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A B S T R A C T   

This work intends to examine the diagnostic, prognostic, and biological roles of PSMD1 (pro
teasome 26S subunit, non-ATPase 1) in liver hepatocellular carcinoma (LIHC) and other malig
nancies, using bioinformatics techniques. PSMD1 is an innate immune gene that has been 
identified as a biomarker for several cancers. By analyzing TCGA data, we determined that 
PSMD1 has excellent diagnostic and prognostic value in LIHC. We also examined its correlation 
with stage-matching clinical features, particularly T staging and stage staging. Independent 
prognostic analysis, nomogram, and Decision Curve Analysis (DCA) analysis confirmed the pre
dictive ability of PSMD1 on patient clinical outcomes. Our focus was on exploring the biological 
process, immune infiltration, and genetic variation in which PSMD1 is involved in LIHC. We 
found a close relationship between PSMD1 and the tumor microenvironment (TME), as well as 
various immune cell infiltration, immune function, and immune checkpoints. Furthermore, our 
results suggested that liver cancer patients with low PSMD1 expression were more actively 
responsive to immunotherapy according to TIDE predictions. Additionally, we observed signifi
cant differences in patient survival based on the different immune molecular types of tumors and 
their correlation with PSMD1 expression. The close relationship between PSMD1 and copy 
number variation (CNV), tumor mutational burden (TMB), and methylation was also confirmed, 
showing a significant impact on patient survival. Moreover, the pan-cancer analysis revealed that 
PSMD1 is closely related to the diagnosis and prognosis of various cancers, as well as immune 
infiltration across different cancer types. In summary, PSMD1 has the potential to be a useful 
diagnostic and prognostic biomarker for LIHC and other types of cancers. It is closely associated 
with indicators such as immune infiltration, CNV, TMB, and methylation. The identification of 
PSMD1 may offer a potential intervention target for LIHC and various cancers.   

1. Introduction 

Liver hepatocellular carcinoma (LIHC) is the principal reason for cancer-related deaths, and the prognosis of advanced LIHC pa
tients is very poor. However, due to the diverse etiological sources of hepatocellular carcinoma, our understanding of the biology of 
this cancer is still limited [1–3]. Numerous prominent factors that contribute to the development of LIHC have been identified, 
encompassing hepatitis B and C infections, alcoholic hepatitis, as well as exposure to harmful substances like the fungal metabolite 
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Fig. 1. Diagnostic and prognostic ability of PSMD1 in LIHC. (A). Differential expression of PSMD1 in pan-carcinoma patients. (B). Differences in 
PSMD1 expression between tissues. (C). Expression differences in paired samples. (D). PSMD1 immunohistochemistry. (E). OS difference curves for 
different populations. (F). PFS difference curves in different populations. (G). Diagnostic ROC curve. (H). Time-dependent ROC curve. 
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Fig. 2. Clinically matched analysis of PSMD1. (A). Clinical trait classification statistical heat map and correlation. (B–J). Independent matching 
analysis of clinical traits. (B). Stage staging. (C). Grade grading. (D). T stage. (E). N stage. (F). M stage. (G). Gender. (H). T Age. (I). HBV. (J). HCV. 
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aflatoxin B1 [4]. Regrettably, the clinical prognosis of LIHC remains poor, and conventional treatment options include drug therapy, 
interventional therapy, surgical treatment, and liver transplantation [5]. In recent years, there has been a shift towards immuno
therapy and novel targeted drugs for the treatment of LIHC, with promising evidence of improved prognosis for LIHC patients [6]. This 
expansion of treatment options highlights the need to identify key biomarkers that can enrich the available treatment options for LIHC 
and enhance our understanding of the biological processes involved, ultimately providing more opportunities for the effective 
treatment of LIHC patients. 

The ubiquitin-proteasome system (UPS) is a crucial component in maintaining protein quality control and normal cellular processes 
in the body. It consists of important components such as ubiquitinases, deubiquitinases, and 26S proteasomes. Dysfunction in the UPS 
can lead to the development of certain diseases, including cancer [7]. The 26S proteasome plays a vital role in regulating ubiquitinated 
proteins in human cells and is involved in various microenvironmental regulatory mechanisms, such as DNA synthesis, repair, tran
scription, translation, and cell signaling [8]. PSMD1 is a component of the 26S proteasome and contributes to its function regulation. 
PSMD1 belongs to the innate immunity genes [9] and has been found to be closely related to a variety of cancers such as lung 
adenocarcinoma and breast cancer [10–14]. 

