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Abstract
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the 
mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum poly-
saccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured 
cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased ex-
pression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate 
expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuropro-
tective effects. 
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Graphical Abstract

Mechanisms underlying the protective effect of ganoderma lucidum polysaccharides (GLPS) on cerebellar 
granule cells against apoptosis 
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Introduction
Oxidative stress-induced brain damage has been implicated 
in many neurodegenerative disorders, such as Parkinson’s 
disease, Alzheimer’s disease, amyotrophic lateral sclerosis, 
Huntington’s disease and stroke (Dawson and Dawson, 2003; 
Veurink et al., 2003; Malkus et al., 2009). Accumulating evi-

dence has suggested that oxidative stress associated with ex-
cessive production of reactive oxygen species profound affects 
neurodegenerative pathogenesis (de Vries et al., 2008; Zolezzi 
et al., 2013; Newland et al., 2016). Reactive oxygen species can 
cause lipid peroxidation, protein denaturation and DNA/RNA 
damage (Ye et al., 2009; Collado et al., 2012; Zou et al., 2015). 
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Reactive oxygen species induce several signal transduction 
pathways, including intrinsic and extrinsic caspase activation, 
which may lead to excessive cell apoptosis and expression 
of inflammatory genes (Chan, 2001; Allen and Bayraktutan, 
2009). Oxidative stress triggers apoptosis through activation 
of many signaling molecules, including kinases and proteases 
(Tan et al., 1998; Andersen, 2004; Kaul et al., 2005). Hydrogen 
peroxide (H2O2) is used as a stressor to induce oxidative stress 
in experimental models (Brown et al., 2013; Sies, 2014) and 
to stimulate apoptotic and necrotic pathways (Clement et al., 
1998).

Pharmaceutical compounds extracted from mushrooms 
showed benefits for a variety of conditions such as cancers, 
immunologic disorders and neurodegenerative diseases 
(Wang et al., 1997; Wasser and Weis, 1999; Cheung et al., 
2000). Ganoderma lucidum (G. lucidum) belongs to the poly-
poraceae family of Basidiomycota, a type of mushroom widely 
used as a traditional medicine for thousands of years, espe-
cially in Asia (Ji et al., 2007). A variety of bioactive chemicals, 
such as polysaccharides, triterpenoids and proteins, can be ex-
tracted from the fruiting bodies, cultured mycelia and spores 
of G. lucidum (Mizushina et al., 1999). Clinical trials and other 
experimental studies indicated that the active compounds iso-

lated from its fruiting body, known as “Lingzhi,” participate in 
a variety of biological processes, showing anti-inflammatory, 
antioxidant, anti-tumor and immunomodulatory activities 
(Lakshmi et al., 2003; Lin and Zhang, 2004; Zhao et al., 2012; 
Pan et al., 2013; Ferreira et al., 2015). G. lucidum polysaccha-
rides (GLPS) were shown to be neuroprotective, increasing 
viability in cerebral cortical neurons exposed to ischemia/
reperfusion and in models for traumatic spinal cord injury 
(Zhao et al., 2004; Gokce et al., 2015). This evidence indicated 
that GLPS is a potentially promising drug candidate. However, 
the roles of GLPS in modulating oxidative stress-induced neu-
ronal apoptosis have been poorly understood. The aim of our 
study was to investigate whether GLPS would protect cultured 
cerebellar granule neurons from apoptosis induced by H2O2.

Materials and Methods
Cell culture
Rat cerebellar granule cells (CGCs) were prepared from 7 or 
8-day-old Sprague-Dawley rat pups, as previously described 
(D’Mello et al., 1993). All experimental procedures were per-
formed in accordance with the Guideline for the Care and Use 
of Laboratory Animals of the Animal Research Ethics Com-
mittee of Peking University Health Science Center (China) and 

Figure 1 H2O2 induced apoptosis of cultured CGCs. 
(A) Representative images of CGCs incubated in medium containing vehicle control or 50 μM H2O2, for the indicated times. Neurons were stained 
with Hoechst 33258 to visualize condensed nuclei  Scale bar: 10 μm. (B) Apoptotic rates in CGCs were quantified by scoring the percentage of neu-
rons with pyknotic nuclei. The data are expressed as the mean ± SEM (n = 3, analysis of variance and Student-Newman-Keuls post hoc test). *P < 0.05, 
vs. control. CGCs: Cerebellar granule cells; h: hours.

