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Infectious diseases, including vector-borne diseases transmitted by arthropods, are a leading cause of
morbidity and mortality worldwide. In the era of big data, addressing broad-scale, fundamental questions
regarding the complex dynamics of these diseases will increasingly require the integration of diverse
datasets to produce new biological knowledge. This review provides a current snapshot of the systematic
assessment of the relationships between microbial pathogens, arthropod vectors and mammalian hosts
using data mining and machine learning. We employ PRISMA to identify 32 key papers relevant to this
topic. Our analysis shows an increasing use of data mining and machine learning tasks and techniques,
including prediction, classification, clustering, association rules mining, and deep learning, over the last
decade. However, it also reveals a number of critical challenges in applying these to the study of vector-
host-pathogen interactions at various systems biology levels. Here, relevant studies, current limitations
and future directions are discussed. Furthermore, the quality of data in relevant papers was assessed
using the FAIR (Findable, Accessible, Interoperable, Reusable) compliance criteria to evaluate and encour-
age reproducibility and shareability of research outcomes. Although shortcomings in their application
remain, data mining and machine learning have significant potential to break new ground in understand-
ing fundamental aspects of vector-host-pathogen relationships and their application in this field should
be encouraged. In particular, while predictive modeling, feature engineering and supervised machine
learning are already being used in the field, other data mining and machine learning methods such as
deep learning and association rules analysis lag behind and should be implemented in combination with
established methods to accelerate hypothesis and knowledge generation in the domain.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1705

1.1. Infectious diseases and vector-borne disease transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1705
1.2. Systems driven bioscience and biomedicine investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1705
1.3. Data mining, machine learning and knowledge discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
1.3.1. Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
1.3.2. Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
1.3.3. Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
1.4. Strengths and weaknesses of applying data mining and machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
1.5. Aims of present review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706
2. Methods (PRISMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707

2.1. PRISMA overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707
2.2. Identification of research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1708
2.3. Search process design and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.06.031&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2020.06.031
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Etienne.Gnimpieba@usd.edu
https://doi.org/10.1016/j.csbj.2020.06.031
http://www.elsevier.com/locate/csbj


D.D.M. Agany et al. / Computational and Structural Biotechnology Journal 18 (2020) 1704–1721 1705
2.4. Data extraction and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709

3. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709
3.1. Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709
3.2. Current use of data mining and machine learning to understand vector-host-pathogen relationships leveraging systems biology. . . . 1709
3.2.1. Q1 – adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1709
3.2.2. Q2 – transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715
3.2.3. Q3 – pathogenicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715
3.2.4. Q4 – immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715
3.2.5. Q5-Q6 – vector manipulation of transmission and arthropod effects on pathogenicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1716
3.2.6. Q7 – reservoir host effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1716
3.2.7. Q8 – environmental effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1716
3.3. Knowledge discovery in assessment of vector-host-pathogen relationships: from data to knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . 1716

3.3.1. Quality of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
3.3.2. Prediction decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
3.3.3. Classification and clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
3.3.4. Association rules mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717

4. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717

4.1. Challenges and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
4.1.1. The curse of dimensionality with big data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
4.1.2. Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
4.1.3. Dataset reproducibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
4.1.4. Rarity and class imbalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718
4.1.5. Systems biology and big data scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718
4.2. Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718

4.2.1. Knowledge discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718
4.2.2. Leveraging innovations in DM and ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718

5. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
6. Availability of data and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719

Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
Appendix A. Supplementary data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
1. Introduction

1.1. Infectious diseases and vector-borne disease transmission

Infectious diseases have plagued humankind since the dawn of
civilization. The control and prevention of such diseases requires a
detailed understanding of the intricate interactions between
microbial pathogens, their human hosts, and the environments in
which they are transmitted. A subset of infectious diseases that
are transmitted by arthropods (e.g. ticks, mosquitoes), known as
vector-borne diseases, present an added layer of complexity.
Vector-borne infections are on the rise globally and include a num-
ber of deadly parasitic (e.g. malaria), viral (e.g. Dengue virus), and
bacterial (e.g. Lyme disease) diseases with high burdens[1,2]. The
interactions that drive the transmission and progression of these
diseases are complicated by the fact that the causative microorgan-
isms not only interphase with human hosts, but also require pro-
longed contact with an invertebrate vector.

The dynamics of vector-borne diseases are influenced by a
number of parameters. Vector competence, which is the innate
ability of an arthropod to acquire, maintain, and disseminate a
pathogen to a vertebrate host, depends on intrinsic factors such
as vector immunity, general feeding behavior, and the micro-
biome[3]. Meanwhile, intrinsic microbial genetics also factor into
the ability of pathogens to adapt to and colonize specific arthropod
vectors. On the other hand, vectorial capacity, which is a measure
of the efficiency of transmission by a vector in nature, can be
impacted by extrinsic and environmental parameters. These
include temperature, the availability of pathogen reservoirs and
vector habitat, vector lifespan, vector biting rate, and more[4–8].
Notably, several of the above factors can be manipulated by the
microbial pathogens, further confounding the web of interactions
[9].

From the human host perspective, the progression of disease is
driven not only by intrinsic microbial factors, but also the accom-
panying immune response. Moreover, there is evidence to suggest
that the process of adaptation to particular arthropod vectors can
influence microbial pathogenicity in vertebrates. The latter may
occur either through microbial genome degradation as a result of
the adaptation process and/or as a result of changes in microbial
transcriptomes driven by the arthropod host[10–12].

Although our understanding of the dynamics of infectious dis-
eases, including vector-borne diseases, continues to advance, many
unknowns remain. In particular, while much progress has been
made towards mechanistic understanding of specific interactions
(e.g. the transmission of malaria parasites by Anopheles mosqui-
toes), fundamental questions with broad, generalizable implica-
tions remain difficult to address. For instance, how do pathogens
adapt to transmission by specific vectors? Are there molecular sig-
natures to this adaptation? Can we predict the transmissibility
and/or pathogenicity of newly identified, potentially vector-borne
microbes? Addressing these intriguing questions requires not only
large amounts of diverse data from different vector-host-pathogen
relationships, but also the ability to integrate this biological infor-
mation into new knowledge.

Today, there are a growing amount of big data pertaining to
vector-borne diseases available in the literature, and structured
public repositories for these types of data, such as VectorBase

(https://www.vectorbase.org/), are expanding to include more spe-
cies of interest and data modalities. In addition, data mining and
machine learning approaches are already being applied to the
study of many infectious diseases in ways that could be adapted

https://www.vectorbase.org/
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to understand vector borne agents. As such, the goal of this review
is to explore how data mining and machine learning may be, and in
some cases already are, applied to improve understanding of com-
plex vector-host-pathogen relationships.

1.2. Systems driven bioscience and biomedicine investigation

The fast growth of high-throughput technologies at each level
of biological organization (i.e. compound, gene, transcript, protein,
cell) has provided the bioscience and biomedicine communities
with many extensive datasets, leading to several computational
challenges, including the systemic integration of different dataset
modalities into a reliable and reproducible investigational frame-
work. Systems bioscience and biomedicine are leading a new gen-
eration of discovery leveraging the interconnectivity and
interdependence of biological processes. Each biological process,
such as protein production leading a pathogenic effect, involves
additional mechanisms at other systems levels, such as gene
expression through Gene Regulatory Networks (GRN), as an exam-
ple. The integration of datasets from these different biosystems
levels poses several data science challenges, including the curse
of dimensionality and missing datasets. Leveraging data mining
(DM) and machine learning (ML) techniques and methods to tackle
these challenges and advance integrative understanding of biolog-
ical response mechanisms provides exciting new research opportu-
nities. Before discussing the application of DM and ML to vector-
host-pathogen relationships, a short overview of DM, knowledge
discovery and ML is given for readers with little background in
these domains.

1.3. Data mining, machine learning and knowledge discovery

Data mining is a process that applies analysis, management and
summarization of data from a large pool of information to obtain
insight and discover unknown patterns or relationships in the
dataset[13]. It involves six steps according to the Cross-Industry
Standard Process for Data Mining (CRISP- DM) of 1996. The
CRISP-DM protocol is based on performing procedurals that are
universally applicable for data mining methodologies[13]. Knowl-
edge Discovery in Databases (KDD), on the other hand, involves
data selection, preprocessing, transformation, mining, interpreta-
tion or evaluation, and knowledge discovery[13]. Thus, KDD
encompasses data mining as one of the key steps.

