, including phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (Akt) signaling, Rap1 
signaling, hypoxia-inducible factor-1 (HIF-1) signaling, 
VEGF signaling, and Ras signaling (Figure 3A). Next, the 
STRING tool was used for the analysis of the connection 
among the selected 200 genes expressed in the lungs of 
HFD model mice in order of decreasing P value among 
genes with a P value of ≤0.05 for the change in expression 
in HFD model mice (Figure 3B). Among the genes, Hspa5, 
Hsp90aa1, Dkc1, Dnajc21, Myc, Rela, Cdk4, and Pdk4 were 
shown to be central hubs with many connections with other 
genes (Figure 3B). 

Increased expression of mRNA and protein of lung fibrosis-
related genes in the lung tissues of the HFD fed mice

RT-PCR and western blotting analyses were performed 
to confirm the expression of lung fibrosis-related genes 
and their associated proteins, respectively (Figure 4A). Our 
results demonstrated significantly increased mRNA levels 

Figure 3 DAVID analysis and protein network analysis. (A) DAVID analysis of changed genes. Functional annotation clustering based 
on the DAVID analysis tool. The top four clusters with significant change are shown. (B) Transcriptional analysis of the changed genes in 
the HFD group. Signal networking data. Red boxes highlight proteins that exhibit relatively high connectivity with other proteins in the 
interaction network. DAVID, Database for Annotation, Visualization and Integrated Discovery; HFD, high-fat diet mice group; VEGF, 
vascular endothelial growth factor; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; 
HIF-1, hypoxia-inducible factor-1.
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Figure 4 mRNA levels and protein levels of pulmonary fibrosis-related genes in the lungs of HFD mice. (A) The measurement of Tgfβ, 
αSma, Col1a1, Pdgfr and Timp1 mRNA levels in the lung tissues of HFD model mice. Data are presented as the mean ± SEM (n=3). An 
unpaired two-tailed t-test with Welch’s correction was used for statistical analysis. (B) The measurement of Gdf15, and Gfral mRNA levels 
in the lung tissues of HFD model mice. Data are presented as mean ± SEM (n=3). An unpaired two-tailed t-test with Welch’s correction was 
used for statistical analysis. (C) Western blot analysis of AKT signaling pathway and pulmonary fibrosis markers (β-catenin, and GDF15) 
in the lung tissues of NCD and HFD mice (n=6). (D) Western blot analysis of lung fibrosis markers (αSMA and MMP-9) in the lung 
tissues of NCD and HFD mice (n=6). Protein expression was normalized to GAPDH and native protein levels. Data are expressed as mean 
± SEM. Statistical analysis was conducted to determine the relative significance between the NCD and the HFD groups (unpaired two-
tail t-test with Welch’s correction); *, P<0.05. TGFβ, transforming growth factor β; αSMA, α-smooth muscle actin; Col1a1, collagen type 
I alpha 1 chain; PDGFR, platelet-derived growth factor receptors; TIMP1, tissue inhibitor matrix metalloproteinase 1; GDF15, growth 
differentiation factor 15; GFRAL, glial cell-derived neurotrophic factor family receptor alpha-like; NCD, normal chow diet mice group; 
HFD, high-fat diet mice group; MMP-9, matrix metalloproteinase-9; GAPDH, 3-phosphate dehydrogenase; SEM, standard error of the 
mean; AKT, protein kinase B.
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of Tgfβ, αSma, Col1a1, Pdgfr, Timp1, Gdf15, and Gfral in 
the lung tissues of the HFD fed mice compared to those of 
the NCD fed mice (Figure 4A,4B). Western blot was used 
to detect the levels of proteins related to DAVID clustering 
terms, and the results showed increased protein levels of 
p-AKT/AKT, β-catenin, and GDF15 in the lung tissues of 
the HFD fed mice compared to those of the NCD fed mice 
(Figure 4C). Also, western blot was used to detect the levels 
of proteins related to lung fibrosis, and the results showed 
increased protein levels of MMP-9 and αSMA in the lung 
tissues of the HFD fed mice compared to those of the NCD 
fed mice (Figure 4D).