In this study, we investigated the prognosis and function of PSMD1 in LIHC by a thorough, multiscale bioinformatics analysis. 
Firstly, we verified PSMD1’s diagnostic and prognostic utility in LIHC. Then, we performed stage-matched analysis of clinical traits to 
gain a detailed understanding of the specific processes associated with PSMD1. After conducting independent prognostic analysis, we 
confirmed the excellent prognostic efficacy of PSMD1 in the clinic using a nomogram model and DCA (Decision Curve Analysis). 
Through GO (Gene Ontology) function, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, DO (Disease Ontology) disease, 
and GSEA (Gene Set Enrichment Analysis) enrichment analysis, we identified the biological processes in which PSMD1 may participate 
in LIHC. Furthermore, we conducted specific analyses focusing on immune-related aspects, including TME (Tumor Microenvironment) 
analysis, immune cell infiltration, and immune function analysis. These analyses confirmed the presence of immune cell and functional 
differences in different expression populations. Additionally, we discovered a close association between PSMD1 and immune 
checkpoints. Differential analysis using TIDE (Tumor Immune Dysfunction and Exclusion) predicted that the low-expression popu
lation is more sensitive to immunotherapy, providing a foundation for LIHC immunotherapy. Our study reveals that PSMD1 is not only 
closely associated with tumor immune molecular typing, but also contributes to various genetic variations such as TMB, CNV, and 
methylation. These variations are strongly correlated with the abnormal expression of PSMD1 and have a significant impact on 
prognosis. Our findings demonstrate that PSMD1 is highly sensitive in diagnosing multiple cancers and has a significant negative 
impact on prognosis. Additionally, we found that PSMD1 contributes to immune cell infiltration in several malignancies. Therefore, we 
conclude that PSMD1, as an innate immune gene, holds promise as a biomarker for identifying LIHC and gauging its prognosis. 
Furthermore, it exhibits substantial potential in the diagnosis and prognosis of various types of cancers. 

2. Results 

2.1. PSMD1 diagnostic and prognostic value in LIHC 

The analysis comparing the tumor group and adjacent cancer in PSMD1 in pan-cancer revealed significant expression differences. 
PSMD1 exhibited high expression in BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD and UCEC, but a negative corre
lation in GBM, KICH, KIRC and KIRP (Fig. 1A). Furthermore, differential expression analysis in LIHC demonstrated that tumor samples 
had increased PSMD1 expression compared to the control group (p < 0.001) (Fig. 1B). Paired sample analysis yielded the same result 
(p < 0.001) (Fig. 1C), suggesting that PSMD1 could serve as an important diagnostic marker for LIHC. Immunohistochemical analysis 
using two antibodies showed that LIHC tissue exhibited darker staining and higher protein expression than normal liver tissue 
(Fig. 1D). Survival difference analysis indicated that a poorer prognosis was related with greater PSMD1 expression(p = 0.005) 
(Fig. 1E), which was also supported by progression free survival (PFS) analysis (p = 0.005) (Fig. 1F). Diagnostic ROC analysis 
demonstrated that PSMD1 had excellent diagnostic value for LIHC and accurately identified LIHC patients (AUC = 0.936) (Fig. 1G). 
The multi-time point time-dependent ROC curve revealed that PSMD1 had high accuracy in predicting patient survival, particularly 
within the first year (AUC = 0.720) (Fig. 1H). In conclusion, PSMD1 could be an important indicator for distinguishing LIHC patients 
and predicting clinical outcomes. 

2.2. Analysis of clinical characteristics 

After analyzing the common clinical characteristics of each sample, including STAGE, GRADE, T, N, M, GENDER, AGE, HBV, and 
HCV, we created a heat map to visualize the relationship between these traits and the expression of PSMD1. The results indicated that 
STAGE and T stages significantly differed in PSMD1 expression(P < 0.001) (Fig. 2A). We used stage matching analysis to look into the 
relationship between genes and clinical traits. 

The results showed a trend toward positive connection between PSMD1 expression and both STAGE and T stage. This shows that 
PSMD1 is essential for the development of LIHC and may be intimately related to tumor development. (Fig. 2B–J). 

2.3. PSMD1 clinical predictive ability 

We conducted an independent prognostic analysis on PSMD1, considering its expression level and common clinical traits. Both 
univariate and multivariate prognostic analyses demonstrated that PSMD1 has a substantial impact on LIHC development. This 
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proposes that PSMD1 may independently contribute to adverse patient survival as a risk factor (P ≤ 0.001) (Fig. 3A and B). 
Furthermore, we created a Nomogram model that took PSMD1 expression levels and clinical characteristics into account. Our findings 
revealed that PSMD1 can serve as a highly sensitive indicator for predicting patient survival time, resulting in excellent overall ac
curacy of the Nomogram model (P < 0.05) (Fig. 3C). Additionally, the Calibration curves at 1, 3, and 5 years closely aligned with the 
standard line, demonstrating the exceptional predictive ability of PSMD1 in clinical aspects (C-index = 0.719) (Fig. 3D). Moreover, our 

Fig. 3. Prognostic value of PSMD1 in patients with LIHC. (A). Univariate independent prognostic analysis. (B). Multi-factor independent prognostic 
analysis. (C). Synthetic multi-factor nomogram model. (D). Calibration curve. (E). DCA curve of PSMD1 and clinical traits in first-year. (F). DCA 
curve of PSMD1 and clinical traits in 3rd year. (G). DCA curve of PSMD1 and clinical traits in 5th year. 
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Fig. 4. Biological behavior analysis of PSMD1 in LIHC. (A). Differential gene heat map of different expression populations. (B). GO functional 
enrichment analysis. (C). KEGG pathway enrichment analysis. (D). DO disease enrichment analysis. (E). GSEA-based GO functional enrichment 
analysis. (F). GSEA-based KEGG pathway enrichment analysis. 
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1, 3, and 5-year DCA analysis comparing the prognostic ability of PSMD1 indicated that it can be used as a single index with similar 
performance to the nomogram model in predicting the clinical outcome of patients (Fig. 3E–G). 