Machine Learning can be considered a branch of artificial intel-
ligence that uses a general concept of inference to extract (learn)
the solution to a problem from data samples[14]. There are always
two phases of learning in machine learning. First is the estimation
of the unknown dependencies in a system from a given dataset,
and second is the use of estimated dependencies to predict new
outputs from the system[14]. Generally, machine learning is
divided into two major types, supervised and unsupervised
learning.

1.3.1. Supervised learning
In supervised learning, training datasets are labeled, and the

machine learns from the labels to assign unknown datasets a label
upon encounter. The result is an input dataset mapped to a correct
output. Therefore, the term supervised learning refers to supervi-
sion by a labeled training dataset to map the input data to a desired
output. Supervised learning is further divided into tasks such as
regression and classification in which different algorithms, includ-
ing: Multiple Linear Regression (MLR), Logistic Regression (LR),
Support Vector Machine (SVM), Random Forest (RF), Artificial Neu-
ral Network (ANN), Decision Tree (DT), and Bayesian Network (BN),
are applied to build a model.
1.3.2. Unsupervised learning
In unsupervised learning, there are no labels for the machine to

learn from. Hence, it is up to the model to discover patterns in
input datasets and group them based on certain rules or associa-
tions. Furthermore, unsupervised learning can also be divided into
tasks, for example, clustering to which Principal Component Anal-
ysis (PCA), Independent Component Analysis (ICA), and k-Means
(KM) are applied to make models.

1.3.3. Feature engineering
The success of data science workflows relies on feature engi-

neering. A feature is the basic variable used to capture and repre-
sent the knowledge in data for knowledge discovery or machine
learning development (e.g. the infection count is 3 on May 2020
in USA, here date and location can be considered as features to ana-
lyze and predict the infection count progress/decline). As an addi-
tional example, if we assume in a natural setting that the genomic
landscape of a given vector or pathogen contains a consistent pat-
tern that can help predict transmission dynamics, a list of variables
to measure the genomic landscape should be chosen. Current state
of the art tools to measure genomic variables include global gene
expression profiling and polymorphism typing. From these two
data modalities, we can capture two different feature types: (1)
gene expression from vector and pathogen before and after they
interact, (2) various genomic markers from the vector and patho-
gen. In this context, the feature list will include the expressed
genes (e.g. 30 k) and the genotypic markers (e.g. 4). The high num-
ber of features in this list makes prediction and pattern identifica-
tion difficult and sometime less meaningful. Furthermore, it stands
to reason that all genes from the vector cannot be involved in reg-
ulating transmission. In this case, feature engineering will be
needed to identify and select/reduce (feature selection, feature
reduction) this list of features to the minimal number needed to
make relevant predictions. Several approaches have been imple-
mented for diverse data modalities in order to provide data scien-
tist with domain-specific relevant feature identification.

1.4. Strengths and weaknesses of applying data mining and machine
learning

DM & ML applications are revolutionizing the field of infectious
diseases by contributing to early outbreak detection, surveillance,
pathogenicity prediction, diagnostic tools, and more. However,
these applications have both strengths and weaknesses. A particu-
lar strength is that systems bioscience is producing an abundance
of data that machine learning and data mining methods can trans-
form into novel knowledge. However, these omics data come in
very heterogenic forms and modalities, creating huge challenges
for their use, including the ‘‘curse of dimensionality” that pertains
to big data. Additionally, problems with missing data, dataset
reproducibility, rarity and class imbalance, and big data scalability
are amongmany other challenges. These issues become constraints
and cause problems for most machine learning tasks when applied
to real-world approaches such as the development of clinical solu-
tions. In turn, these constraints result in most models remaining
research tools for non-clinical and academic settings that are use-
ful only in limited ways. Nonetheless, this trend is changing and, in
this review, most of the studies discussed addressed important
real-world problems.

1.5. Aims of present review

In other bioscience domains, reviews are available about these
strengths and challenges of machine learning applications. The
two types of machine learning can be used to achieve diverse tasks
depending on the discovery goal, application, and the domain of



Fig. 1. Overview of Systems Bioscience (a) of vector-host-pathogen relationships (b) of Data Mining and Machine Learning processes (c) emphasizing the information flow
and interwinding nature of the subject matter in relationship to tools used in the review papers.

Fig. 2. Search workflow (PRISMA) used in article searching, retrieving, processing
and inclusion/exclusion decision making.
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interest. In this review, we will focus on five tasks to tackle several
challenges involved in understanding vector-host-pathogen inter-
actions, while assessing the strengths and weakness of machine
learning applications in this domain. These tasks include: (1) pre-
diction - to assess the continuous trends or deterministic responses
in each relationship; (2) classification – to identify meaningful
classes governing the interactions and the responses of each com-
ponent in the relationship; (3) clustering – to detect functional pat-
terns interesting to the interaction ecosystem; (4) association rules
mining / hypothesis generation – to provide formal validation of
existing hypotheses, propose new ones, and evaluate their perti-
nence regarding the vector-host-pathogen relationship; and (5)
deep learning – to provide a multi-level organization of different
dataset modalities involved in the vector-host-pathogen systemic
relationship (Fig. 1).
2. Methods (PRISMA)

2.1. PRISMA overview

PRISMA workflow was adopted to design our review[15]
(Fig. 2). PRISMA is an objective design method for literature
reviews in bioscience and biomedicine. PRISMA relies on a rigorous
process to improve the relevance of the selected review papers and
the reproducibility of the review process. Our design allowed us to
query 3 publication databases (PubMed, WoS, Mendeley), to our
research questions (Table 1), and yielded 4408 papers related to
our query (Table 2). An additional 4 articles were added from other
journals and collections not available in the initial databases (e.g.



Table 1
Research questions mapped to DM and ML tasks. The questions are denoted as Q0 to Q8. Q0 is the main research question involving the overall relationship, Q1 to Q8 are applied
to the subtle questions in the relationship with more attention to Q1-Q3 in this review. Tasks are mapped to questions (e.g.Q0-1), which means Vector-Host-Pathogen Interaction
(Q0) and use of prediction (1) tasks to answer the question (Q0).

Query-ID Research Questions Prediction
(1)

Classification
(2)

Clustering
(3)

Association
Rules (4)

Deep
learning (5)

Q0 To what degree DM & ML have been applied to assess Vector-Host-Pathogen
Interactions?

Q0-1 Q0-2 Q0-3 Q0-4 Q0-5

Q1 To what degree DM & ML have been applied to assess Pathogen-Vector
adaptation?

Q1-1 Q1-2 Q1-3 Q1-4 Q1-5

Q2 To what degree DM & ML have been applied to assess Vector-Host
transmission?

Q2-1 Q2-2 Q2-3 Q2-4 Q2-5

Q3 To what degree DM & ML have been applied to assess Pathogen- Host
pathogenicity?

Q3-1 Q3-2 Q3-3 Q3-4 Q3-5

Q4 To what degree DM & ML have been applied to assess Pathogen Vector/Host
immunity

Q4-1 Q4-2 Q4-3 Q4-4 Q4-5

Q5 To what degree DM & ML have been applied to assess Pathogen Vector
manipulation of transmission

Q5-1 Q5-2 Q5-3 Q5-4 Q5-5

Q6 To what degree DM & ML have been applied to assess Pathogen Vector/
arthropod effects on pathogenicity

Q6-1 Q6-2 Q6-3 Q6-4 Q6-5

Q7 To what degree DM & ML have been applied to assess Pathogen Vector
Reservoir/Host effects

Q7-1 Q7-2 Q7-3 Q7-4 Q7-5

Q8 To what degree DM & ML have been applied to assess Pathogen Vector
environmental effects

Q8-1 Q8-2 Q8-3 Q8-4 Q8-5

Table 2
Query formulation and search result count per database. Research questions denoted Q0 to Q8 and tasks denoted 1 to 5 in table 1 were formulated into searchable formatted
queries and searched against PubMed, Web of Science, and Mendeley to retrieve the papers of interest. The results are recorded in this table, for example, Q1-3 means question
denoted Q1 and task denoted 3 combined. In this example, the search resulted in 70 PubMed, 10 Web of science and 0 Mendeley papers retrieved.