Figure 2 H2O2 treatment altered 
protein expression in cerebellar 
granule cells.
(A, C) Western blots for cytochrome 
c and active caspase-3 (cleaved 
caspase-3), Bim, Bax, Bcl-2. Cell 
lysates were subjected to western 
blotting with antibodies against 
cytochrome c and active caspase-3 
(A) or Bim, Bax, and Bcl-2 (C). (B, 
D) Quantified grayscale intensities 
of the bands (A, C), relative to the 
β-tubulin band in the control group. 
Data are expressed as the mean ± 
SEM (n = 4, analysis of variance 
and Student-Newman-Keuls post 
hoc test). *P < 0.05, vs. control. h: 
Hours.
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under the principles and guidelines of the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals. All 
efforts were made to minimize the number and suffering of the 
animals used in the experiments.

Briefly, neurons were dissociated from freshly dissected cer-
ebella by mechanical disruption in the presence of trypsin (Life 
Technologies, Carlsbad, CA, USA) and DNase (Life Technol-
ogies) and then seeded at a density of 1.5 × 106 cells/mL in 
basal modified Eagle’s media (Life Technologies) containing 
10% fetal bovine serum (Life Technologies) and potassium 
(Sigma-Aldrich, St. Louis, MO, USA) at concentrations caus-
ing membrane depolarization (25 mM KCl). The GLPS that 

was administered (0.5%, 2% or 5% (w/v); at 4, 8 or 12 hours) 
contained 56.9% carbohydrate and 32.45% protein and was 
from Lvgu Biotech (Fuzhou, China). After 7 days of cultur-
ing in vitro, CGCs were incubated in the presence or absence 
of 50 μM H2O2 (at 4, 8, 12 hours; Sigma-Aldrich), with or 
without GLPS, for the indicated time points. More details of 
specific treatments are in the figure legends. The control for 
both H2O2 and GLPS was water.

Western blot assay
Western blotting was performed as previously described (Yan 
et al., 2015). Briefly, neuronal lysates were separated using 

Figure 3 GLPS administration suppressed H2O2-induced apoptosis of cerebellar granule cells (light microscopy).
(A) Neurons were pretreated with H2O2 for 4 h. Control vehicle or GLPS at different concentrations (0.5%, 2% and 5% (w/v)) was added, together 
with H2O2, for an additional 8 hours. Representative images are shown. Scale bar: 10 μm. (B, D) Quantification of apoptotic rates. (C) Neurons were 
pretreated with H2O2 for 4 h, then cells were washed with culture medium and incubated with 5% (w/v) GLPS or control vehicle, without H2O2, for 
the indicated times. Representative images are shown. Scale bar: 10 μm. Data are expressed as the mean ± SEM (n = 3, analysis of variance and Stu-
dent-Newman-Keuls post hoc test). *P < 0.05, vs. control.  GLPS: Ganoderma lucidum polysaccharides; h: hours. 
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Figure 4 GLPS administration 
regulated H2O2-induced protein 
alterations in cerebellar granule 
cells.
Cerebellar granule cells were treat-
ed with vehicle without H2O2 (con-
trol group), H2O2 for 8 hours (H2O2 
group) or H2O2 together with 5% 
GLPS for 8 hours (GLPS group). 
Cell lysates were analyzed by west-
ern blotting with antibodies against 
active caspase-3 (A), Bim, Bax, and  
Bcl-2 (C). Quantified grayscale 
intensities (B and D) of bands, rela-
tive to that for β-tubulin in the con-
trol group, are shown as the mean ± 
SEM (n = 4). *P < 0.05, vs. control 
and GLPS groups; †P < 0.05, vs. 
Bax and Bcl-2 (analysis of variance 
and Student-Newman-Keuls post 
hoc test); #P < 0.05, vs. H2O2 group 
(Student’s t-test). GLPS, Ganoder-
ma lucidum polysaccharides.
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sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
and protein bands electrophoretically transferred to a poly-
vinylidene difluoride membrane. Membranes were blocked 
in Tris-buffered saline with 5% milk and 0.05% Tween-20 
and then probed with primary antibodies at 4°C overnight. 
The following primary antibodies were used: rabbit anti-cy-
tochrome c, rabbit anti-cleaved caspase-3, mouse anti-Bax, 
rabbit anti-Bim, mouse anti-Bcl-2 and mouse anti-β-tubulin, 
each diluted 1:1,000 (all primary antibodies from Cell Sig-
naling Technology, Danvers, MA, USA). Appropriate horse-
radish peroxidase-conjugated secondary antibodies (Jackson 
ImmunoResearch, West Grove, PA, USA) were used to detect 
reactive bands with the enhanced chemiluminescence (ECL) 
and ECL-plus systems (GE Healthcare, Chalfont St. Giles, 
UK). To quantify bands on western blots, the average intensity 
of the pixels in a background-selected region was calculated 
and subtracted from each pixel in the sample. To correct for 
deviations, densitometry values obtained within the linear 
range of detection were normalized to those for β-tubulin.