2.4. Analysis of the potential mechanism of action of PSMD1 

In this study, we first identified the differential genes associated with PSMD1 based on their expression levels. We then generated a 
correlation heat map (Fig. 4A) to visualize the relationship between these genes. Subsequently, we conducted an analysis to explore the 
biological behaviors associated with these differential genes. Our functional enrichment analysis revealed that molecular functions 
such as “synapse organization” (GO:0050808), “neuronal cell body” (GO:0043025), and “gated channel activity” (GO:0022836) were 
particularly important. Additionally, we analyzed the most significant biological processes in terms of cell group using GO terms 
(Fig. 4B). Furthermore, our KEGG analysis highlighted “ko04512 ECM-receptor interaction” and “Mucin type O-glycan biosynthesis” 
as the most significant pathway (Fig. 4C). Lastly, we performed an enrichment analysis of diseases and found a significant association 
between PSMD1 and “DOID:1884 viral hepatitis” based on the Disease Ontology (Fig. 4D). 

We investigated PSMD1 functional and pathway variations, using gene set enrichment analysis (GSEA).Our findings reveal that 
PSMD1 exhibits significant activity in immune-related functions, specifically in the "Immunoglobulin Complex" function. Conversely, 
it shows significant silencing in functions related to "oxidoreductase activity" (Fig. 4E). Additionally, our analysis suggests that PSMD1 
may be involved in positive regulation pathways, such as "ECM Receptor Interaction", while inhibiting pathways like "Glycine Serine 
and Threonine Metabolism" (Fig. 4F). Our research suggests that PSMD1 may have an impact on tumor development via modifying 
biological immune response and receptor-ligand interactions. 

2.5. Analysis of PSMD1 immunoinfiltration 

Tumor formation is significantly influenced by changes in the immunological microenvironment. In our investigation of the 
variances in the tumor microenvironment comparing LIHC and PSMD1, we observed that the immuneScore exhibited elevated levels in 
the group with high expression of PSMD1 (P < 0.05) (Fig. 5A). We then conducted a detailed analysis of the immune infiltration status 
of PSMD1 in LIHC. In the PSMD1 high expression group compared to the low expression group, there were considerably more eo
sinophils and resting NK cells present, but the content of B cell naïve, T cell regulation (Tregs), and activated NK cells exhibited the 
opposite trend (P < 0.05) (Fig. 5B). Furthermore, PSMD1 and immunological checkpoints have a very high positive association, ac
cording to the analysis of immune checkpoints. The overexpression or overactivation of immune checkpoint molecules caused by 
PSMD1 overexpression ultimately hinders immune function, diminishing the body’s immunity. As a result, individuals become prone 
to LIHC (Fig. 5C). We also analyzed the differences in immune function between different expression groups. The high-expression 
group exhibited stronger aDCs, APC co-stimulation, DCs, Macrophages, and Th2 cells, while Type_II_IFN_Response was more signif
icant in the low-expression group (P < 0.05) (Fig. 5D). In addition, we utilized TIDE to predict the immune escape ability of various 
expression groups. The TIDE score of the PSMD1 high expression group was significantly higher, indicating that this group was more 
likely to experience immune escape (P < 0.001) (Fig. 5E). When classifying the patients based on immune type, we observed a sig
nificant difference in the expression of PSMD1 among the different immune type groups (P = 7.8e-06) (Fig. 5F). Analysis of the 
subsequent survival among various groups classified by immune type indicated notable variations in survival duration, particularly 
when comparing the Inflammatory and Wound Healing groups (P = 0.04) (Fig. 5G). 

2.6. Gene mutation landscape and methylation modifications 

To investigate the relationship between PSMD1 and genetic variation, we conducted gene mutation and methylation studies. We 
generated a mutation waterfall diagram based on the differential expression of PSMD1. The analysis revealed that Missense Mutation 
was the predominant mutation type across different populations. In our analysis, we successfully identified the top 15 genes exhibiting 
the greatest frequency of mutations. Notably, TP53 emerged as the gene with the most significant mutations across both groups. 
Curiously, TP53 displayed a higher frequency of mutations within the population exhibiting high expression levels (Fig. 6A). Addi
tionally, we compared the tumor mutational burden (TMB) between different expression populations and observed a more pronounced 
TMB in the high-expression group (P = 0.046) (Fig. 6B). Survival differential analysis revealed that patients with high TMB tended to 
have a worse prognosis (P = 0.035) (Fig. 6C). To further explore patient survival, we combined PSMD1 expression with TMB and found 
significant differences in survival among patients with different expression levels and mutations. Notably, patients with both high TMB 
and high PSMD1 expression had the worst prognosis. Moreover, patients with high PSMD1 expression generally had a poorer prog
nosis, suggesting that PSMD1 expression might have a detrimental effect on survival (P < 0.001) (Fig. 6D). 