Query-ID Query PubMed Web of Science Mendeley (SCOPUS)*

Q0 Pathogen Vector Host AND (Machine Learning OR Data Mining) 60 39 18
Q1 Pathogen Vector Adaptation AND (Machine Learning OR Data Mining) 12 1 0
Q2 Vector Host Transmission AND (Machine Learning OR Data Mining) 12 18 9
Q3 Pathogen Host Pathogenicity AND (Machine Learning OR Data Mining) 314 20 11
Q0-1 Pathogen Vector Host AND Prediction 251 185 39
Q0-2 Pathogen Vector Host interaction AND Classification AND (Learning OR Mining) 10 12 2
Q0-3 Pathogen Vector Host interaction AND Clustering 269 23 1
Q0-4 Pathogen Vector Host interaction AND Association Rule 3 0 25
Q0-5 Pathogen Vector Host interaction AND Deep Learning 2 2 16
Q1-1 Pathogen Vector Adaptation AND Prediction 128 17 9
Q1-2 Pathogen Vector Adaptation AND Classification AND (Learning OR Mining) 3 0 0
Q1-3 Pathogen Vector Adaptation AND Clustering 70 10 0
Q1-4 Pathogen Vector Adaptation AND Association Rule 0 0 0
Q1-5 Pathogen Vector Adaptation AND Deep Learning 0 0 0
Q2-1 Vector Host Transmission AND Prediction 558 240 75
Q2-2 Vector Host Transmission AND Classification AND (Learning OR Mining) 9 4 4
Q2-3 Vector Host Transmission AND Clustering 212 230 31
Q2-4 Vector Host Transmission AND Association rule 6 5 3
Q2-5 Vector Host Transmission AND Deep learning 0 1 1
Q3-1 Pathogen Host Pathogenicity AND Prediction 219 161 58
Q3-2 Pathogen Host Pathogenicity AND Classification AND (Learning OR Mining) 147 4 0
Q3-3 Pathogen Host Pathogenicity AND Clustering 54 550 0
Q3-4 Pathogen Vector Pathogenicity Association Rule 18 0 12
Q3-5 Pathogen Host Pathogenicity AND Deep learning 11 3 0
Q4 Host Pathogen Immunity AND (Machine Learning OR Data Mining) 112 32 9
Q5 Pathogen Vector Manipulation of Transmission AND (Machine Learning OR Data Mining) 1 1 0
Q6 Pathogen Arthropod Pathogenicity AND (Machine Learning OR Data Mining) 32 0 0
Q7 Reservoir Host Adaptation Transmission AND (Machine Learning OR Data Mining) 1 0 0
Q8 Environmental Pathogen Vector Host AND (Machine Learning OR Data Mining) 7 4 2

2521 1562 325

* Mendeley queries was augmented with (‘‘”) for source formatting requirements.

1708 D.D.M. Agany et al. / Computational and Structural Biotechnology Journal 18 (2020) 1704–1721
PLOS). After duplicate removal, we obtained 972 unique papers. An
independent screening of papers was done by DA, and EG. Follow-
ing manual screening, we retained 530 qualified papers. For exam-
ple, a paper that was retrieved because it mentions ‘‘clustering”,
referring to a group of objects (e.g. population group) and not
DM or ML methods was excluded from our list. A deeper assess-
ment followed by group discussion allow us to select 53 papers
for further review. During the review process, 32 were found rele-
vant to our problem of interest and were approved by DA, EG, and
JP (collection is publicly available at: https://www.ncbi.nlm.nih.-
gov/sites/myncbi/etienne.gnimpieba z..1/collections/59430212/
public/). Although not all of these dealt explicitly with vector-
borne pathogens, those that did not had clear implications for
the study of vector-borne pathogens.

2.2. Identification of research questions

In this review, we were inspired by the organization of a similar
article on the investigation of air pollution using machine learning
and data mining [16]. Here, we undertake a rigorous effort to iden-
tify studies that used machine learning (ML) techniques and data
mining (DM) methods to assess the complex web of vector-host-

https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba+z..1/collections/59430212/public/
https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba+z..1/collections/59430212/public/
https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba+z..1/collections/59430212/public/


Fig. 3. Paper count per year showing (a) a trend increase in MD & ML application in the study of vector-host-pathogen relationships and (b) distribution across research
questions and applications of DM & ML.
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pathogen interactions. From the main research question, which we
denoted as Q0 – ‘‘How to assess vector-host-pathogen relation-
ships using Data Mining and Machine Learning?”, 8 subsequent
research questions were formulated to integrate the systemic
aspects of the problem (Fig. 1a, b). These research questions were
mapped to 5 DM and ML tasks to better understand the systemic
depth of ML and DM involvement in this ecosystem during the data
mining and knowledge discovery processes (Fig. 1c, Table 1).
Focusing on the 4 most pertinent, well-defined questions (Q0,
Q1, Q2, Q3), we generated 20 tasks dependent questions, bringing
our research question list to a total of 29 questions at 3 systemic
levels. These 29 research questions were used to build our queries
for database and journal searches. Based on our research questions,
we crafted 8 main queries and 20 nested queries to the first 3 ques-
tions and machine learning (ML) and data mining (DM) tasks. For
example, machine learning (ML) and classification form a query
of ‘‘vector-host-pathogen interaction AND Classification AND
(Learning OR Mining).” A full table of queries is shown below
(Table 2).

2.3. Search process design and selection

To perform the actual search process, queries in table 2 were
entered into the databases of PubMed, Mendeley (SCOPUS), and
Web of Science (Jan/1/ 2020) one at a time to obtain journal arti-
cles, conference papers, and other publications relevant to our
research questions. (Table 1). With caution not to leave out any
important articles, no date or time period constraints were applied.
After a successful search, the resulting articles were manually
inspected using blinded manual curation to assess their relevance
to vector-host-pathogen relationships and use of data mining
(DM) and machine learning (ML) techniques. For example, Q0,
was manually inspected to exclude articles that did not contain
application of machine learning (ML) or data mining (DM) methods
on vector-host-pathogen interactions or that indirectly addressed
the mentioned subject. Articles or studies that involved simple sta-
tistical analyses only were excluded. Also, manual curation was
done to identify and merge overlaps resulting from searches of dif-
ferent databases. For instance, if articles were already indexed by
PubMed, they were merged with articles from PLOS to consolidate
the duplication (Table 2.).

2.4. Data extraction and synthesis

After the raw data (articles) were collected from databases, the
following information was extracted from each paper: (a) the
study objective summary (b) the findings summary (c) the source
and full reference (d) the vector-host-pathogen relationship of
interest in the study (e) the machine learning, and data mining
methods used to address the study objective, and (f) the data
science tasks and systems biology methods leveraged. Further-
more, these annotations were tabulated and used to perform data
synthesis to elucidate trends in the research landscape employing
machine learning and data mining techniques in vector-host-
pathogen relationship studies. The raw datasets from our paper
readings were captured using Google Forms and preprocessed
and analyzed using Microsoft Excel 2020 (Supplementary file S1:
10.6084/m9.figshare.12053637). The review collection is available
at: https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba
z..1/collections/59430212/public/. The raw dataset is freely avail-
able in Figshare (10.6084/m9.figshare.12053637) [17].
3. Results

3.1. Summary statistics

PRISMA results overview: The summary statistics provide the
numbers of articles obtained from our searches of PubMed, Mende-
ley and Web of Science databases. The procedures in which an arti-
cle or publication were excluded or included, and numbers are
provided in the PRISMA flow chart in Fig. 2. From the searched
databases, the first initial search generated 2521, 325, and 1562
articles from PubMed, Mendeley and Web of Science, respectively
(Table 1). In addition to these, 4 articles were suggested and
obtained from other sources of publication (home journals) during
the review process. After blinded screening and eligibility curation,
only 32 articles were included in this review (Fig. 3, Table 3.). As
Fig. 3a shows, the distribution of papers increases from past to pre-
sent (2012 to 2020), illustrating an increasing appreciation of ML
and DM in the field of vector-host-pathogen interactions. When
considering the subtopics addressed by our research questions
posed above, pathogenicity (Q3) leads in the application of
machine learning with 27% of papers addressing this issue, fol-
lowed by transmission (Q2) with 24% and adaptation (Q1) with
17%. The 5 other questions lagged behind. However, all of the 8
questions (Q1 - Q8) were covered to some extent, showing a
diverse use of data mining and machine learning in the domain
(Fig. 3b).
3.2. Current use of data mining and machine learning to understand
vector-host-pathogen relationships leveraging systems biology

3.2.1. Q1 – adaptation
Assessing the adaptation of a pathogen to colonize a particular

arthropod vector/host can be challenging, due to the complexity of

https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba+z..1/collections/59430212/public/
https://www.ncbi.nlm.nih.gov/sites/myncbi/etienne.gnimpieba+z..1/collections/59430212/public/


Table 3
Overview of key papers involved in the research questions. The 32 papers are listed with their PubMed ID, a short description of the paper objective or goal (s), first authors’ name, ML methods, research questions in Table 1, method
accuracy and validations methods, as well as Data Mining key features if available.