Discussion

The results of animal experiments conducted in this study 
demonstrated that HFD-induced obesity may accelerate the 
risk of lung fibrosis and lung cancer. Moreover, we found 
significantly distinct alteration of the genes and proteins 
related to lung fibrosis and lung cancer expressed in the 
lung tissues of HFD-induced obese mice compared to those 
in control tissues. 

The volcano plot revealed several distinct genes such 
as Ttpa involved in increased inflammatory response (20). 
Additionally, we identified the top 15 genes which were 
increased including Zbtb16; the transcription factor PLZF 
(Zbtb16) directs the effector process of NKT cells, a 
well characterized preserved population of T cells (21). 
Moreover, FK506-binding protein 5 (FKBP5) plays a role 
in immunoregulation, apoptotic response, and also is highly 
expressed in T lymphocytes (22). Increased level of Hif3a 
leads to abnormal alveoli structure related to pulmonary 
function (23). Increased level of Angptl4 boosts pulmonary 
tissue leakiness and aggravates inflammation-induced lung 
tissue damage (24). Increased expression of Lox is involved 
in impaired pulmonary alveolarization (25). Elevated 
expression of Pde2a cause the high level of iNOS and alveolar 
inflammation in lung (26). Also, increased expression of 
Pdk4 in lung pericytes promotes lung tumorigenesis by 
regulating pyruvate dehydrogenase (27). Considering this 
evidence, the lung tissues of the HFD fed mice tend to show 
increased expression of cancer- and lymphocyte-related 
genes. Moreover, we selected the top 15 decreased genes, 
including Rbp7, a member of the cellular retinol-binding 
protein family, is known to play a regulatory role in the 
cellular antioxidant process together with the cofactor PPAR 
gamma (28). The reduced expression of Lzts1 is involved in 

tumorigenesis of lung cancer (29). Decreased expression of 
Wnt7a increases small lung cancer cell proliferation (30).  
The reduced expression of Glp1r leads to increased 
pulmonary inflammation (31). Also, Cyp26b1 is known to be 
highly expressed in lung endothelial cells, and its loss results 
in a reduction in alveolar type 1 cells, leading to impaired 
alveolar inflation (32). As mentioned above, the lung of the 
HFD fed mice is associated with increased immune and 
inflammatory responses and cancer-related signaling. Given 
this evidence, the lung tissues of the HFD fed mice tend to 
show decreased expression of antioxidant response-related, 
cancer protective, pulmonary alveolarization and pulmonary 
alveolar cell protective genes.

Additionally, we found significantly highly enriched GO 
terms and KEGG pathways in the lungs of HFD fed mice. 
The top GO term was positive regulation of the nitrogen 
compound metabolic process. Nitrogen is the most 
common gas in the lung, where the nitrogen oxidation-
reduction processes occur continuously. Unlike other gases in 
the lung, nitrogen reacts least with hemoglobin, and nitrogen 
oxide produced by nitric oxide synthase (NOS) activity is 
considered as a NO free radical (33). The nitrogen process 
is considered as critical in killing microbes (33). Nitrogen 
synthesizes various molecules, including amino acids and 
ammonia, and influences the growth of lymphocytes and 
cancer cells (33). A recent study reported that numerous 
types of cancer cells have increased demands on nitrogen 
sources, especially amino acids, and the lack of amino 
acids is considered a metabolic checkpoint for immunity 
in cancer (34). Moreover, one study has suggested that 
the control of nitrogen metabolism contributes to cellular 
metabolism in immune, stromal, and cancer cells (35). 
Considering the result from the previous studies, the lungs 
of the HFD fed mice are closely related to changes in 
nitrogen metabolism compared to the lungs of the NCD 
fed mice. The relationship between nitrogen metabolism 
regulation and HFD implies that a HFD may affect lung 
cancer progression through alterations in nitrogen-related 
processes. 