We conducted an analysis of PSMD1 expression data and copy number variation (CNV) in LIHC. Our findings revealed that among 
the patients, 13 had copy number gain, 14 had copy number deletion, and there was a positive correlation between PSMD1 expression 
and mutation type, specifically in the categories of Gain, Neutral, and Loss. Notably, PSMD1 expression differed significantly amongst 

Fig. 5. Immune-related analysis of PSMD1. (A). Differences in TME in different expression populations. (B). Differences in immune cell infiltration. 
(C). PSMD1 correlation analysis with immune checkpoints. (D). Differences in immune function in different expressed populations. (E). TIDE 
differential analysis of PSMD1 expression and immune evasion ability. (F). Differences in PSMD1 expression in tumor immunophenotyping. (G). 
Survival varies between immunotypes. 
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these groups. (P = 7.5e-5) (Fig. 6E). However, when we examined the relationship between CNV and survival, we found no significant 
difference in the survival rates of the various CNV mutation populations (P > 0.05) (Fig. 6F). Furthermore, we analyzed the 
methylation patterns of PSMD1 in different regions of LIHC. Our results indicated significant methylation in cg03172765, 
cg17012555, and cg01544733 (Fig. 6G). Subsequently, we performed a survival difference analysis on the groups with methylation in 
these regions and discovered that the degree of methylation played a detrimental role in patient survival (P < 0.05) (Fig. 6H–J). 

2.7. Validation and treatment of PSMD1 

We utilized four GEO cohorts (GSE19665, GSE29721, GSE62232, and GSE112790) to investigated the expression of PSMD1 in 
various tissues. The results indicated a significantly higher expression of PSMD1 in the tumor group compared to normal tissues (P <
0.001) (Fig. 7A–D). Subsequent diagnostic ROC curve analysis demonstrated the effective diagnostic potential of PSMD1 for LIHC 
(AUC>0.9) (Fig. 7E–H). Thus, we have confirmed that PSMD1, as a prognostic gene, can serve as a sensitive marker for identifying 
LIHC. 

We performed single-cell profiling of PSMD1 in a sample, clustering the cells and annotating them with their corresponding im
mune cell types (Fig. 7I). We determined the proportion of each immune cell type and observed that CD8T cells were the most 
abundant, followed by CD4T cells and NK cells (Fig. 7J). The gene scatter plot revealed widespread expression of PSMD1 in various 
immune cells, including B cells and CD8T cells (Fig. 7K). Moreover, we conducted a comparative analysis of immune cell expression 
and PSMD1 in various tissue types. Our investigation revealed a significant elevation in PSMD1 expression within tumor tissues 
compared to that of normal tissues among B cells, CD4conv cells, NK cells, Mono/Macro cells, Tprolif cells, Plasma cells, and Treg cells. 
However, DC cells and Mast cells exhibited the opposite trend (Fig. 7L). In conclusion, Our data indicate that PSMD1 is intimately 
related to immune cells in multiple tissues, particularly in LIHC tissues. This supports the hypothesis that PSMD1 may impact the 
development of LIHC by influencing the immune cell environment. 

To investigate the targeted treatment of PSMD1 in a clinical setting, we conducted a drug sensitivity analysis and identified drugs 
that demonstrate sensitivity in different populations. Notably, drugs such as Foretinib and Imatinib exhibited lower drug levels 
required to reach IC50 in the high PSMD1 expression group (P < 0.001) (Fig. 7M − N). Additionally, potential drugs suitable for the 
low expression group include Erlotinib and Vorinostat (P < 0.001) (Fig. 7O–P). 

2.8. Prognostic value of PSMD1 in pan-cancer 

First, we conducted an analysis on the expression of PSMD1 in various types of cancers using the TCGA and GTEx datasets. The 
findings revealed that out of the 34 tumors examined, PSMD1 was significantly up-regulated in 27 tumors and significantly down- 
regulated in 4 tumors (P < 0.05) (Fig. 8A). Subsequently, we looked into the relationship between PSMD1 expression and general 
prognosis in pan-cancer cases. The findings showed that a trend toward a poor prognosis was associated with high expression of 
PSMD1 in OS, PFI, and DSS. (P < 0.001) (Fig. 8B–D). Moving forward, we further explored the relationship between PSMD1 and 
prognosis in common cancers. By conducting COX regression analysis on 44 tumors, we observed that elevated PSMD1 expression was 
linked to shortened OS in 12 tumors (P < 0.05) (Fig. 8E). In the PFI study which encompassed 38 tumors, the COX regression analysis 
demonstrated that an elevated expression of PSMD1 acted as a risk factor in 10 malignancies (P < 0.05) (Fig. 8F). Additionally, in the 
DSS analysis of the same 38 tumors, the COX regression analysis revealed that PSMD1 posed as a risk factor in 13 tumors (P < 0.05) 
(Fig. 8G). 

2.9. The value of immune infiltration in pan-cancer 

Using various analysis methods, we extensively investigated the connection between immune cell infiltration and PSMD1 in 
different types of malignancies. Our research findings strongly suggest a significant association between PSMD1 and immune cells. By 
applying the MCPCOUNTER algorithm, we discovered a favorable regulatory link between PSMD1 and immune cells specifically in 
KIRP, whereas the analysis of STES and STAD demonstrated an inverse correlation (P < 0.05) (Fig. 9A). Additionally, the TIMER 
method analysis demonstrated a strong positive regulatory relationship between PSMD1 and immune cells in COADREAD, KIPAN, and 
KIRC, while a negative regulation was observed in STAD (P < 0.05) (Fig. 9B). Moreover, the EPIC algorithm results revealed a sig
nificant association between PSMD1 and common immune cells in STES, THCA, and UVM (P < 0.05) (Fig. 9C). Furthermore, the 
QUANTISSEQ analysis showed a close relationship between PSMD1 and LAML, KIPAN, and STES, with a significant positive regulation 
on Macrophages M1 in various cancers (P < 0.05) (Fig. 9D). Lastly, the xCELL analysis displayed a significant correlation between 
PSMD1 and immune cells in STES and BLCA, a less pronounced association with CD4+T cells, and a positive relationship with 
ImmuneScore of LIHC (P < 0.05) (Fig. 9E). In conclusion, the examination of immune cell infiltration across different cancers revealed 
a robust connection between the levels of PSMD1 and immune cells, specifically in LIHC, KIPAN, and THCA. 

