
Mechanism of and Threshold Biomechanical Conditions
for Falsetto Voice Onset
Shinji Deguchi*

Department of Biomedical Engineering, Tohoku University, Aramaki-Aoba, Sendai, Japan

Abstract

The sound source of a voice is produced by the self-excited oscillation of the vocal folds. In modal voice production, a
drastic increase in transglottal pressure after vocal fold closure works as a driving force that develops self-excitation.
Another type of vocal fold oscillation with less pronounced glottal closure observed in falsetto voice production has been
accounted for by the mucosal wave theory. The classical theory assumes a quasi-steady flow, and the expected driving force
onto the vocal folds under wavelike motion is derived from the Bernoulli effect. However, wavelike motion is not always
observed during falsetto voice production. More importantly, the application of the quasi-steady assumption to a falsetto
voice with a fundamental frequency of several hundred hertz is unsupported by experiments. These considerations
suggested that the mechanism of falsetto voice onset may be essentially different from that explained by the mucosal wave
theory. In this paper, an alternative mechanism is submitted that explains how self-excitation reminiscent of the falsetto
voice could be produced independent of the glottal closure and wavelike motion. This new explanation is derived through
analytical procedures by employing only general unsteady equations of motion for flow and solids. The analysis
demonstrated that a convective acceleration of a flow induced by rapid wall movement functions as a negative damping
force, leading to the self-excitation of the vocal folds. The critical subglottal pressure and volume flow are expressed as
functions of vocal fold biomechanical properties, geometry, and voice fundamental frequency. The analytically derived
conditions are qualitatively and quantitatively reasonable in view of reported measurement data of the thresholds required
for falsetto voice onset. Understanding of the voice onset mechanism and the explicit mathematical descriptions of
thresholds would be beneficial for the diagnosis and treatment of voice diseases and the development of artificial vocal
folds.
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Introduction

The self-excited oscillation of the vocal folds located at the

larynx produces the major sound source of a voice [1–8]. This self-

excitation is caused by the flow-structure interaction between

respiratory airflow and vocal fold tissue. During self-excitation,

airflow must provide the energy necessary for the development of

vocal fold oscillation, otherwise, the vocal fold motion decays with

time owing to frictional damping in the tissue [4,5]. Van den Berg

[9] provided the first mechanics-based explanation for the voice

onset mechanism. He argued in his myoelastic-aerodynamic

theory that a pressure drop across the constricted glottis (i.e., the

flow path formed by a pair of vocal folds; see Fig. 1), which is

created by the Bernoulli effect, sucks the vocal folds together and

closes the glottis. Alternatively, the glottis may initially be closed

only by laryngeal muscle contraction without the help of flow (see

Fig. 2A, 1) [10]. A drastic increase in the subglottal pressure up to

the lung pressure, accumulated beneath the closed glottis, pushes

the vocal folds downstream and eventually opens the glottal width

(Fig. 2A; 2, 3). The blown apart vocal folds are then able to return

to their original position owing to an elastic restoring force because

the surrounding air pressure at this stage must be relatively low

due to the restart of the flow after the glottal opening (Fig. 2A; 3,

4), thereby creating repeated open-close movements. Thus, the

vocal fold closure ensures a requirement for self-excitation, i.e., a

continuous energy transfer from the flow to the vocal folds.

Then, the question arises as to how glottal pressures

asymmetric in magnitude over one oscillatory cycle (i.e., larger

in the opening phase than in the closing phase, resulting in a net

positive energy transfer) are created with no such glottal closure

during vocal fold oscillations [5]. This requirement may not be

satisfied in the absence of glottal closure because the Bernoulli

effect, whose magnitude is determined by the absolute value of

the width or cross-sectional area (but not its time rate of change),

has the same value whether the glottis is opening or closing;

therefore, the same pressure in magnitude may be applied to the

vocal folds, resulting in the failure of developing oscillations (see

Fig. 2B) [5]. Note that the vocal folds exhibit wavelike motion in

the coronal plane during speech [9,11]. On the basis of an

analytical two-mass vocal fold model, Ishizaka and Matsudaira

[1,2] demonstrated that such wavelike motion or phase lag in

motion between the upper and lower masses of the vocal folds led

to self-excitation through flow-structure interaction (see Fig. 2C).

Titze [4,5] more explicitly highlighted the role of a mucosal wave
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while explaining that the vocal folds could experience higher

pressure during the opening phase owing to the wavelike motion

with the glottis opening at the bottom (upstream) first and then at

the top (downstream) and likewise closing at the bottom first and

then at the top (see Fig. 2C).

Then, how are these theories related to the actual phonation

involving two main vocal registers, i.e., modal and falsetto? In the

modal register, oscillating vocal folds (observed with a laryngo-

stroboscopy or high-speed camera) entirely close the glottis in each

oscillation cycle while deforming with the entire body [9].