PubMed ID [Ref] Paper Short Objective Author Year ML Task ML
Method**

Research
Problem

SB Levels Accuracy (%) Validation
Method

DM - Key Features

29,263,245 [56] Use genomics clustering to
identify genomics information
transfer during infection

Jani M et al. 2017 Clustering,
Classification

Q1, Q6 Epigenomics,
Genomics

multiple method
comparison

reported genomics
island(GI)
coordinates and
annotation

30,744,806 [35] HRMAn (Host Response to
Microbe Analysis), An image
analysis program to assess host
protein recruitment within
general cellular pathogen
defense that is based on
machine learning algorithms
and deep learning.

Fisch D et al 2019 Classification,
DL

DT, GBT,
RF, CNN

Q1, Q3 Genomics,
Transcriptomics,
Cellomics
(images)

99.5, 92.1, 69.9 expert-based
cross-validation,
Cohen’s kappa
values

Nuclei labels,
Pathogen labels,
Cell labels and
vacuoles 1—n

30,579,059 [28] A potential use of machine
learning in prediction of health
endpoints in STEC, and risk
assessment of microbial
infection using whole genome
sequencing data

Njage PMK,
et al

2019 Prediction RF, SVM-
RLk, GBK-
LB

Q1, Q2,
Q3

Genomics,
Transcriptomics,
Proteomics

accuracy of 0.75 (95% CI:
0.60, 0.86), and
(Kappa = 0.72).

10-fold cross
validation,
bootstrap
subsamples

Accessory genes in
amino acid
sequences

29,448,923 [20] Distinguishing vector from non-
vector to mitigate risk of tick-
borne disease transmission

Yang LH, et al 2018 Prediction, AR GBR Q1, Q2,
Q3, Q5,
Q6

Population,
Phenomics

91% accuracy, ID 14
species with 80%
probability of causing
disease.

10-fold cross-
validation

anatomy, life
history metrics,
and biomes

30,871,681 [30] Predict protective antigens or
epitopes using data features
extracted from protein
sequences (Machine Learning:
Random Forest, Recursive
Feature Elimination (RFE), and
minimum redundancy
maximum relevance (mRMR))

Rahman MS,
et al

2019 Prediction RF Q1, Q3,
Q4

Genomics,
Transcriptomics

accuracy - sensitivity /
specificity values of
78.04%, 78.99% and
77.08% � 10-fold cross-
validation testing. In
jackknife cross-
validation, 80.03%,
80.90% and 79.16%
respectively.

accuracy;
sensitivity and
specificity, 10-
fold cross-
validation

Relevant features

31,206,514 [43] Use of ML to identify high risk
snail habitats as function of
Schistosoma japonium infection
control and elimination

Xia C, et al 2019 Prediction RF, CTA,
GB

Q1, Q2,
Q3, Q7,
Q8

Population,
Other SB level

RF Model (AUC = 0.96),
ensemble model
(AUC = 0.89, sensitivity �
0.79 - specificity = 0.82).

10 Fold Cross-
Validation

climatic,
environment and
economic factors
(very low, low,
moderate, high and
very high)

29,738,521 [29] Random forest classifier to
identify Salmonella enterica
strains associated with
extraintestinal disease using
measured burden of atypical
mutations in protein coding
genes across independently
evolved lineages.

Wheeler N. E,
et al

2018 Classification TD, RF Q1, Q3,
Q4

Genomics,
Transcriptomics

100% out-of-bag
classification accuracy

out-of-bag
classification
accuracy

atypical mutations
in protein coding
genes

29,760,095 [22] Predictive model based on
machine learning algorithms to
reliably determine malaria
infection status in humans
based on volatile biomarkers

De Moraes
CM, et al

2018 Prediction,
Classification

RF, RRF,
AdaBoost

Q1, Q2,
Q3, Q5,
Q6

Proteomics,
Metabolomics

0.95, 80, 92 10 Fold cross-
validation

17 (4-hydroxy-4-
methylpentan-2-
one), multiple
compounds
(compound 49 , 31,
61, 5, 9, 14, 20, 38)
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Table 3 (continued)

PubMed ID [Ref] Paper Short Objective Author Year ML Task ML
Method**

Research
Problem

SB Levels Accuracy (%) Validation
Method

DM - Key Features

30,416,498 [34] Development of an in silico
method to predict whether a
protein is an effector of type IV
secretion system or not based
on its sequence information.

Xiong Y, et al 2018 Prediction,
Classification

NB, KNN,
LR, ERT,
GBM,
XGB,
SVM, RF,
MC-SGE

Q1, Q3 Transcriptomics 73.2, 85.5, 87.9, 89.4,
90.5, 90.1, 90.2, 88.5,
metric of F1

5-fold cross-
validation,
independent test
for testing the
generalization
ability

PSSM-composition
features

30,682,021 [49] This study focuses on the best
way to use validated effector
protein features for effector
prediction using three machine
learning classifiers, and
compares results with those of
others to obtain de novo results

Esna Ashari
Z, et al

2019 Classification,
Prediction,
Clustering

SVM, E-
SVM

Q2, Q3,
Q4, Q5

Transcriptomics,
Proteomics

94.05%, 93.64%, and
92.44%, for Models 1, 2,
and 3, respectively.

10 fold cross-
validation

Optimal feature set
includes 15
features (i.e, coiled
coil domains,
hydropath, PSSM
composites)

31,146,762 [23] Enabling rapid assessment of
mosquito blood-feeding
histories and vectorial capacities
using Mid-infrared spectroscopy
and supervised machine
learning .

Mwanga, E.
P., et al

2019 Prediction,
Classification

KNN, LR,
SVM, NB,
RF, XGB,
MLP

Q1, Q2,
Q3, Q4,
Q5, Q6

Proteomics,
Fluxomics,
Metabolomics,
Cellomics,
Population,
Phenomics

Final model accuracy on
hold-out dataset 98.4%

Stratified shuffled
split cross-
validation

Spectra intensities
above 0.11
absorbance units

31,778,355 [50] The article is a review of recent
applications of ML in infection
biology, but also discusses the
advantages and drawbacks of
different techniques. Example
Predicting bacterial host
attributes by ML using
Salmonella enterica serovar
Typhimurium genome
sequences

Lupolova N,
et al

2019 Prediction,
Clustering

KM, HA,
HD-LDA,
DL, SVM,
RF

Q2, Q3 Genomics ~80% accuracy both cross-
validation and
leave-one-out

pangenome matrix
of predicted
proteins

31,835,769 [39] EpiExploreR provides tools
integrating common approaches
to analyze spatiotemporal data
on animal diseases in Italy,
including notified outbreaks,
surveillance of vectors, animal
movements data and remotely
sensed data. EpiExploreR is
addressed to scientists and
researchers, including public
and animal health professionals
wishing to test hypotheses and
explore data on surveillance
activities.

Savini L, et al 2019 Clustering, AR NetA,
Clustering

Q1, Q2,
Q6, Q7,
Q8

Population NA NA nearly real-time
data, including
notified outbreaks,
surveillance of
vectors, animal
movements and
remotely sensed
data;

31,791,409 [45] The aim of this study was to
develop a model based on
available observations, climatic
and environmental data, and
machine learning methods for
the prediction of the potential
seasonal ranges of Ae.
albopictus in China

Zheng, X.,
et al

2019 Prediction RT Q2, Q5,
Q6, Q8

Population accuracy � 98.4% (97.1–
99.5%), and AUC � 99.1%
(95.6–99.9%)

10 cross-
validation

climatic surface,
climatic zone, and
regional
environmental
data

(continued on next page)
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Table 3 (continued)

PubMed ID [Ref] Paper Short Objective Author Year ML Task ML
Method**

Research
Problem

SB Levels Accuracy (%) Validation
Method

DM - Key Features

25,521,718 [18] Understanding and determining
host tropism to identify
zoonotic influenza virus strains
capable of crossing species
barrier and infecting humans.

Eng, C. L.,
et al

2014 Prediction,
Classification,
DL

RF, KNN,
NB, SVM,
ANN

Q1, Q2,
Q3, Q5,
Q6, Q7,
Q8

Genomics,
Transcriptomics,
Proteomics

99.6, 97.0, 98.3, 97.4,
99.3, Final model
(ACC > 96.57;
AUC > 0.980;
MCC > 0.916)

10-fold cross-
validation

The top 15 features
for each protein
were selected for
inclusion as feature
vectors into the
dataset for the
combined
prediction model.