Fig. 6. PSMD1 mutation and methylation analysis. (A). PSMD1 tumor mutation landscape. (B). TMB difference analysis in different populations. 
(C). Analysis of survival differences among different TMB populations. (D). Analysis of paired survival differences between TMB and different 
expression. (E). CNV and expression analysis. (F). CNV and survival analysis. (G). Distribution of methylation between CpG islands in different 
patients. (H). Survival differences in the cg03172765 region. (I). Survival differences in the cg17012555 region. (J). Survival differences in the 
cg01544733 region. 
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3. Discussion 

Liver hepatocellular carcinoma exhibits significant heterogeneity and is generally known to be resistant to chemotherapy [15]. 
Although chemotherapy can be effective in treating early-stage hepatocellular carcinoma, the progression of the disease and devel
opment of chemotherapy resistance often leads to suboptimal outcomes [16]. However, it is important to consider that 
immunotherapy-based combination therapy or monotherapy with immune checkpoint inhibitors (ICI) shows promise in the treatment 
of liver cell carcinoma [17]. Current studies have explored the use of atezolizumab and bevacizumab for treating hepatocellular 
carcinoma, and their effectiveness has been confirmed [18]. Therefore, finding fresh and trustworthy targets is essential in this field. 
The UPS, an extensively regulated complex of multiple enzymes, plays a crucial role in maintaining protein homeostasis. It has 
garnered significant attention as a promising therapeutic target against tumors [19]. It functions through the 19S regulatory complex 
and the 20S core complex. The 26S proteasome is responsible for protein degradation [20]. PSMD1, a member of the 19S complex, has 
been implicated in the progression and chemotherapy resistance of diseases like breast cancer and CML [14,21]. However, its role in 
LIHC is not well-studied. Our analysis of the TCGA dataset reveals that PSMD1 is frequently overexpressed in various cancers, 
including LIHC. This overexpression is frequently linked to poor patient survival and can serve as a sensitive factor for diagnosing and 
predicting the prognosis of LIHC patients, consistent with previous research findings [22]. Further analysis of clinical traits demon
strates that the T stage is where PSMD1 has the greatest effect on LIHC, suggesting its potential to promote tumor growth and pro
gression to higher stages. Using nomogram model, DCA model, and independent prognostic analysis, we demonstrate that PSMD1, as a 
single gene, can accurately predict patient survival as an independent risk factor, adversely affecting prognosis. This may be attributed 
to PSMD1’s ability to regulate p38-JNK and AKT signaling, which in turn affects the expression of genes involved in de novo lipid 
synthesis, promoting the accumulation of cellular lipid droplets and the progression of LIHC [23]. 

Biological behavior enrichment analysis revealed a close association between PSMD1 and functions such as ’gated channel ac
tivity’, which has been confirmed to have a causal relationship with the progression of diseases, including cancer [24]. The ’ECM-
receptor interaction’ pathway is considered a crucial cellular process in cancer development, as it regulates multiple pathways in 
cancer cells and is crucial to the tumor microenvironment [25,26]. Additionally, proteoglycans, which are essential components of the 
extracellular matrix, have the ability to regulate cancer cell invasion [27]. Long-term viral hepatitis is regarded as a fundamental and 
significant stage in the development of LIHC, and we hypothesize that PSMD1 may promote hepatitis progression, ultimately leading to 
LIHC [28]. GSEA analysis specifically demonstrated that PSMD1 positively regulates immune-related functions, such as ’Immuno
globulin Complex’ and ’ECM Receptor Interaction’. This suggests that PSMD1 may enhance immune function stimulation in LIHC 
patients, and since cell survival relies on extracellular matrix (ECM) attachment, metastatic tumor cells tend to adapt to an envi
ronment without ECM [29]. Therefore, we speculate that PSMD1 may regulate ECM-receptor interaction, influencing the metastasis of 
LIHC cells. 