Therefore, the mechanism of the modal or normal voice with

such pronounced glottal closure is basically explained by the

myoelastic-aerodynamic theory (Fig. 2A), which is analogous to

the airflow-induced buzzing of the lips that also results in an

intermittent outflow [12]. In contrast, the vocal folds in the falsetto

register often keep the glottis open while oscillating, through this

opening a certain volume of airflow continuously escapes. The

myoelastic-aerodynamic theory is not applicable to such oscilla-

tions without complete glottal closure (Fig. 2B) [5]. The pioneering

analytical models, provided by Ishizaka and Matsudaira [1,2] and

by Titze [5] in the mucosal wave theory (Fig. 2C), were intended

to elucidate the onset mechanism for such small amplitude

oscillations without complete glottal closure. Then, does the

mucosal wave theory describe the falsetto voice mechanism

precisely? It is noteworthy that during falsetto phonation, the

vocal folds do not always exhibit mucosal wave motions [9,13–19].

The main body of each fold, which consists of the thyroarytenoid

muscle, is more or less relaxed in falsetto [5,11]. The pull of the

tissue by the cricothyroid muscle activation thins the vocal folds

[9]. Therefore, only the ligamentous superficial layers of the vocal

Figure 1. Schema of the front section of the entire glottis.
doi:10.1371/journal.pone.0017503.g001

Figure 2. Relationship between the glottal pressure and vocal fold deformation. (A) The positive energy transfer from airflow to vocal fold
motion with glottal closure or collision, previously submitted by van den Berg [9] as the myoelastic-aerodynamic theory. The inferior half of the glottis
(dashed rectangular region in Fig. 1) is modeled. The theory suggests that the vocal folds are initially sucked together due to the Bernoulli effect.
Alternatively, the vocal folds may initially be closed due to laryngeal muscle contraction without the help of the fluid (1). In either case, the glottal
closure increases the subglottal pressure, resulting in upward deformation of the vocal folds (2). Here, the size of the letter P indicates the magnitude
of the glottal pressure, and the dashed lines indicate the original position of the vocal folds. The pressure is more or less diminished due to the restart
of the flow after the reopening of the glottis (3), which then allows the vocal folds to return to the original position due to elastic recoil (4). (B and C)
Mucosal wave-based explanation for self-excitation of vocal fold motion without closure and the resultant drastic increase in the subglottal pressure.
Net positive energy transfer is not achieved when a single degree of freedom model is employed (B) while it may be possible for a model with a
degree of freedom of more than two (C). However, the schema (C) assumes a quasi-steady flow assumption, which is not applicable to a high
frequency range such as that for a falsetto voice. For details, see the text.
doi:10.1371/journal.pone.0017503.g002
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folds enter into vibration, possibly resulting in a negligible mucosal

wave. Critical involvements of flow separation mobility in the

oscillation mechanisms have been proposed [20–25]; however, it is

not clear if the reported flow separation behavior is likely in the

falsetto voice production with such a negligible vertical motion of

the thin vocal folds.

More importantly, although the mucosal wave theory has been

the cornerstone of nearly all subsequent theoretical developments

of voice mechanics [e.g., 26–30], it was developed under a quasi-

steady flow assumption [8]. In particular, steady mass conservation

and Bernoulli equations [1–5] were applied in those analytical

studies without experimental verification of the decisive assump-

tion under oscillating conditions. However, recent experimental

and theoretical studies have demonstrated that the pressure

distribution along the glottis essentially differs from that in a static

condition in a range of high but realistic voice fundamental

frequencies [23,31–33]. In particular, our group analytically

explained that the flow behavior in oscillating constriction (such

as the pressure amplitude and phase difference between related

variables) depends on the Strouhal number, i.e., a dimensionless

number describing which effect is stronger, a flow induced by

rapid wall motion (numerator) or a flow induced by the convective

acceleration such as the speeding up of the airflow entering the

converging glottis (denominator) [33]. The Strouhal number

should not be negligible in the high vocal frequency range. In fact,

Ishizaka and Matsudaira [1] described that their theory aimed at

revealing self-excited oscillations in the chest register (i.e., a modal

voice), possibly implying that the Bernoulli effect-based explana-

tion might not be effective in the falsetto register.

It is also known that air column oscillation in the axially long or

narrow vocal tract (including the pharynx and oral cavity) could

play an additional role in producing higher pressure in the opening

phase than in the closing phase [1–5,34]. However, the threshold

lung pressure due to the acoustic coupling between the vocal tract

and glottis derived by Titze [4, Equation (50)] was not a function

of the glottal width, suggesting that the acoustic coupling may only

assist other primary mechanisms in reaching the oscillation

threshold. Indeed, falsetto-like oscillations are produced even

without a vocal tract in both self-excited physical vocal fold models

and excised larynx models [35–39]. These observations suggest

that the mucosal wave and vocal tract response may not perform a

critical role in the onset mechanism of falsetto voice production

[1].