Quantification of neuronal apoptosis
CGC apoptosis was quantified as previously described 
(Linseman et al., 2004). In brief, CGCs were cultured in 24-
well plates and incubated with various treatments. After 
incubation for the indicated times, CGCs were stained with 
the DNA dye Hoechst 33258 (Sigma, 5 μg/mL) to visualize 
nuclear morphology. Apoptosis was quantified by scoring the 
percentage of neuronal cells with condensed or fragmented 
nuclei. Neurons were counted from three randomly chosen 
fields per well, under a light microscope (BX51WI light mi-
croscope; Olympus, Tokyo, Japan). To obtain unbiased results, 
experiments were performed in a blinded manner and cells 
were scored by investigators without knowledge of their prior 
treatments. All experiments were repeated at least three times 
and over 500 neurons were counted for each treatment group. 

Statistical analysis
Statistical analyses were performed using SPSS 16.0 software 
(SPSS, Chicago, IL, USA). All statistical data are expressed as 
the mean ± SEM of at least three independent experiments (n 
≥ 3). The statistical significance of differences was analyzed 
using Student’s t-test between two groups and one-way anal-
ysis of variance with Student-Newman-Keuls post hoc test 
for comparisons among more than two groups. A value of P 
< 0.05 was considered statistically significant.

Results
Oxidative stress significantly induced neuronal apoptosis 
in cultured CGCs 
H2O2 is commonly used to induce cell apoptosis, secondary 
to free radicals (Medina et al., 2002). It is therefore consid-
ered a useful agent for generating models of oxidative stress 
(Chang et al., 2003). Accordingly, we used 50 μM H2O2 for 
an experimental apoptosis model. First, cultured neurons 
were treated with H2O2 for 4, 8 or 12 hours, then stained 
with Hoechst 33258 to view apoptotic cells. H2O2 adminis-
tration markedly induced neuronal apoptosis, in a time-de-
pendent manner. Apoptotic neurons were those with nu-

clear shrinkage, chromatin condensation or fragmentation 
(Figure 1A). Apoptosis began as early as 4 hours after H2O2 
treatment and, 12 hours later, the apoptotic rate had reached 
nearly 70% (Figure 1B). Next, we investigated which pro-
teins were activated during apoptosis. We found that cyto-
solic cytochrome c levels were increased, and caspase-3 was 
cleaved (Figure 2A). The statistical data are shown in Figure 
2B. These data indicated that H2O2 activated the mitochon-
drial apoptotic pathway, involving BH3-only family proteins. 
BH3-only proteins are critical for neuronal apoptosis (Hap-
po et al., 2012; Doerflinger et al., 2015), and can be divided 
into two classes: (1) pro-apoptotic proteins, such as Bax, 
Bad and Bim; and (2) anti-apoptotic proteins, such as Bcl-2 
and Bcl-xl. As shown in Figure 2C, Bim and Bax levels were 
increased and those of Bcl-2 were decreased, all changing 
in a time-dependent manner. The statistical data are shown 
in Figure 2D. All findings suggested that H2O2 significantly 
induced neuronal apoptosis in CGCs.

GLPS markedly suppressed oxidative stress-induced 
apoptosis 
Compounds extracted from G. lucidum showed anti-cancer, 
antioxidant and liver protective effects. GLPS was neuropro-
tective against traumatic spinal cord injury in rats (Gokce et 
al., 2015). However, the role of GLPS in modulating oxida-
tive stress-induced apoptosis in cultured cerebellar granule 
cells remains unknown. In this study, we found that apop-
tosis induced by H2O2 was suppressed in a dose-dependent 
manner by GLPS administration (Figure 3A). The statistical 
data are shown in Figure 3B. Neurons were pre-treated with 
H2O2 for 4 hours. Cells were then washed and incubated 
with GLPS for an additional 4, 8 or 12 hours. The results 
showed that cells underwent apoptosis, even at 12 hours after 
H2O2 administration. However, GLPS addition significant-
ly protected neurons from apoptosis, in a time-dependent 
manner (Figure 3C). The statistical data are shown in Figure 
3D. We then examined whether GLPS suppressed apoptosis 
through inhibition of the mitochondrial pathway. As shown 
in Figure 4A, levels of activated caspase-3, induced by H2O2, 
were suppressed by GLPS (Figure 4B). Furthermore, the 
increased levels of Bax and Bim were also attenuated and the 
decreased level of Bcl-2 was increased in H2O2 treated cells 
also receiving GLPS (Figure 4C and D). These results indi-
cated that GLPS suppressed H2O2-induced apoptosis.