TME consists of various infiltrating immune and stromal cells and is crucial for the initiation and development of cancer [30]. A 
higher immuneScore indicates that the TME of individuals with high expression of PSMD1 contains more immune cells, which 
typically suppress tumor growth in the early stages. However, as the tumor progresses, immune escape occurs, which is a major 
characteristic of tumors [31]. Our research findings on immune checkpoints reveal the intrinsic connection between them. Over
expression of immune checkpoint molecules prevents effective anti-tumor immune responses by the body’s immune cells, facilitating 
immune escape by tumors [32]. We utilized TIDE to analyze the PSMD1-mediated immune escape and found that, as anticipated, 
PSMD1 enhances LIHC’s ability to evade immune responses. This suggests that individuals with low PSMD1 expression may benefit 
more from immunotherapy. However, previous studies have shown that approximately 70 % of advanced LIHC patients receiving ICI 
therapy do not experience the benefits of immunotherapy, posing a significant challenge for the treatment of LIHC [33]. Recent 
research has made new attempts in immunotherapy for LIHC, specifically focusing on the use of cytokines and monoclonal antibodies 
in conjunction with radiotherapy for the treatment of LIHC [18,34]. The findings indicate that combining immunotherapy with other 
drugs, particularly two immune checkpoint inhibitors (ICIs), can greatly enhance the likelihood of achieving complete remission in 
cancer patients. This discovery opens up a promising avenue for clinical treatment of LIHC and carries significant implications [6]. The 
variation in immune typing plays a crucial role in the treatment and prognosis of LIHC. Patients with different immune typing 
experience distinct outcomes when undergoing immunotherapy [35]. Our study reveals a significant relationship between the 
expression of PSMD1 and the diverse immune molecular phenotypes of LIHC, particularly in individuals with Wound Healing typing. 
Additionally, this subgroup of patients often exhibits a poor prognosis. Hence, we suggest that PSMD1 can be a useful marker for 
determining patients’ immunological profiles, and its overexpression may impact patient survival by altering the tumor’s immune 
environment. 

In recent years, there has been widespread acceptance of the significant roles that genetic or epigenetic alterations play in various 
transcriptional and nontranscriptional biological processes [36]. Reports indicate that abnormal DNA molecular changes serve as the 
initiators of tumors, appearing in the early stages of tumor development and persisting throughout the entire process. These changes 
are closely linked to tumor prognosis [37]. Analysis of TMB reveals a frequent occurrence of Missense Mutation in PSMD1. A high TMB 
corresponds to a high-expression population and is associated with a worse prognosis. Therefore, in line with other research, we 

Fig. 7. Validation, immune evasion and drug sensitivity. (A–D). Multi-dataset expression difference analysis. 
(E–H). Multi-dataset diagnostic ROC analysis. (I). Immune cell clustering and annotation. (J). Percentage of immune cell content. (K). Distribution of 
PSMD1 in different immune cells. (L). Content of PSMD1 in immune cells of different tissues. (M − N). Sensitive drugs for people with high 
expression volumes. (O–P). Sensitive drugs for people with low expression volumes. 
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Fig. 8. Diagnosis and Prognosis related to PSMD1 in pan-carcinoma. (A). Comparison of PSMD1 expression in cancerous and non-cancerous samples 
across various types of cancer. (B). Correlation between PSMD1 expression and OS. (C). Correlation between PSMD1 expression and PFI. (D). 
Correlation between PSMD1 expression and DSS. (E). Cox regression analysis between PSMD1 expression and pan-carcinogenic OS. (F). Cox 
regression analysis between PSMD1 expression and pan-carcinogenic PFI. (G). Cox regression analysis between PSMD1 expression and pan- 
carcinogenic DSS. 
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Fig. 9. PSMD1 in pan-carcinogenic immune cell infiltration. (A). MCPCOUNTER Immunoassay. (B). TIMER Immunoassay. (C). EPIC Immunoassay. 
(D). QUANTISSEQ Immunoassay. (E). XCELL Immunoassay. 

X. Chen et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e21164

15

postulate that high TMB is a significant factor in the poor prognosis of the high-expression group [38]. Further investigation is 
warranted to explore the impact of PSMD1 on tumor mutation. CNV is commonly considered a characteristic feature of human cancer 
[39]. Our study revealed an association between PSMD1 and CNV mutation patterns. Overexpression of PSMD1 is more likely to lead 
to CNV acquisition, while low expression results in CNV loss. Interestingly, We found no discernible variations in survival across the 
various mutant populations. Previous studies have demonstrated that abnormally methylated genes can be used as early LIHC diag
nostic and prognostic indicators [40]. Therefore, we investigated the relationship between PSMD1 and methylation. Our findings 
showed that individuals with high levels of methylation in any region or site of PSMD1 tend to have a worse prognosis. Based on our 
analysis, we concluded that PSMD1 is involved in various genetic variations that closely interact with the transcriptome. Abnormal 
overexpression of PSMD1 has a profound impact on the prognosis of LIHC patients. 

Several studies have established the significance of PSMD1 as a diagnostic biomarker for LUAD [12], BRCA [10], CML [14], GC 
[11] and THCA [13]. We carried out a pan-cancer investigation to learn more about PSMD1’s clinical impact. The results showed that 
PSMD1 is not only crucial for the diagnosis and prognosis of the aforementioned tumors but also significantly worsens the prognosis of 
GBM, LAML, UVM, ACC, KIPAN, LGG, MESO and overall cancer. Since PSMD1 is an innate immune molecule and plays a crucial role in 
the immunity of LIHC, we extensively analyzed the immune infiltration of PSMD1 in various cancers. We found a close relationship 
between PSMD1 and immune cells in most cancers. However, interestingly, we observed that immune cells in CHOL adjacent to LIHC 
have a very low correlation with PSMD1. Exploring the difference in immune cells between CHOL and LIHC may become an important 
direction for distinguishing their source and identifying the pathogenesis. In summary, PSMD1, as an innate immune gene, has the 
potential to serve as a biomarker for the diagnosis and prognosis of LIHC. It primarily promotes the progression of LIHC by regulating 
the immune environment and various genetic variations. Additionally, PSMD1 shows high potential for diagnosing pan-cancer and 
predicting prognosis. Further research on PSMD1 will provide new perspectives on the clinical treatment and pathogenesis of LIHC and 
pan-cancer, ultimately advancing our knowledge of how to face and combat cancer. 