In our previous theoretical work on fluid-structure interaction in

the glottis oscillating at high speeds, we analytically derived the

relationship between the time-varying glottal width and pressure

perturbation from general unsteady flow equations [33]. The study

demonstrated that a convective acceleration (i.e., a change in

velocity over position) of a flow that was originally induced by

rapid wall movement becomes comparable in magnitude to the

Bernoulli effect within a physiological frequency range typical for a

falsetto voice (e.g., .400 Hz). Because of this unsteady flow effect

associated with the considerable Strouhal number, which was not

taken into account in previous analytical studies on the phonation

onset [e.g., 1,4,27], a phase difference (or time lag) can appear

between the vocal fold motion and glottal pressure fluctuation.

The time lag in the driving force may thus meet the requirements

for self-excitation, i.e., continuous energy transfer from the airflow

to vocal fold motion. Thus, we suggested that self-excitation could

possibly occur from the inherent glottal flow property independent

of the mucosal wave motion or inertial acoustic loading from the

vocal tract or subglottis [40].

In our unsteady flow theory, we linearized the flow descriptions

through perturbation analysis around the time-mean value; these

small amplitude assumptions were also used in the previous

analytical studies by Ishizaka and Matsudaira [1,2] and Titze

[4,5]. While sustained modal voice in general involves large

amplitude motion of the vocal folds with collision, the linearized

small amplitude restriction indicates that the results are applied

only to analyses of the phonation onset with no glottal closure. A

falsetto voice often has a simple sinusoidal sound waveform with

few higher harmonic waves, even in sustained conditions [9],

indicating that the vocal fold oscillation in a falsetto voice occurs

only near the surface tissue with small amplitudes. In addition, the

fundamental frequency of a falsetto voice is sufficiently high to

provoke the phase alteration caused by the unsteady flow effect

[33]. Our flow theory thus seems to fit well with the analysis of the

falsetto voice onset.

In the present study, we employed this flow theory to

analytically derive the threshold conditions required for self-

excitation of the vocal folds. The analysis demonstrated that an

unsteady flow effect, or more specifically a convective accelera-

tion of a flow induced by rapid wall movement, provides negative

damping at the critical subglottal pressure or volume flow,

inducing self-excited oscillation reminiscent of falsetto voice

onset. Large amplitude behavior associated with established limit

cycles, which involves nonlinear effects such as register transition

and onset/offset hysteresis [27,30,41,42], will not be discussed in

this study. The tools of analysis for such large amplitude

oscillations are primarily numerical [6,7,43,44]. It is sometimes

elusive to intuitively understand our ability to speak with a

falsetto voice from such numerical (computational) results and the

criteria for estimating the efficiency of voice production. Thus, it

would be appropriate to devote a separate study to such

numerical analyses.

Analysis

Model geometry
The position along the inferior half of the glottis (see Fig. 1) is

given by spatial coordinate x (see Fig. 3). Each cross section is

assumed to be rectangular with a constant vocal fold length lg
(normal to the plane of the paper). The vocal fold shape and its

motion are assumed to be symmetrical with respect to the medial

axis. The glottal half-width B(x,t) perpendicular to the x direction

where t represents the time is assumed to be a constant value �bbu at

the upstream inlet (x = 0) and a time-varying value B(lc,t) (rewritten

as Bc(t)) at the entrance of the narrowest constriction (x = lc). The

glottis between x = 0 and lc is simply connected by a straight line:

B x,tð Þ~

B 0,tð Þz B lc,tð Þ{B 0,tð Þf gx=lc~�bbuz Bc tð Þ{�bbu

� �
x
�

lc:
ð1Þ

The vocal fold constriction (from x = lc to lc+lv) is assumed to be a

parallel path where lv is the vocal fold thickness. In fact, the linear

geometry of the glottis presented here is not a requirement of the

current study, rather, it is assumed to simplify analytical

integration calculations and does not essentially affect the onset

mechanism described below.

Flow model
In our previous work, we developed a one dimensional unsteady

flow theory that explicitly described the relationship between the

time-varying glottal width and fluid pressure [33]. As this theory

was applied to the present analysis, its derivation is briefly shown

here with modifications to correspond with the present flow

channel geometry. According to the accumulated knowledge on

Mechanism of Falsetto Voice Onset
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the internal flow in collapsible tubes [46–53], the mass and

momentum conservation equations for an unsteady, viscous, and

incompressible flow in a deformable tube are described by

LB x,tð Þ
Lt

z
LB x,tð ÞU x,tð Þ

Lx
~0, ð2Þ

LU x,tð Þ
Lt

z
1

2
e
LU x,tð Þ2

Lx
z

1

ra

LP x,tð Þ
Lx

z3n
U x,tð Þ
B x,tð Þ2

~0, ð3Þ

respectively, where U(x,t) is the velocity, P(x,t) is the pressure, e is a

factor related to flow separation and the vena contracta [3,48,53],

ra is the air density, and n is the kinematic viscosity of air. Note

that hereafter, for free variables x and t, the parentheses are often

omitted for notational simplicity. Each variable is decomposed

into a time-averaged component (lowercase letter with an

overbar) and a time-varying perturbation component (lowercase

letter):