We also identified G-protein coupled receptor (GPCR) 
signaling as an enriched GO term. GPCRs in airway 
smooth muscle are direct therapeutic targets of anti-
asthmatic drugs in disorders such as asthma to attenuate 
airway inflammation and promote airway remodeling (36). 
Furthermore, KEGG analysis identified the following 
significant terms: small cell lung cancer, FC gamma R 
mediated phagocytosis, T-cell receptor signaling pathway, 
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WNT signaling pathway, VEGF signaling pathway, 
NOTCH signaling pathway, apoptosis, non-small cell 
lung cancer, and NK-cell mediated cytotoxicity. VEGF/
HIF-1α signaling is involved in cancer metastasis, cancer 
growth, and progression of tumor vessels (37). Rap1 
signaling regulates the metastasis of non-small cell lung 
cancer and cell proliferation of lung adenocarcinoma (38).  
CD8+ T cell infiltration is an important issue in lung 
adenocarcinoma and small cell lung cancer (39). Moreover, 
NK cell cytotoxicity and NK cell contractility aggravate the 
progression of lung adenocarcinoma (40). Our DAVID data 
revealed significant clusters, including VEGF signaling, 
HIF-1 signaling, and Rap 1 signaling. Based on it, the lungs 
of HFD mice are involved in significant signaling related to 
cancer metastasis, invasion, lymphocyte activation, cancer 
growth, leukocyte stimulation, tumor vessel formation, cell 
proliferation, and apoptosis.

Furthermore, in the lung tissues of HFD fed mice, we 
found strong genetic connections among Hspa5, Hsp90aa1, 
Dkc1, Dnajc21, Myc, Rela, Cdk4, and Pdk4 using the 
STRING tool. Dkc1 is involved in lung adenocarcinoma, 
cell senescence, metastasis, apoptosis and angiogenesis in 
cancer (41). Moreover, Cdk4 can be used as a biomarker 
for detecting lung and head cancers (42), while Cdk4 
inhibitors can be used to treat non-small cell lung cancer. 
As mentioned above, considering that lung cancer-related 
genes are central hubs that connect with other proteins, the 
lungs of HFD mice may show increased expression of the 
abovementioned lung cancer genes, which will increase the 
risk of lung cancer in the future. 

Additionally, our PCR data revealed increased lung 
fibrosis-related genes, including Tgfβ and Gdf15, in the 
lungs of the HFD fed mice. Pulmonary fibrosis, such as 
idiopathic pulmonary fibrosis, is associated with an increased 
risk of lung cancer and has been shown to be involved 
in lung cancer through common pathogenic biological 
mechanisms (43). The increased expression of Tgfβ leads 
to lung fibrosis and airway remodeling, including abnormal 
extracellular matrix deposition via promoting fibroblast 
activation (44). The increased expression of Gdf15 and 
Gfral, as receptors for Gdf15, accelerates the activation of 
macrophages and fibroblasts and leads to lung fibrosis (45). 
Moreover, αSma upregulates fibroblast contractile activity 
and Tgfβ activation, leading to lung fibrosis (46). Pdgfr 
and Timp1 regulate lung fibrosis and vascular remodeling 
in lung fibrosis (47). As a result, our PCR data showed the 
genes expressed in the lungs of HFD mice tends to induce 
lung fibrosis.

However, our results had a limitation. We did not 
perform specific histopathological analysis of the lung 
tissues, because we focused on the screening of genes 
related to lung fibrosis and lung cancer and confirmed the 
relationship between lung function and obesity induced by 
HFD. Therefore, we need to conduct specific histological 
analysis of the lung tissues to identify if the HFD affect lung 
structure describing lung function. 

Despite the limitation, our results showed the genetic 
alteration and the changes of significant molecular signaling 
of the lung tissue in the HFD fed mice. It suggested that 
HFD-induced obesity contributes to an increased risk of 
lung fibrosis and lung cancer. Further studies are needed to 
elucidate the effect of HFD-induced obesity on the risk of 
lung fibrosis and lung cancer in humans including healthy 
people and patients with lung disease.

Conclusions

This study analyzed genetic alteration and molecular 
signaling changes of the lung tissue in the HFD induced 
obese mouse model through the transcriptomic and 
molecular analysis. Thus, our results showed that HFD 
contributes to an increased risk of lung fibrosis and lung 
cancer. Therefore, we propose that the genetic modulation 
and the molecular regulation of target pathways are 
essential to suppress pulmonary fibrosis in obese patients.
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