4. Conclusion 

PSMD1, an innate immune gene, has been the subject of extensive research due to its ability to accurately predict the diagnosis and 
prognosis of LIHC. This gene holds significant importance in the advancement of tumor staging and T-stage in LIHC patients. We 
conducted multiple validation methods to confirm the sensitivity of PSMD1 as an independent risk factor for LIHC. Studies investi
gating the function and pathway of PSMD1 in LIHC have revealed its impact on LIHC progression through modulation of immune 
complex function, involvement in peripheral changes of the ECM, and induction of hepatitis. Our findings indicate that PSMD1 is 
implicated in alterations of the TME and immune cells, and the study of immune checkpoints and TIDE provides valuable insights for 
targeted clinical treatments. Furthermore, we identified a close association between PSMD1 and various immune types. Additionally, 
we observed that PSMD1 is involved in multiple genetic variations, including TMB, CNV, and methylation. These variations are closely 
linked to the abnormal overexpression of PSMD1 and significantly impact patient prognosis. Pan-cancer analysis suggests that PSMD1 
holds great potential as a therapeutic target in 12 different tumor types, including LIHC, ACC, UVM, KIPAN, and LUAD, thereby 
highlighting its importance in immune research. 

5. Materials and methods 

5.1. Materials 

We obtained the TCGA, TARGET, and GTEx pan-cancer expression and clinical information datasets from the University of Cali
fornia at Santa Cruz (UCSC) database (PANCAN, N = 19131, G = 60499) (https://xenabrowser.net/). Specifically, the LIHC section 
comprised of 374 tumor samples and 50 normal liver tissue samples. Additionally, we acquired 357 TMB data and 379 CNV data of 
LIHC patients. The expression of PSMD1 was normalized using log2(x+1) transformation. To validate our results, we downloaded the 
GSE19665, GSE29721, GSE62232, and GSE112790 datasets from the Gene Expression Omnibus (GEO) database. Immunophenotyping 
data from 362 samples were utilized to determine the expression levels related to immunophenotype and conduct survival analysis in 
patients with LIHC. 

5.2. Analysis of diagnostic and prognostic capacity of PSMD1 in LIHC 

The TIMER database was utilized to analyze the expression differences of PSMD1 in pan-cancer within the TCGA dataset, with a 
focus on LIHC as the subject of research. The gene expression files of TCGA LIHC were examined to analyze the expression differences 
in individual and paired samples across various tissues. By dividing the samples into high and low expression groups based on the 
median expression value, we utilized clinically relevant information to investigate the differences in OS and PFS among these groups. 
To evaluate the association between PSMD1 expression and the disease, we compared the expression of PSMD1 in both the normal 
population and the LIHC population, and generated a diagnostic ROC curve. Additionally, we sorted the combined expression of 
survival time and survival state to create time-dependent ROC curves for 1, 3, and 5-year periods. The expression of PSMD1 in tumor 
tissues and normal tissues was further identified using two immunohistochemical stains, HPA036736 and HPA036737, available in 
The Human Protein Atlas database (HPA)(https://v15.proteinatlas.org/). 
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5.3. Clinical trait and stage matching analysis 

We collected common clinical data from the TCGA LIHC dataset, which included Age, Gender, Grade, Stage, T, N, M, HBV, and 
HCV. The patients were divided into different groups based on the median value of expression. A correlation heat map was generated to 
observe the differences in traits among these expression groups as a whole. Furthermore, the patients were grouped based on different 
clinical stages to analyze the expression differences of PSMD1 in relation to these stages. This analysis aimed to provide insights into 
the clinical process involving PSMD1 and its impact at different stages. 

5.4. Clinical predictive power 

The nine clinical traits and expression levels of PSMD1 were analyzed to determine if PSMD1 has adverse effects on the survival of 
LIHC patients as an independent prognostic factor. Univariate and multivariate prognostic analyses were conducted. A Nomogram 
model was then constructed using the above indicators to predict patient survival time. A calibration curve was drawn to assess the 
model’s clinical predictive ability, and the c-index value was calculated to determine the model’s credibility. The Nomogram score, 
expression level, and other clinical traits were considered, and decision curves were drawn for 1, 3, and 5-year periods to evaluate the 
predictive sensitivity of PSMD1 expression level on clinical prognosis. 

5.5. Biological behavior analysis of PSMD1 in LIHC 

We initially screened the TCGA dataset for differential genes related to PSMD1 (logFCfilter = 1, fdrFilter = 0.05). Subsequently, we 
conducted GO function, KEGG pathway, and DO disease enrichment analyses on the differential genes to identify functions associated 
with these genes. To visualize the most significantly different items (pvalueFilter = 0.05), we set the minimum gene set to 15 and the 
maximum to 500. We used the (c5.go.symbols.gmt) and (c2.cp.kegg.symbols.gmt) files to analyze the regulatory relationship between 
the differential genes and different functions and pathways. Finally, we identified the top 5 functions and pathways with the most 
significant differences (pvalueFilter = 0.05). 