P x,tð Þ~�pp xð Þzp x,tð Þ, ð4Þ

U x,tð Þ~�uu xð Þzu x,tð Þ, ð5Þ

B x,tð Þ~�bb xð Þzb x,tð Þ: ð6Þ

The perturbations are small, and the terms of order higher than

the quadratic are neglected. We assumed that pressure and

velocity at x = 0 have constant values �ppu and �uuu, respectively (see

Fig. 3). The fixed boundary condition at the inlet is consistent

with the previous analytical studies that assumed an ideal

constant pressure source [4]. It is assumed that the fluid pressure

at the center of the narrowest constriction, x = lc+lv/2, drives the

vocal fold motion, as considered later in a vocal fold model with a

single degree of freedom that does not exhibit mucosal waves. At

the driving point,

P lczlv=2,tð Þ~Pc tð Þ~�ppczpc tð Þ, ð7Þ

B lczlv=2,tð Þ~Bc tð Þ~�bbczbc tð Þ, ð8Þ

where Bc(t) = B(lc,t) = B(lc+lv/2,t) (see Fig. 3). Equation (2) is

integrated along x from 0 to lc+lv/2, yielding a perturbation fluid

velocity at the driving point [33]:

uc tð Þ~{
1
�bbc

L
Lt

ðlczlv=2

0

bdx{
�uuc

�bbc

bc: ð9Þ

The perturbation glottal pressure that interacts with the

perturbation of the vocal fold displacement is:

pc tð Þ~ era�uuc lczlvð Þ
2�bbc

_bbcz
era�uuc

2

�bbc

bc~c _bbczdbc, ð10Þ

where a dot over a variable denotes its time derivative: c and d

are defined as the coefficients of each term. The first term c _bbc

represents a force due to the convective acceleration (i.e., the

effect of time-independent acceleration of a fluid with respect to

space) of the wall motion-induced flow [33]. The second term dbc

represents a convective inertial force, i.e., the Bernoulli effect.

The former unsteady term could become comparable in

magnitude to the latter steady term when the wall moves quick

enough to produce a considerable wall motion-induced flow that

is distinct from the steady flow determined by the static geometry

of the channel. The considerable unsteady effect causes a phase

lag between the pressure pc and the motion bc, which could result

in meeting the requirements for self-excitation described above.

The coupling of Equations (2) and (3) should actually have seven

perturbation terms in general, but Equation (10) has only two

terms because the remaining five terms, including the effect of air

viscosity on the perturbation glottal pressure, are negligibly small

in magnitude as confirmed by a thorough scale analysis

performed in our previous work [33].

Volume flow is defined by:

Q x,tð Þ~lgB x,tð ÞU x,tð Þ ð11Þ

and divided depending on whether it is time dependent:

Q x,tð Þ~�qq xð Þzq x,tð Þ: ð12Þ

Temporal averages of Equations (2) and (3) satisfy:

�bbc�uuc~�bbu�uuu~�qq
�

lg, ð13Þ

�ppc~�ppuzra�uuu
2
�

2{ra�uuc
2
�

2~Pt{ra�uuc
2
�

2, ð14Þ

where Pt is the subglottal pressure (shown by the total pressure).

Equation (14), obtained with simplification based on scale analysis

[33], corresponds to Bernoulli’s law for steady flow.

Vocal fold model
The equation of motion for the vocal fold is given by that of a

mass-spring-damper oscillator in a lumped element representation

(see Fig. 3):

m€BBczc _BBczk Bc{bið Þ~Pclglv, ð15Þ

Figure 3. Vocal fold model. The inferior half of the glottis (dashed
rectangular region in Fig. 1) is modeled.
doi:10.1371/journal.pone.0017503.g003
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where m ~rvdlglv
� �

, c ~2f
ffiffiffiffiffiffiffi
mk
p� �

, k, bi, rv, d, and f are the mass,

damping coefficient, spring constant, initial half-width, density,

depth, and damping ratio of the vocal fold, respectively. The depth

d is not attributed to any one histological component such as the

ligament, but represents the composite depth of effective

structures; it is introduced to determine the effective mass m

involved in vibration, which is a function of the density rv as well

as the geometric parameters, i.e., the vocal fold depth d, thickness

lv, and length lg. In the steady state, Equation (15) becomes:

k �bbc{bi

� �
~�ppclglv: ð16Þ

From Equations (7), (8), (10), and (15), we obtain the following

perturbation equation:

rvdlglv€bbcz 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvdlglvk

p
{lglvc

� 	
_bbcz k{lglvd

� �
bc~0: ð17Þ

The coefficients of the second and third terms on the left side

represent effective damping and effective stiffness, respectively.