31,881,961 [32] This study developed a machine
learning based classification
approach to identify infectious
disease associated host genes by
integrating sequence and
protein interaction network
features

Barman, R.K.,
et al

2019 Classification,
prediction, DL

DNN,
SVM, RF,
NB

Q3 Genomics,
Transcriptomics,
Proteomics

accuracy of 86.33%
sensitivity � 85.61%
specificity � 86.57%.
DNN classifier accuracy
� 83.33% , sensitivity �
83.1% .

10-fold cross-
validation

PAAC_Network
properties (10
features) and
selected features
for PAAC_Network
properties (16
features)

31,770,368 [57] Use of a machine learning
framework to determine
whether viral virulence can be
predicted by ecological traits,
including human-to-human
transmissibility, transmission
routes, tissue tropisms, and host
range.

Brierley L,
et al

2019 Prediction,
Classification

DT, RF Q2, Q3 Genomics,
Transcriptomics

mean accuracy of 89.4% c cross-validation taxonomic family,
primary tissue
tropism, primary
transmission route,
know vector-borne
transmission

29,186,295 [58] A state-of-the-art T4SE
predictor by conducting a
comprehensive performance
evaluation of different machine
learning algorithms along with a
detailed analysis of single- and
multi-feature selections.

Wang, J., et al 2019 Prediction,
Classification,
Clustering

NB, KNN,
LR, RF,
SVM, MLP

Q1, Q2,
Q3

Epigenomics,
Genomics,
Transcriptomics,
Proteomics

5-fold cross-
validation

complementary
features generally
enhance the
predictive
performance of
T4SEs;

30,385,576 [19] This study took sequence data
from>500 single-stranded RNA
viruses and used machine-
learning algorithms to extract
evolutionary signals imprinted
in the virus sequence that offer
information about its original
hosts and if an arthropod vector,
and what type, plays a part in
the virus’s natural ecology.

Babayan, S.
A., et al

2018 Prediction,
Classification,
AR

PN, GLM,
GBM

Q1, Q2,
Q3, Q5,
Q6, Q7

Genomics,
Transcriptomics,
Population

83.5, (bagged
accuracy = 97.0%)

(bagged
accuracy = 97.0%)

genomic biases can
coarsely
discriminate
viruses, viral codon
pair and
dinucleotide biases

31,293,540 [33] The main goal of this study is to
predict a set of candidate
effectors for the tick-borne
pathogen Anaplasma
phagocytophilum, the causative
agent of anaplasmosis in
humans.

Esna Ashari.
Z, et al

2019 Prediction SVM-RBF
kernel,
SVM-L, LR

Q2, Q3 Genomics,
Transcriptomics

Average 94.05, AUC (area
under the curve) of 0.98,
an average MCC 0.87

10-fold cross-
validation

28,051,068 [36] Development of PaPrBaG:
Pathogenicity Prediction for
Bacterial Genomes

Deneke.
Carlus, et al

2017 Prediction,
Classification

SVM Q3 Genomics,
Transcriptomics,
Proteomics

0.88 to 0.93. 5-fold Cross-
validation

trimer, monomer,
dimer, tetramer,
spaced words, AA
Index score, codon
frequencies,
monopeptides,
DNA motifs, amino
acid properties and
dipeptides
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Table 3 (continued)

PubMed ID [Ref] Paper Short Objective Author Year ML Task ML
Method**

Research
Problem

SB Levels Accuracy (%) Validation
Method

DM - Key Features

22,285,561 [37] Development of two new
approaches to automatically
detect whether the title or
abstract of a PubMed
publication contains HPI data,
and extract the information
about organisms and proteins
involved in the interaction to
build a model that can predict
pathogenicity

Thanh Thieu,
et al

2012 Prediction,
Classification

SVM Q3, Q4 Genomics,
Transcriptomics,
Fluxomics

78 10-fold cross-
validation

HPI-relevant and
HPI-irrelevant

31,288,641 [59] A Python-based standalone tool,
called PyPredT6, was use to
predict T6 effector proteins. A
total of 873 unique features
were extracted from the peptide
and nucleotide sequences of the
experimentally verified effector
proteins.

Sen R, et al 2019 Prediction ANN,
SVM,
KNN, NB,
RF

Q2, Q3 Genomics,
Transcriptomics,
Proteomics,
Lipidomics

Peptide, nucleotide
sequence

30,716,030 [51] Developed a machine learning
approach for the prediction of
dengue fever severity based
solely on human genome data.

Davi C. et al. 2019 Prediction,
Classification,
DL

SVM,
ANN

Q3 Genomics,
Phenomics

accuracy>86%, and
sensitivity and specificity
over 98% and 51%,
respectively.

using only genome
markers

29,191,515 [46] This study present simulated
global distribution of Aedes
aegypti and Aedes albopictus at
a 5 � 5 km spatial resolution
with high-dimensional
multidisciplinary datasets and
machine learning methods

Ding F. et al. 2018 Prediction SVM,
GBM, RF

Q2 Population,
Other SB level

RF (AUC) of 0.973 and
0.974, respectively, GBM
(AUC of 0.971 and 0.972,
respectively) and SVM
(AUC of 0.963 and 0.964,
respectively)

statistically
significant

31,821,325 [44] Model tick bite risk using
human exposure and tick
hazard predictors, represents a
step forward in risk modelling
by combining a well-known
ensemble learning method,
Random Forest, with four count
data models of the (zero-
inflated) Poisson family.

Garcia-Marti
I et al.

2019 Prediction,
Classification

RF,
Ensemble

Q2 Population stdev = 3.15) Pearson/Kendall
coefficient

Species/organism

29,114,054 [38] In this study combine
techniques in serial block-face
scanning-electron microscopy
and deep-learning–based image
segmentation algorithms to
visualize the distribution,
abundance, and interactions of
Ophiocordyceps unilateralis
sensu lato fungus inside the
body of its manipulated host.

Fredericksen
MA et al.

2017 DL DL Q1, Q2,
Q3

Cellomics For simpler stacks, the F1
score is over 96%, and for
harder stacks, the F1
score is over 93% (voxel
level).

F1-measure Image features

(continued on next page)
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Table 3 (continued)

PubMed ID [Ref] Paper Short Objective Author Year ML Task ML
Method**

Research
Problem

SB Levels Accuracy (%) Validation
Method

DM - Key Features

29,547,915 [60] Developed the Bastion6: a
bioinformatics approach for
accurate prediction of type VI
secreted effectors

Wang J. et al. 2018 Prediction,
Classification,
Clustering

KM, 2L-
SVM-E

Q3 Genomics,
Proteomics

ACC (>0.91), F-value
(>0.91), MCC (>0.83) and
AUC (>0.96).
Independence test ACC
(0.943), F-value (0.946),
MCC (0.892) and AUC
(0.976).

5-fold cross-
validation and
independent
tests and case
studies

integrated into
sequence profile,
evolutionary
information and
physicochemical
property.

25,113,593 [47] This study aims to clarify if land
use factors other than human
settlements, e.g. different types
of agricultural land use, water
bodies and forest are associated
with reported dengue cases
from 2008 to 2010 in the state of
Selangor, Malaysia.

Cheong. YL,
et al

2014 Hypothesis
Generation/
Association
Rules

BRT Q2 Population,
Other SB level

81% cross-validation land use factors
and the reported
dengue cases

10.21203/ rs.2.15755/v1 This study identifies critical
climatic risk factors to predict
dengue outbreaks with better
accuracy

Nejad. FY,
et al.

2019 Prediction,
Association
Rules

BN, SVM,
NB, DT

Q2 Population BN 92.35%, RMSE 0.26 10-fold cross-
validation

temperature (min,
ma, average),
minimum
humidity and
rainfall

10.1109/BigData
Congress.2017.54 [52]

The motivation behind this
study is to provide a basic
framework for biologists, which
is based on big data analytics
and deep learning models.

Huaming
Chen et al.

2017 DL DL Q2, Q3 Proteomics protein–protein
interaction

10.1109/
ACCESS.2020.2971091
[48]

SMOPredT4SE employed
combination features of series
correlation pseudo amino acid
composition and position-
specific scoring matrix to
present protein sequences, and
employed support vector
machines (SVM) to identifying
T4SEs

Zihao Yan
et al.

2020 Prediction
Classification

SVM, RF,
NB, kNN,
Bagging,
SGD,
LibD3C.