Discussion
In this study, we demonstrated oxidative stress-induced 
apoptosis of cultured cerebellar granule cells. H2O2 increased 
cleavage and, therefore, activation of caspase-3, cytochrome 
c release, upregulation of the pro-apoptotic proteins Bax and 
Bim and downregulation of the anti-apoptotic protein Bcl-2, 
ultimately causing apoptosis in CGCs. GLPS administration 
significantly suppressed these processes, thus inhibiting 
H2O2-induced neuronal apoptosis. This elucidation of the 
neuroprotective mechanisms of GLPS may contribute to 
clinical use of active compounds isolated from G. lucidum.

G. lucidum has been used as a preventive medicine in Asia 
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for thousands of years (Shiao, 2003). Polysaccharides, isolated 
from G. lucidum fruiting bodies, have antioxidant (Liu et al., 
2010), immunomodulatory (Bao et al., 2001) and antitumor 
properties (Cao and Lin, 2006). Moreover, polysaccharides 
were protective against cerebral ischemic injury (Zhou et al., 
2010) and traumatic spinal cord injury in rats (Gokce et al., 
2015). GLPS induced neuronal differentiation of pheochromo-
cytoma cell cultures and protected PC12 neurons from apop-
tosis, by the Erk1/2 and the CREB signaling pathways (Cheung 
et al., 2000). G. lucidum extracts decreased inflammatory me-
diator production by activated microglia and protected dopa-
minergic neurons against inflammatory and oxidative damage 
(Zhang et al., 2011). Furthermore, G. lucidum spores preserved 
injured spinal motor neurons by modulating expression of pro-
teins important for axonal regeneration (Zhang et al., 2006). 
These findings suggested that polysaccharides isolated from G. 
lucidum had both neuroprotective and antioxidant properties. 
To the best of our knowledge, ours is the first report on the 
neuroprotective effects of GLPS against oxidative stress-in-
duced apoptosis in cultured cerebellar granule cells.

H2O2 induced apoptosis in neuronal and non-neuronal cells, 
an effect associated with its cytotoxicity (Mailly et al., 1999; Ku-
mar et al., 2001; Chang et al., 2003). During the late stages of 
apoptosis, DNA fragmentation occurs, following reactive oxy-
gen species generation, caspase-3 activation and mitochondrial 
dysfunction (Yang et al., 2004). Moreover, oxidative stress-in-
duced neurotoxicity involves a mitochondria dependent apop-
totic pathway, including cytochrome c release, caspase-3 acti-
vation and changes in the Bax/Bcl-2 ratio (Brune et al., 2003; 
Cunha-Oliveira et al., 2007; Lai et al., 2011; Radi et al., 2014), 
all effects demonstrated in our study. Bcl-2 can counteract the 
pro-apoptotic effect of Bax/Bim by forming a heterodimer (Ko-
bayashi et al., 1998). During apoptosis, increased Bax translo-
cates to the mitochondria, leading to decreased mitochondrial 
membrane potential (Linseman et al., 2004; Cunha-Oliveira et 
al., 2006). Bim forms heterodimers with Bcl-2, releasing Bax 
from Bcl-2, thus enabling its mitochondrial translocation (Letai 
et al., 2002) and Bim also directly activates Bax for apoptosis 
(Gavathiotis et al., 2008; Du et al., 2011). Our results showed 
that GLPS addition markedly suppressed all signal transduc-
tion processes induced by oxidative stress. That is, GLPS in-
hibited caspase-3 activation, suppressed Bax/Bim upregulation 
and prevented Bcl-2 downregulation, thus ultimately prevent-
ing H2O2-induced apoptosis in CGCs. Among the BH-3-only 
pro-apoptotic proteins, Bid, Noxa and Puma were reported to 
mediate apoptosis (Ren et al., 2010). The regulation of these 
proteins by GLPS, also protecting against oxidative stress-in-
duced neuronal apoptosis, should be investigated in the future.

In summary, our study characterized protection by GLPS 
against oxidative stress-induced neurotoxicity, contributing 
new insights into the neuroprotective mechanisms of G. lu-
cidum. These findings provided potential new evidence sup-
porting clinical use of G. lucidum to treat neurodegenerative 
diseases involving oxidative stress.
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