Threshold pressure and volume flow for oscillatory
divergence due to negative damping

The system of Equations (13), (14), and (16) that describes steady

states has, in general, three analytical solutions (one trivial solution

for the hydrostatic condition and two non-trivial solutions with

non-zero flow velocities). However, in the actual vocal fold

mechanics because flow accelerates significantly in the constricted

glottis, the following approximations are applicable [4]:

�uuc
2
ww�uuu

2, ð18Þ

�ppuww�ppc&0: ð19Þ

Here, �ppc is assumed to be zero to exclude acoustic coupling with

the vocal tract. With these approximations, the steady state has the

following single solution with real numbers:

�ppu~Pt, ð20Þ

�uuc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pt=ra

p
, ð21Þ

�bbc~bi, ð22Þ

�qq~bilg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pt=ra

p
: ð23Þ

When the coefficient of the second term of Equation (17) is

negative (i.e., negative damping), a dynamic instability or flutter

[49,54] occurs in which a perturbation gradually develops to

induce oscillatory divergence (see Fig. 4A). The threshold

subglottal pressure �ppu and volume flow �qq for flutter are explicitly

described by:

Pf ~
8f2rvdkbi

2

e2ralglvl2
, ð24Þ

Qf ~
4fbi

2

eral

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rvdklg

lv

s
, ð25Þ

respectively, where the constriction length l is defined as

l~lczlv~const: ð26Þ

The critical subglottal pressure described by Equation (24) is

interpreted as the minimum lung pressure required for vocal fold

oscillation onset. Such a critical lung pressure is in general called

the phonation threshold pressure (PTP) and is potentially useful

in diagnosis to noninvasively evaluate vocal fold stiffness and

quantify the ease of phonation [4,55]. Equation (25) denotes the

minimum volume flow necessary for voice onset, which has

recently been called the phonation threshold volume flow (PTF)

[26,56,57]. As mentioned in Section 2.2, we estimated in a

previous work that the viscous resistance in the glottis has a

negligibly small magnitude compared to the convective and

unsteady flow effects [33]. This scale analysis yields Equation (14)

or the Bernoulli’s equation, implying that the fluid energy (i.e.,

the sum of the pressure and kinetic energies) is conserved. PTP

(Pf) and PTF (Qf) are obtained from the same condition (i.e., the

second term of Equation (17) is zero), that is, they are merely one

expression of the same critical condition required for the

oscillatory divergence. Hence, in the present modeling, the input

of fluid energy to the vocal fold system to achieve PTP is the same

as that for PTF.

Unidirectional divergence due to negative stiffness
When the coefficient of the third term of Equation (17),

representing the intrinsic stiffness versus the Bernoulli effect, is

negative (i.e., negative stiffness), a static instability or divergence

[54] occurs upon imposition of a perturbation to the system (see

Fig. 4B) [58]. The threshold subglottal pressure and volume flow

for the divergence are described by:

Figure 4. Schema of two types of instability. Flutter or oscillatory
divergence (A). This dynamic instability results in the self-excitation of
the vocal folds. Divergence or static instability (B).
doi:10.1371/journal.pone.0017503.g004
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Pd~
kbi

2elglv
, ð27Þ

Qd~bi

ffiffiffiffiffiffiffiffiffiffi
biklg

eralv

s
, ð28Þ

respectively. The present study employed a simple single degree of

freedom model for the vocal folds (see Fig. 3) to exclude the

mucosal wave motion. In addition, we linearized the behavior

around the time-mean value. Within this current modeling, the

static instability indicated that a unidirectional deformation

occurred around the slightly abducted (spread apart) vocal folds,

and the vocal folds were either blown open or closed by the airflow

[58]. Note that if a vocal fold model with a degree of freedom

more than two is employed together with proper mechanical

properties [3], limit cycles (different from being kept opened or

closed) after the static instability could be established in a collision-

dependent manner explained by the myoelastic-aerodynamic

theory (see Fig. 2A). To determine whether the limit cycles occur

after the static instability (as already performed by Ishizaka and

Flanagan [3]), incorporation of the following is required: (1) an

additional degree of freedom to the vocal fold model, (2) another

mechanical property related to the coupling between the upper

and lower masses (or the ease of mucosal wave propagation), and

(3) the effect of glottal closure or collision. Such additional

modeling is beyond the scope of the present study that aims at

introducing a framework of the basic principles to help in

understanding the mechanics of falsetto voice onset. In addition,

the limit cycles with collision after static instability are in general

regarded as the source of modal voice [9,58]. Therefore,

henceforth we focus on only negative damping-induced flutter,

i.e., Pf (PTP) and Qf (PTF), but not on static instability Pd and Qd.

In fact, Ishizaka and Matsudaira [1] and Titze [4] also developed

their theories on the basis of negative damping-induced oscillatory

divergence.