Q2, Q3 Proteomics 95.60% 5-fold cross-
validation

composed of 305
T4SEs and 610
non-T4SEs

** Notations: ML-Machine Learning, DM-Data Mining, support vector machines (SVM), and artificial neural networks (ANN), DT:-Decision Tree, RF:-Random Forest, GBR:-Generalized Boosted Regression, NB:-Naïve Bayes, SVM:-
Support Vector Machine, KNN:-k-Nearest Neighbors, KM:-k-Means, NetA:-Network Analysis, RT:-Regression Tree, DNN:-Deep Neuron Networks, PN:-Phylogenetic Neighborhood, SVM-RFB-k:-SVM-RBF kernel, ANN:-Artificial
Neural Network, DL:-Deep Learning, BRT:-Boosted Regression Tree, BN:-Bayes Network, GB:- Gradient Boosting, GrB:- Generalized Boosted, AdaBoost:-Adaptive Boosting, LR:- Logistic Regression, HD-LDA:- Hierarchical Divisive
and Latent Dirichlet Allocation, GBMs:- Gradient Boosting Machines, RBF-t:- RBF tree, GB-t:- gradient boosted tree, SVM-RLK:- support vector machine (radial and linear kernel), CTA:- Classification Tree Analysis, RRF:- Regularized
Random Forest, E-SVM:- Ensemble of three SVM, HA:- Hierarchical Agglomerative, C:- Clustering, GLMM:- Generalized Linear Mixed Models, SVM-Lk:- SVM-L kernel, Ens:- Ensemble, 2-L-SVM-E:- two-layer SVM-based ensemble
model, CNN:- deep Convolutional Neural Network, ERT:- Extremely Randomized Trees (ERT), DL:- Deep Learning, MLP:-Multilayer Perceptron, XGB:- eXtreme Gradient Boosting, MC-SGE:- Meta-Classifiers (Stacked Generalized
Ensemble).
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the systems involved and the non-deterministic aspects of many
biological processes that control colonization (e.g. environmental
factors). Our result show that assessment of pathogen adaptation
to certain hosts/vectors using ML and DM techniques have used
all 5 machine learning tasks with most interest in prediction-
based methods (Fig. 4e). 15 papers that we queried studied adap-
tation using DM and ML tools. The authors of these used datasets
from both the lab and existing databases that involved 9 out of
10 systems biology levels, but not lipidomics datasets. The biolog-
ical problems tackled in these papers included the prediction of
host tropism in order to identify zoonotic influenza virus strains
capable of crossing species barriers and infecting humans[18]. Sim-
ilarly, Babayan et al. sought to predict vectors and reservoirs for
RNA viruses based on evolutionary signatures in their genomes
[19]. Furthermore, Yang et al. proposed to distinguish vector from
non-vector tick species based on a series of traits to determine risk
of transmission of infections to humans using a generalized
boosted regression model [20]. The model used phenomics and
population datasets to reach an accuracy of ~ 91%. Despite the sam-
ple size of 14 species, 10-fold cross- validation showed the model
has good stability (Table 3).
3.2.2. Q2 – transmission
Out of 32 papers, 22 attempted to leverage DM and ML to assess

factors that influence the transmission of pathogens to new hosts
(Fig. 3b, Table 3). Analysis of these paper shows a diverse use of
ML tasks including prediction, classification, clustering, and DL
methods (Fig. 4e), by covering 9 systems biology levels out of 10
including: proteomics, fluxomics, metabolomics, cellomics, popu-
lation, phenomics, transcriptomics, genomics, epigenomics[21]
(Table 3). Leveraging datasets from lab experiments and the liter-
ature allowed investigators to build ML models with an accuracy
range of 79%–100%. Using RF, RRF, and Adaptive Boosting, De Mor-
Fig. 4. Data analysis results overview (n = 32). Fig. 4 was created with word-cloud by usin
bioscience covered by the paper (d) and sources of the data in a study, such as databases,
emphasize their appearance in a papers’ keys words, objective, or scope, and highlight a
aes et al. proposed a predictive model to determine the malaria
infection status of human patients based on volatile biomarkers.
The model used proteomics and metabolomics dataset to reach
an accuracy level of 80–95% with a 10-fold cross-validation [22].
In addition, KNN, LR, and SVM were used to assess mosquito
blood-feeding histories from multi-OMICs datasets with over 98%
accuracy [23]. This knowledge could in turn be useful for identify-
ing anthropophilic species with high potential to transmit patho-
gens. Supplemented with automated surveillance to detect and
classify known vector species based on morphological features
[24–27], such models could facilitate the prediction of risk of
new human infections with vector-borne diseases in particular
areas.
3.2.3. Q3 – pathogenicity
The use of ML and DM to assess the how the pathogen affects

the host toward the development of disease is one of the most pop-
ular applications identified in our review (Fig. 4e, Table 3). With 25
papers involved in this question, the community has been able to
leverage all systems biology levels to provide a number of data
mining processes and machine learning models to predict the
pathogenicity of certain microbes and identify meaningful patterns
involved in this biological process. Besides association rules mining
tasks, all ML tasks have been used, with strong focus placed on pre-
diction and classification tasks. For example, current work allows
problems such as prediction of health endpoints in STEC, and risk
assessment of microbial pathogenicity using whole genome
sequencing data[28–30]. These modeling approaches are able to
reach an accuracy level of 60–95% and similar approaches have
been used to predict the diagnosis and clinical prognosis of Dengue
in human patients[31] Barman, R.K., et al. also proposed a classifi-
cation approach to identify infectious disease associated host
genes by integrating sequence and protein interaction network
g (a) papers key words, (b) words contained in study objectives (c) scope in systems
lab experiments, or simulations. The visibility of a word among words in their panel
review papers’ focus.
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features [32]. More directly related to vector-borne diseases, Esna
Ashari et al. used DM and ML to identify Type 4 Secretion System
effectors that could be involved in the pathogenicity of the tick-
borne bacterium Anaplasma phagocytophilum[33], as has been done
for non-vector-borne pathogens[34–36].
3.2.4. Q4 – immunity
The investigation of the level and trend of the host response is

critically important to anticipating and preventing infection pro-
gress. Our research shows that DM and ML have been used to inte-
grate large scale datasets to provide supervised prediction and
pattern identification tools with an accuracy of 78–95% (Table 3).
The use of memory-based predictors such as BN (Bayesian Net-
work) and Multilayer Perceptron (MLP) emphasize the complexity
of the mechanisms involved in host responses to infection
[22,30,32,35,37,38].
3.2.5. Q5-Q6 – vector manipulation of transmission and arthropod
effects on pathogenicity

Understanding how the change in vector affects transmission
efficiency or pathogenicity following infection of a vertebrate host
are intriguing questions that were less investigated in the papers
we reviewed (8% papers reviewed). The broader usage of ML tasks
(prediction, classification, clustering, AR, DL) may critically
improve the understanding of these processes (Fig. 1b, Fig. 3b,
Fig. 4c). Brierley et al. provide a compelling example by using the
random forest approach to predict the virulence of human RNA
viruses based on a number of ecological factors, including the host
range and transmission route[19]. If applied to agents such as
vector-borne bacteria, such approaches may be helpful in address-
ing important knowledge gaps, such as virulence factor-
independent differences in the pathogenicity of Rickettsia and Bor-
relia species[10].
Fig. 5. Snapshot of data science perspective on host-pathogen interaction analysis – fro
Machine Learning (ML) process: (a) data source, (b) dataset annotation, (c) dataset qual
3.2.6. Q7 – reservoir host effects
Savini et al. proposed to assess reservoir dynamics in the

vector-host-pathogen relationship using network analysis cluster-
ing, RF, KNN, SVM and ANN, as did Eng et al. and Babayan et al.
which are discussed above[18,19,39]. Savini et al. developed the
EpiExploreR web application by integrating various spatiotemporal
data on animal diseases in Italy, including notified outbreaks,
surveillance of vectors, animal movements data and remotely
sensed data. EpiExploreR is aimed at public health scientists and
researchers and facilitates the exploration of complex data and
the generation of new hypotheses relevant to a natural setting.