5.6. Immunoinfiltration analysis of PSMD1 in LIHC 

Firstly, based on the median PSMD1 expression level, the patients were classified into various expression groups. The estimation 
algorithm was used to determine the StromalScore and ImmuneScore for each LIHC sample. These scores were then summed up to 
obtain the ESTIMATEScore. Differences in TME scores among different expression groups were analyzed. CIBERSORT was used to 
determine the content of immune cells in each sample, and differential analysis was performed to observe differences in immune cells 
between high and low expression groups. The expression level of immune checkpoint genes in the TCGA LIHC data set was examined, 
and a circular correlation analysis was conducted to identify immune checkpoints related to PSMD1 (pFilter = 0.001). Additionally, 
ssGSEA analysis was employed to score the immune-related functions of LIHC patients, and differences in immune functions between 
different expression groups were analyzed. The TIDE website (http://tide.dfci.harvard.edu/) was utilized to score LIHC patients and 
assess the immune escape ability of different expression groups based on the differences in TIDE scores. Furthermore, the expression of 
PSMD1 in different immune populations was analyzed, and the survival time and status of these populations were examined. The 
logrank test method was performed to assess the importance of the differences in prognosis between different immune populations. 

5.7. Analysis of genetic variation and transcriptional variation involved in PSMD1 

Based on the median expression of PSMD1, the patients were divided into high and low expression groups. The mutation data of 
different expression groups were analyzed to determine the gene mutation information. A waterfall diagram was created using the top 
15 genes with the highest mutation frequency, and the mutation patterns of genes in different expression groups were observed. The 
tumor mutation burden of different expression populations was calculated, and a differential analysis was performed. The survival 
differences between populations with different mutation burdens were compared by considering survival information. Additionally, 
the expression level and tumor mutation burden were combined for joint survival differential analysis to observe their internal cor
relations. The occurrence of CNV in PSMD1 in LIHC patients was recorded, and the expression level differences of PSMD1 among 
different cases were analyzed. Patients were divided into different groups based on the CNV mode, and the survival time and status of 
each group were sorted for survival analysis. The MethSurv database (https://biit.cs.ut.ee/methsurv/) was used to visualize the re
gions and sites of PSMD1 methylation in LIHC. Patients were divided into high and low methylation groups based on the degree of 
methylation, and the survival differences between groups with different degrees of methylation were calculated. 

5.8. Validation of PSMD1 diagnostic capabilities 

GSE19665, GSE29721, GSE62232, and GSE112790 datasets were downloaded from the GEO database. The datasets were processed 
by converting gene symbols and cleaning the data. Rows and columns with missing values greater than 50 % were deleted, and the 
expression levels were transformed using log2(X+1). The samples were then divided into normal and tumor groups. The expression 
levels of PSMD1 in the two groups were analyzed for differences. Additionally, the expression levels of PSMD1 were combined with 
clinical outcomes, and ROC curves were used to evaluate the diagnostic accuracy of PSMD1 in each independent cohort of the 
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verification group for LIHC. 

5.9. Single cell analysis 

We utilized the LIHC_GSE140228_10X sample from the Tumor Immune Single-cell Hub 2 (TISCH2) database (http://tisch.comp- 
genomics.org/home/) for conducting single-cell studies. Initially, we performed unsupervised clustering to categorize the cells into 
distinct groups. Then, we employed immune cells to annotate these clusters and calculated the proportion of various immune cells 
present in the sample. Additionally, we examined the distribution of PSMD1 across different immune cells and conducted a 
comparative analysis of PSMD1 expression levels in immune cells from different tissues. 

5.10. Drug sensitivity analysis 

Tumor samples were divided into two groups, namely the high-expression group and the low-expression group, using the median 
truncation method. We used a predictive software package to analyze the difference in drug sensitivity between these two groups. A 
significance level of pFilter = 0.001 was set to identify drugs that exhibited higher sensitivity in the different expression groups. The 
results were then visualized. 

5.11. Prognostic analysis of PSMD1 in pan-cancer 

The pan-cancer PSMD1 expression data from TCGA, TARGET, and GTEx were log2(x+1) transformed. Each cancer was divided into 
corresponding tumor and control groups, and the difference in expression between these groups was analyzed. All the samples were 
combined into the pan-cancer tumor and control groups. Patients were then divided into high and low expression groups based on the 
median value of PSMD1, and the differences in prognosis for Overall Survival, Progression Free Interval, and Disease Specific Survival 
were analyzed at the overall level. Subsequently, the Logrank test was used to statistically analyze the above analysis for each common 
cancer separately, and the impact of PSMD1 in each cancer was assessed. 

5.12. Immune invasion of PSMD1 in pan-cancer 

The expression data of PSMD1 in pan-cancer samples from TCGA, TARGET, and GTEx were transformed using log2(x+1). To 
evaluate the immune cell infiltration scores in each patient based on the expression of PSMD1, we employed the Timer, deconvo epic, 
deconvo mcpcounter, deconvo quantiseq, and deconvo xCell methods available in the ’IOBR’ package. Furthermore, we used the corr. 
test function to calculate the correlation and significance between PSMD1 and immune cell infiltration scores in each tumor. Finally, a 
correlation heatmap was plotted. 

5.13. Statistical analysis and visualization 

Differences in parameters were analyzed using the chi-square test.The Spearman test was used to analyze correlations. The 
prognostic significance was tested by Log-rank. For the operations and statistical processing, R (v4.2.3) software was employed. 
Images were visualized and optimized using Adobe Illustrator 2021 software and R data. 
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