The effect of vocal fundamental frequency on PTP and
PTF

PTP and PTF expressed by Equations (24) and (25),

respectively, contain the spring constant k, representing the

intrinsic stiffness of the vocal folds, which may be difficult to

measure at various conditions [4,28]. In terms of practical use,

therefore, the fundamental frequency of a voice F0 may be suitable

as an alternative dependent variable instead of k. Thus, another

form of PTP and PTF as a function of F0 is derived below. At the

critical condition that allows the onset of flutter, the coefficient of

the second term of Equation (17) becomes zero. The frequency at

that instant is defined as:

F0~
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Effective stiffnessð Þ

Effective massð Þ

s
~

1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k{lglvd

rvdlglv

s
: ð29Þ

From Equations (10) and (21), the Bernoulli effect d at the

oscillatory divergence onset (i.e., Pt = Pf) is:

d~era�uuc
2
�

�bbc~2ePt=bi~2ePf

�
bi: ð30Þ

From Equations (29) and (30),

k~4p2rvdlglvF0
2z2elglvPf

�
bi: ð31Þ

Substitution of Equation (31) into Equations (24) and (25) yields

alternative forms of PTP and PTF that contain F0 as an explicit

factor:

Pf ~
2p2rvdbiF0

2

FL{1ð Þe , ð32Þ

Qf ~2pbilgF0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvdbi

FL{1ð Þera

s
, ð33Þ

where

FL~
eral2

16f2rvdbi

: ð34Þ

From Equations (10), (17), (21), (22), and (26), the newly

introduced dimensionless number FL, associated with the ease of

flutter [49,54] in a viscoelastic flow channel or falsetto voice onset,

is interpreted as:

FL~

kbi

2elglv

8f2rvdkbi
2

e2ralglvl2

~
Pd

Pf

~
Qd

2

Qf
2
~

k

lglvd


 �

2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvdlglvk

p
lglvc

 !2

~

Stiffness intrinsic to vocal fold

Bernoulli effect


 �
Damping intrinsic to vocal fold

Convective inertia of wall motion-induced flow


 �2

~

1{
Effective damping

Intrinsic damping


 �2

1{
Effective stiffness

Intrinsic stiffness


 � :

ð35Þ

Thus, FL quantifies the relative importance of the distinct effects.

Note that as long as flutter occurs more readily than the

unidirectional divergence given by Equations (27) and (28), Pf,Pd,

and hence, FL.1. Thus, both Pf and Qf have positive values by

definition.

Quantitative assessment
To evaluate the quantitative validity of the derived PTP (Pf,

Equation (24)) and PTF (Qf, Equation (25)), we applied the

following representative values, which are within the physiological

range used in the previous phonation modeling [2,3,28,59–61]:

d = 0.35 mm, k = 35 N/m, l = 10 mm, lg = 15 mm, lv = 1.5 mm,

e = 1, ra = 1.1 kg/m3, rv = 1.026103 kg/m3, and f = 0.235. PTP

and PTF, shown as functions of the initial glottal half-width bi,

were estimated as ,0.1–1 kPa and ,10–300 cm3/s, respectively

(see Figs. 5 and 6). They were comparable in magnitude as per the

reported measurement data [26,42,55–57,62–64]. Note that on

the basis of his measurements, van den Berg [9] mentioned that 9

Mechanism of Falsetto Voice Onset

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e17503



to 10 mL of air were sufficient for the production of sound for

0.5 s (i.e., roughly equal to 20 cm3/s).

For comparison, the critical values for the static instability (Pd,

Equation (27); Qd, Equation (28)), which might be related to modal

voice production [2] as discussed in Section 2.5, are also shown in

Figures 5 and 6 as functions of bi. At a small bi of ,0.35 mm,

flutter requires a lower upstream pressure or volume flow as

compared with that of the static instability, indicating that the

former occurs more readily. On the other hand, the static

instability occurs more readily than the flutter at a high bi.

Figures 7 and 8 depict the effect of vocal fold thickness lv on

PTP and PTF, respectively, at a constant bi of 0.35 mm. As the

thickness is reduced, it becomes more difficult to initiate flutter,

but it is more likely to occur than static instability at thin vocal

folds. This tendency is consistent with the morphological

observation that in the falsetto voice, the vocal fold tissue margins

Figure 5. Pf (PTP) versus initial glottal half-width bi. For
comparison, Pd is also shown. When the upstream total pressure
reaches a value within the red curve, flutter or self-excited oscillation of
the vocal folds occurs. The parameter values employed are described in
Section 2.5.
doi:10.1371/journal.pone.0017503.g005

Figure 6. Qf (PTF) versus initial glottal half-width bi shown by
the red curve.
doi:10.1371/journal.pone.0017503.g006

Figure 7. Pf (PTP) versus initial vocal fold thickness lv shown by
the red curve.
doi:10.1371/journal.pone.0017503.g007

Figure 8. Qf (PTF) versus initial vocal fold thickness lv shown by
the red curve.
doi:10.1371/journal.pone.0017503.g008
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are rather thin and pointed due to the tension exerted by the

contraction of the cricothyroid muscle [9,59].

Pf and Pd are also shown as functions of either vocal fold depth d

or the damping ratio f with a constant bi of 0.35 mm (see Fig. 9). As

described in the introduction and in the literature [9,60], activation

of the cricothyroid muscle at a high fundamental frequency reduces

the vocal fold depth. Thus, the depth d can correspond to the

effective tissue depth of vibration [60]. In general, muscular tissues

have a larger hysteresis loss between loading and unloading than

ligamentous tissues [65,66]. Therefore, the decrease in the depth

that may alter the dominant vibrating part from the muscular region

to the ligamentous one [4,9] would be followed by a reduction in the

damping ratio of related tissues. Since the two parameters d and f do

not affect the magnitude of Pd (Equation (27)), Pf falls below Pd as

the expected cricothyroid muscle activation proceeds. Thus, the

quantitative evaluation suggests that flutter occurs more readily than

static instability at a high fundamental frequency as in the falsetto

voice (see Fig. 9).