3.2.7. Q8 – environmental effects
The effects of the environment on the various components of

host-vector-pathogen relationships are extremely complex and
difficult to fully address within a short review. Thus, we focused
on the implications of the environment on Q1, Q2, and Q3. We
identified several studies using DM and ML in combination with
animal movement data, climate data[40–42], and remotely sensed
data to examine the distribution of vectors and vector-borne dis-
eases. Methods used in these contexts included Random Forest,
Classification Tree Analysis, Generalized Boosted, k-nearest neigh-
bor (kNN), Naïve Bayes, support vector machines (SVM), and artifi-
cial neural networks (ANN). The model accuracy range was 82–
97%. The problems addressed included: the identification of high
risk snail habitats as a function of Schistosoma japonicum infec-
tion[43], modelling of tick bite risk based on ecological factors
[44], predicting the global distribution of Aedes mosquitoes and
the effects of seasonal changes on their range[45,46] and the pre-
diction of Dengue virus outbreak risk based on climate[47,48].

3.3. Knowledge discovery in assessment of vector-host-pathogen
relationships: from data to knowledge

From the data science perspective, the state of the art in the
field should cover the entire DM and ML process (Fig. 1c). No paper
m raw data to Knowledge Discovery in Databases (KDD), the Data Mining (DM) &
ity using FAIR principle and (d) ML method used.
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identified in our review was able to cover all step in DM process,
but we identified at least one paper using each step in the process
(Prediction[28], classification[29], clustering[39], association rules
[47], deep learning[38]) (Table 3, Fig. 5, Supplementary File S1).
This validates the feasibility of adopting the process to tackle
important and challenging biological questions pertaining to
vector-host-pathogen relationships. During our investigation, we
allowed the community to also assess the quality of the state of
available datasets. To achieve this goal, we adopted the FAIR (Find-
able Accessible Interoperable Reusable) principle, a quality assess-
ment roadmap developed and currently used to improve
bioscience dataset shareability and reproducibility. Fig. 1c shows
the distribution of the ML tasks adopted to address our research
questions (Q1-Q8). Looking at the dataset specifications and key
features (Fig. 5), we can observe that each ML task complementar-
ily allows the community to extract highly valuable knowledge
from specific datasets in a very restrictive context. This observation
raises hope that more ML methods will be adopted in the future,
but also reveals many challenges from data quality to good usage
of each ML technique.

3.3.1. Quality of data
The increasing need for quality data is driving the data science

community toward formal approaches to assess data quality. The
complexity of this task in bioscience is significant, however, several
initiatives have been successfully tested, including the FAIR princi-
ple. Using that principle, we assessed the compliance (or FAIRness)
of currently used datasets. The results show a very low adoption of
rigorous data good practices (Fig. 5c). The FAIR principle at its core
has 4 indicators:(F)-Findable dataset: this criterion checks if the
dataset can be located with a persistent identifier. Out of 32 papers,
9 studies provided a URL to access their dataset. These URLs
included recognized persistent dataset repositories such as Fig-
share or GitHub. The remaining studies fell short in allowing their
datasets to be found. (A)-Accessible dataset: this criterion mea-
sures if the dataset is accessible, even when it not findable (e.g.
the identifier is outdated). This criterion usually consists of provid-
ing a protocol with an alternative option to allow accessibility to
datasets. From our review, only 10 papers provided accessibility
protocols in their studies. (I)-Interoperable dataset: this criterion
checks if a dataset is annotated enough to be used by others. For
example, in our research questions, we used multiple systems biol-
ogy datasets. A dataset from proteomics measurements should be
annotated to emphasize the meaning of the protein values. This
allow a genomics expert to use that dataset by integrating gene
expression dataset values accordingly for machine learning predic-
tion. Failing to understand that relationship will mislead the fea-
ture engineering process, compromising the dataset quality/
integrity and therefore, the resulting predictive model. On this cri-
terion, only 9 studies provided interoperable justification. (R) –
Reusable dataset: this criterion measures the ability of the commu-
nity to adopt the dataset and reuse it to achieve similar goals. This
is measured by author adherence to community standards for col-
lection, processing and publishing their dataset. There is no doubt
that all these published studies followed rigorous scientific proto-
cols, but many papers fell short on reporting the data life cycle to
ensure reproducibility.

3.3.2. Prediction decision making
Prediction task adoption in this review ranged from the use of

simple linear regression modeling to multiple layer deep neural
networks. Prediction is used in all 8 biological research problems
more than any other ML task (Fig. 4e). This sometimes led to the
misuse of the term. For example, few methods show good assess-
ment of data quality and the assessment of selected features to
avoid issues such as overfitting. Boosting approaches are widely
used to compensate for poor dataset quality (e.g. small size,
Fig. 5d).
3.3.3. Classification and clustering
Classification and clustering ML tasks allow the community to

identify meaningful patterns relevant to biological problems. This
task was widely used in papers in our review across biological sys-
tems levels (e.g. genomics, transcriptomics). Even though adoption
of these tasks for addressing Q5-Q8 is still poor, the lack of data
availability seems to play a key role in this shortcoming (Fig. 4e).
However, the two methods could be effectively extended to a clin-
ical diagnostic problem as applied in[31], where a c4.5 decision
tree was used to distinguish dengue from non-dengue febrile
illness.
3.3.4. Association rules mining
Association rules mining is one of the fastest growing ML tasks

in bioscience and biomedicine. It allows scientists to infer new
hypotheses from data and provide rational recommendation for
follow-up studies. In our review, very few papers adopted this task
(Fig. 4e). Savini et al. show how the use of this method can help the
community to integrate multiple systems biology levels to provide
a spatiotemporal assessment of a given disease[39,41].
4. Discussion

4.1. Challenges and limitations

4.1.1. The curse of dimensionality with big data
During the review process, we identified some important chal-

lenges to the community. Among these challenges and limitations
are the problems of data heterogeneity. Data pertaining to vector-
host-pathogen relationships come in many forms and shapes. For
example, these could be omics data [28,34], environmental or clin-
ical samples, or laboratory samples [23]. While some of the sur-
veyed articles address this issue, a number of the articles did not
detail the processes they applied to solve said challenge. Only in
some articles was ML applied to solve the high dimensional prob-
lem of genomics data [28]. However, a lack of better solution to
this problem could render models not generalizable or applicable
for broadly understanding processes such as pathogenicity, trans-
mission, and adaptation using different data modalities. Further-
more, real-world data must go through preprocessing in data
mining and machine learning to normalize the data and remove
unwanted or misleading information. The approach may be chal-
lenging for domain practitioners as difficulties in implementing
one challenging algorithm necessary for their work may force them
to use easy to implement, but less appropriate algorithms.
4.1.2. Missing data
Another challenge or limitation is that of missing data. In gen-

eral, real-word data will always have some missing data points.
While building a predicting model, such as one involving a
vector-host-pathogen relationship, valuable but very informative
data might be missing and difficult to represent. However, the
aspiration of model building is to represent all aspects involved
in the dataset in addressing the problem. Dealing with these miss-
ing data proved difficult and lacking in most of the articles we
reviewed. Only in one of the articles [29] did the authors discuss
missing data. In this study, the authors marked them as ‘‘NA”
and imputed. Though imputation is one way to address missing
data, this could potentially cause a problem in lower quality omics
datasets.
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4.1.3. Dataset reproducibility
Data reproducibility is the gold standard of the data mining and

machine learning domain. Thus, these considerations should not be
taken lightly when conducting a study. From our review, we
observed that most studies could be reproducible, with only a
few exceptions. Understandably, the topics we queried are highly
complicated. Still, for the sake of model usefulness, the data used
to make the model should be made available and easily accessible
to these who want to reproduce it. Arguably, the datasets used in
the papers we reviewed met the standard, but availability was
not addressed adequately. Also, the availability of the codes used
in the analysis is critically important in that, without it, repro-
ducibility would be near impossible.

4.1.4. Rarity and class imbalance
A further challenge in data mining and machine learning is that

of imbalanced data or class. A real-world dataset is not always bal-
anced. This is especially true when it comes to a domain such as
vector-host-pathogen interactions, where data collection is
multi-faceted and multidisciplinary data modalities are common
(e.g. environmental data in map format, OMICs data in sequences
format, etc.). Thought this issue was better addressed compared
to the missing data issues [32,34,49], it was still inadequately
addressed by some of the studies identified in our review. In
machine learning, imbalanced data input can hamper model per-
formance and contribute to inaccuracy. This is further complicated
by the fact that machine learning inputs are always features vec-
tors. Representing systems level data like omics data in features
vector forms is important to generate model input, however, it
could also introduce class imbalance issues. For example, [34]
encoded a protein sequence into informative features vector to
use in a model. They used Position-Specific Scoring Matrix (PSSM)
to transform their sequence datasets to features vectors. However,
being mindful of how they might have introduced imbalance into
their datasets, the authors chose not to measure their model per-
formance in Receiver Operating Characteristic curve (ROC) or Mat-
thews Correlation Coefficient (MCC). Instead, they used the metric
of F1, because in this case ROC or MCC would perform optimisti-
cally in an imbalance dataset, causing model overfitting. This was
one way to handle the imbalance effect issues, and failure to
resolve that problem could have resulted in misleading model
accuracy.