Figures 10 and 11 or supplementary Figures S1 and S2 display

the effects of vocal fundamental frequency F0 on PTP and PTF,

respectively, as functions of the initial glottal half-width bi, vocal

fold depth d, and the damping ratio f. In these figures, the initial

glottal half-width bi is fixed at less than 0.35 mm, assuring that

flutter occurs (see Figs. 5 and 6). Pf is proportional to the square of

F0 as explicitly shown in Equation (32), whereas Qf is proportional

to the first power of F0 as shown in Equation (33). This

quantitative evaluation demonstrates that PTP and PTF have

realistic values within the frequency range typical for a falsetto

voice (i.e., .400 Hz) [26,55].

Discussion

Thus far, numerical (computational) simulations of falsetto-like

voice production have been performed using unsteady flow

equations, essentially the same as those used in the present study

[6,7,43–45]. Such numerical analyses are useful in investigating

the entire process of the voice production over a wide range

where nonlinear effects may play essential roles. In contrast, the

present study provided the first complete analytical description

dealing with the mechanism of self-excitation at high fundamen-

tal frequencies, reminiscent of falsetto voice onset. The explicit

descriptions of the phonation onset (Pf and Qf; Equations (24) and

(25) or (32) and (33), respectively) may be useful for capturing the

mutual relationships among basic parameters at a glance and for

understanding the essential mechanism of the complex fluid-

structure interaction phenomenon. The threshold conditions

were quantitatively reasonable in view of the reported measure-

ment data [9,26,42,55–57,62–64] (see Figs. 5, 6, 7, 8, 9, 10, 11).

Figure 9. The effects of vocal fold depth d and damping ratio f
on Pf. To occur, flutter requires a lower input pressure than the static
instability (Pd) at a low d or f range, suggesting that flutter will appear
at a high fundamental frequency range.
doi:10.1371/journal.pone.0017503.g009

Figure 10. The effect of vocal fundamental frequency F0 on Pf.
doi:10.1371/journal.pone.0017503.g010

Figure 11. The effect of vocal fundamental frequency F0 on Qf.
doi:10.1371/journal.pone.0017503.g011
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The mutual relationships among parameters, such as the effect of

vocal fold stiffness on the onset upstream pressure, make intuitive

sense and are consistent with the tendencies obtained in previous

numerical analyses [6,7,43]. The present results were obtained

from a single degree of freedom system with a small amplitude

approximation. Therefore, the findings derived analytically from

general physical governing equations are specifically applicable to

a small amplitude or a falsetto voice rather than a modal voice

that has large amplitude and non-uniform motion of the vocal

folds.

The current study mathematically revealed that the vocal folds

could be self-excited independent of a mucosal wave or glottal

closure if general unsteady flow equations are employed.

Oscillatory divergence or flutter (see Fig. 4A) is thus triggered

through a different mechanism than that previously considered. In

particular, when the vocal fold wall moves so quickly that the effect

of the time-varying motion achieves a significant magnitude, a

slower fluid velocity than that estimated based on a steady flow

appears in the glottis during the opening vocal fold movement (see

Figs. 12A and 12B). This deceleration occurs because individual

air particles (but not liquid particles as in Washio et al. [67])

adjacent to the wall must follow the quick movement so as to not

break the interface between the solid wall and the fluid. This

model is essentially different from that of the Bernoulli effect in

which the absolute value of the glottal width determines the fluid

velocity (see Fig. 12B). Likewise, in the closing phase, a faster fluid

velocity than that estimated based on a steady flow is present. In

consequence, a higher driving pressure is applied to the vocal folds

during the opening movement (see Fig. 13), inducing the self-

excited oscillation, because the vocal folds can receive positive

energy from the flow as the oscillation proceeds.

The fluid force that induces the static instability (shown by the

second term in the middle of Equation (10)) comes from the

Bernoulli effect. This term is proportional to the dynamic pressure

or the square of the glottal velocity �uuc. In contrast, the fluid force

that induces flutter is caused by the convective acceleration of a

fluid velocity induced by rapid motion of the vocal fold tissue (see

Fig. 12). The tissue motion-induced velocity itself is independent of

the time-mean fluid velocity �uuc as explicitly described in the first

term on the right side of Equation (9). Therefore, the flutter-

related force (shown by the first term in the middle of Equation

(10)) varies with the first (but not the second) power of �uuc,

representing the effect of convection. Both the separate fluid forces

are inversely proportional to �bbc (or bi of Equation (22)) as shown in

Equation (10), because the ratio of the displacement perturbation

bc to the initial width bi (rather than bc itself) influences the pressure

perturbation pc. Equations (20) and (21) imply that the critical

subglottal pressures that induce instability should be proportional

to the square of the glottal velocity �uuc. As a result, PTP (i.e., Pf) is

proportional to the square of bi whereas the critical pressure for the

static instability (Pd) is proportional to the first power of bi. Thus,

the diverse dependencies on bi yield flutter- and unidirectional

divergence-dominant regions (see Fig. 5). Equations (20) and (23)

imply that PTF is proportional to bi as well as to the square root of

PTP, indicating that PTF (Qf) is proportional to the square of bi,

whereas the critical volume flow for unidirectional divergence (Qd)

is proportional to the two-thirds power of bi (see Fig. 6).

Although the relationships between F0 and PTP or PTF are

explicitly expressed in Equations (32) and (33) and graphically

shown in Figures 10 and 11, we should note that the vocal fold-

related parameters that constitute Pf and Qf are in fact

interdependent on each other. Laryngeal muscle activation results

in diverse changes in vocal fold geometry and mechanical

properties; thus, a shift in one parameter alters multiple

interdependent parameters simultaneously. The parameters used

in the present modeling are independent of each other in order to

avoid expedient assumptions and consequent loss of generality.

Establishing a plausible assumption that adequately specifies the

relationship between the parameters will be needed for practical

cases and will be a subject of future investigations. Note that the

current explanation for the falsetto voice onset mechanism does

not exclude the effect of acoustic coupling with the axially long

Figure 12. The effect of rapid wall movement on internal flow.
Convective acceleration (or the Bernoulli effect) is the time-indepen-
dent acceleration of a fluid with respect to space (A). The size of the
letter P and the length of the arrows indicate the magnitude of glottal
pressure and that of the fluid velocity in a converging duct, respectively.
Although the flow may be steady (time-independent), the fluid
accelerates as it moves down the converging duct; thus, there is an
acceleration happening over position, referred to as convective
acceleration or the Bernoulli effect. Relationship between the glottal
width and velocity (B). At a steady state (i), the perturbations of
variables bc, uc, and pc are all zero. If a perturbation bc with a positive
value is slowly given to the steady state (ii), such enlargement of the
constriction weakens the convective acceleration and hence decreases
the instantaneous velocity Uc with the appearance of a negative
perturbation velocity uc and a consequent positive perturbation
pressure pc. Instead, let us consider a case in which a perturbation bc

with a positive value is very quickly given to the steady state (iii). The
wall moves so fast that not only the bc-induced negative perturbation
velocity uc1 (identical to uc in (ii)) but also an additional negative
velocity component uc2 proportional in magnitude to the time
derivative of the wall motion dbc/dt appears. Here, uc1 and uc2

correspond to the second and first terms on the right side of Equation
(9), respectively. The additional velocity component due to the rapid
wall movement also experiences convective acceleration; therefore, a
perturbation pressure higher in magnitude than (ii) is obtained at (iii), as
graphically shown by pc with a big size. Likewise, a fast narrowing of the
wall (i.e., negative bc) yields a negative perturbation pressure pc whose
absolute value is greater than that estimated from the apparent width
(figure not shown). Previous quantitative evaluation [33] suggested that
the magnitude of uc2-originated perturbation pressure (i.e., the first
term on the right side of Equation (10)) reaches approximately 50% of
the uc1-originated one (the second term on the right side of Equation
(10)) at 500 Hz; thus, playing a significant role for driving pressure in
falsetto voice onset.
doi:10.1371/journal.pone.0017503.g012
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vocal tract and subglottis [3–5,34,40]. The acoustic effect as well

as the unsteady flow behavior highlighted here may cooperatively

contribute to the self-excitation in actual phonation. However, it is

notable that human PTP–F0 relationships reported by Solomon

et al. [63] and Titze [62,68], which were examined in high

frequency ranges, indicate that some subjects appear to have a

concave PTP–F0 curve at a high frequency range, thereby being

consistent with the current result (see Fig. 10).

In summary, we analytically derived biomechanical conditions

required for falsetto voice onset from general unsteady flow

equations. In this model, the self-excitation of the vocal folds in a

falsetto voice arises through inherent flow properties in a rapidly

oscillating wall, a process that is distinct from the mucosal wave-

based explanation submitted previously and based on a quasi-

steady flow assumption. This model of the falsetto voice onset

provides explicit relationships among the vocal fold geometry,

biomechanical parameters, and fundamental frequency.

Supporting Information

Figure S1 The effect of vocal fundamental frequency F0

on Pf. Effects of vocal fold depth d and damping ratio f with a

fixed initial glottal half-width bi = 0.32.

(TIF)

Figure S2 The effect of vocal fundamental frequency F0

on Qf. Effects of vocal fold depth d and damping ratio f with a

fixed initial glottal half-width bi = 0.32.

(TIF)
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44. Horáček J, Švec JG (2002) Aeroelastic model of vocal-fold-shaped vibrating

element for studying the phonation threshold. J Fluid Struct 16: 931–955.
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