4.1.5. Systems biology and big data scalability
While machine learning and data mining use Systems Biology

(SB) generated data to solve important problems at hand, SB big
data scalability becomes a limitation at the same time. In this
review, most of the models present were limited by SB big data
lack of scalability. For example, the model in [23]and others we
reviewed were not scalable. In addition, lack of scalability causes
most studies to choose a small subset of data from one location
or study to focus on as they cannot integrate and scale big data
from geospatial, omics, or other forms of big data. This constraint
makes most of the models lack generalization and instead built
for one particular context or problem. For example, to study the
interaction between a pathogen with ~3,000 genes and a human
(with ~30,000 genes) at the genomic level, feature engineering is
needed to select the most relevant subset of genes for the problem
of interest (e.g. 100 genes involved in pathogenicity to host X).
Once a predictive model is built from that context, the model must
be flexible enough for adoption under different conditions, such as
when the host gene list changes. From the systems biology per-
spective, it is difficult to impossible to scale big data usage without
changing the required platforms or increasing the capacity of the
available ones. For that reason, only a small subset of big data
can be used to address a specific problem at hand, leaving out some
datasets, which in turn means leaving out potentially valuable
information or insight.

4.2. Future directions

4.2.1. Knowledge discovery
Data mining, knowledge discovery and machine learning are

presently revolutionizing every field of biology. Machine learning
applications in the medical and public health industry are increas-
ing daily and could become dominant tools in disease prediction
and surveillance [23]. In systems biology, machine learning is used
in macromolecule structure prediction, gene networks reconstruc-
tion, tumor classification, and virtual drug discovery [50]. In bacte-
rial genomics, machine learning has been used in antibiotic
resistance prediction, pathogenicity prediction, and the evaluation
of host adaptation and zoonotic potential [50]. Potentially, such
applications could minimize labor-intensive wet lab assays such
as ELISA or PCR. For example, [23] used mid-infrared (MIR) spec-
troscopy coupled with supervised machine learning to accurately
identify blood meals in the guts of mosquitos. This was done to
diagnose the propensity of different female mosquitoes to take
meals on humans and not other vertebrate hosts. A similar applica-
tion could be extended to other vectors, such as ticks, to elucidate
transmission potential.

4.2.2. Leveraging innovations in DM and ML
4.2.2.1. Deep learning. While application of deep learning increased
in other fields, i.e., image classification, it seems to be less applied
towards understanding vector-host-pathogen relationships.
Among the 32 articles we reviewed, 6 articles used deep learning
[32,35,38,50–52] (Fig. 4e, Table 3). However, the potential of deep
learning applications is substantial and should be explored in this
context. The ability of deep learning to work well with different
types of data modalities could be of value in pathogenicity predic-
tion, as an example. In [35], image-based machine learning was
used to define host-pathogen relationships by recognizing, classi-
fying and quantifying host cellular defenses, pathogen killing,
and replication with great accuracy This study represents an effec-
tive example of the use of artificial intelligence in combination
with different data types to assess vector-host-pathogen relation-
ships. Further, several aspects of deep learning were used to iden-
tify and classify arthropod vector species such as triatomine bugs
and mosquitoes from morphological data[24–27].

4.2.2.2. Model selection. In data mining and machine learning,
selection and evaluation of models are valuable processes in build-
ing a useful predictor or classifier. Though these processes are not
reported in-depth, they are reasonably important for choosing a
proper algorithm that could adequately address the problems of
interest. Most of the articles in this review applied the model selec-
tion and evaluation process to help them come up with the right
machine learning methods for building their models. This shows
the importance of these processes in this domain and their use
should be encouraged in future applications of machine learning
towards predicting vector-host-pathogen relationships.

4.2.2.3. Cross-validation. We observed different types of cross-
validation methods in this review. Out of 32 articles we processed,
11 used 10-fold cross-validations, 5 used 5-cross-validation, and 1
article used both 10-fold cross-validation and one-hold-out, while
3 articles did not provide clear information on their validation
methods. Because of variability and heterogeneity in the data gen-
erated by omics technologies, it is important to select a cross-
validation method that takes into consideration data modality
and processing and validates applicability. Therefore, in the future,
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cross-validation selection should be a priority when building
vector-host-pathogen interaction models.

4.2.2.4. Association mining. From this review, we observed infre-
quent use of association mining. However, in a field such as
pathogenicity or disease prediction, application of association min-
ing could be very productive. This is because vector-host pathogen
relationships are nested interactions in which one aspect effects
the other. Thus, involving association mining to produce testable
hypotheses needs to be applied in future studies in this domain.
For example,[53] built a testable model of future Dengue incidence
in the Phillipines.

4.2.2.5. Class imbalance. Though a problem as discussed in the
above sections, class imbalance can influence model performance
in one direction or another. A positive imbalance will affect a
model lightly. However, data are naturally skewed negatively,
and this affects specificity gradually [32] which in turn negatively
affects model accuracy. In papers identified in this review, several
articles addressed model performance on imbalance datasets well,
pointing to this as a future direction in the field.

4.2.2.6. Feature engineering. The success of machine learning mod-
els relies heavily on feature engineering. In the assessment of
vector-host-pathogen relationships, data modality is variable.
Hence, engineering of informative features from a variety of data
is an important task. Use of unrelated features hurts the accuracy
of most classifiers, whereas too many features are computationally
time consuming. Striking a balance by feature engineering could
save a model time and resources, especially in addressing vector-
host-pathogen relationships with high dimensionality data. There-
fore, the application of feature engineering in this domain is as
important as building a model itself.

4.2.2.7. Explanatory vs predictive ML modeling. The goals of explana-
tory and predictive ML modelling are different. Explanatory mod-
elling looks for statistically significant relationships, whereas
predictive modelling looks for associations that could be valuable
in predicting future outcomes. The papers analyzed in this review
could be categorized into both explanatory and predictive ML
models. Many of them used a combination of algorithms to explore
the input for a final model either together or individually selected
based on performance. For that reason, both tasks are valuable and
applicable in many ways in this field.

4.2.2.8. Crowd sourcing. Finally, the use of crowd sourcing in the
vector-host-pathogen domain could be advantageous. Crowd sour-
cing can fill in the gaps of missing data. It can also enable sharing of
methods for big data analysis and model validation and facilitate
collaboration on problems and tasks to reduce time and resources
constraints. From a biomedicine point of view, it is a valuable tool
of great importance and its application here is warranted. Further
discussion of the in-depth uses of crowd sourcing is provided by
[54,55].

5. Conclusions

In this review, we explored the concepts of data mining and
machine learning as applied towards understanding vector-host-
pathogen relationships such as adaptation, transmission, and
pathogenicity. From the articles we reviewed, 25 (63.6%) studies
involved predictive models using supervised machine learning,
while 14 (9.1%, 4.6%) used unsupervised methods and deep learn-
ing. In the retrieved articles, prediction and classification were
among the most dominant machine learning tasks, which were
used to classify and predict relevant features that dictate interac-
tion outcomes (e.g. pathogenicity, adaptation or transmission).
Furthermore, the utility of heterogeneous data together with dif-
ferent methods to feature engineer or select proved valuable in
many of the reviewed studies. While data mining and machine
learning are being increasingly applied in many life science
domains (gene networks reconstruction, tumor classification, vir-
tual drug discovery [50], and bacterial genomics), as shown in this
review, they have not yet taken roots in the field of vector-borne
diseases. In particular, association rules and deep learning lagged
behind the other methods of DM & ML, such as classification, and
prediction of pathogen vector-host relationships. A future increase
in deep learning applications in the field could be valuable, espe-
cially when combined with other approaches such as feature engi-
neering, cross-validation, model selection, and supplemented with
crow-sourcing. Also, the application of association rules would
increase hypothesis generation in the field and reduce the time
and resources spent in doing do. In return, this will contribute to
more data generated from the field, which also could increase
DM & ML use in the domain. Though the application of such meth-
ods to specific problems in vector-borne diseases is still in its
infancy and faces many expected issues, these approaches have
great potential and should be encouraged to bring new perspec-
tives to old problems as large, diverse systems biology datasets
become available in the field.
6. Availability of data and materials

The datasets generated or analyzed during our survey are avail-
able from the corresponding author upon reasonable request.
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