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Abstract 

Background:  Estimation of the accuracy (quality) of protein structural models is 
important for both prediction and use of protein structural models. Deep learning 
methods have been used to integrate protein structure features to predict the quality 
of protein models. Inter-residue distances are key information for predicting protein’s 
tertiary structures and therefore have good potentials to predict the quality of protein 
structural models. However, few methods have been developed to fully take advan-
tage of predicted inter-residue distance maps to estimate the accuracy of a single 
protein structural model.

Result:  We developed an attentive 2D convolutional neural network (CNN) with 
channel-wise attention to take only a raw difference map between the inter-residue 
distance map calculated from a single protein model and the distance map predicted 
from the protein sequence as input to predict the quality of the model. The network 
comprises multiple convolutional layers, batch normalization layers, dense layers, and 
Squeeze-and-Excitation blocks with attention to automatically extract features relevant 
to protein model quality from the raw input without using any expert-curated features. 
We evaluated DISTEMA’s capability of selecting the best models for CASP13 targets in 
terms of ranking loss of GDT-TS score. The ranking loss of DISTEMA is 0.079, lower than 
several state-of-the-art single-model quality assessment methods.

Conclusion:  This work demonstrates that using raw inter-residue distance information 
with deep learning can predict the quality of protein structural models reasonably well. 
DISTEMA is freely at https://​github.​com/​jianl​in-​cheng/​DISTE​MA
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Introduction
Estimation of protein model accuracy (EMA) or assessment of protein model qual-
ity (QA) is an important problem in protein structure prediction. Since the seventh 
Critical Assessment of Techniques for Protein Structure Prediction (CASP7) [1] EMA 
(or QA) has been a prediction category in CASP experiments. A lot of methods have 
been developed to evaluate the quality of protein models [2–6]. These EMA methods 
fell into two main categories: multi-model methods and single-model methods. A multi-
model method takes a pool of prediction structure models of the same target as input 
to evaluate their quality based on the similarity between the models and possibly other 
structural features. A single-model method predicts the quality of a single protein with-
out comparing it to any other structure models. A multi-model method’s performance 
depends on the proportion of good models in the pool and may perform poorly when 
there are only a few good models. In contrast, a single-model EMA method [7] can esti-
mate the accuracy of a single protein model without being influenced by the existence 
of other models. A recent study [8] shows the single-model methods can perform better 
than multi-model methods in some cases. Moreover, different from multi-model meth-
ods that can only predict relative quality of models in a pool, single-model methods can 
predict the absolute quality of a single model, which is important for users to decide how 
to use the model. Therefore, single-model quality assessment is receiving more and more 
attention, even though its average performance was still lower than multi-model meth-
ods in the past several CASP experiments.

Numerous machine-learning methods have been developed to combine various pro-
tein structural features to assess the quality of protein models. ProQ2 [9] and Model 
Evaluator [7] applied support vector machines (SVM) with residue contacts, secondary 
structure information, solvent accessible surface area, and/or sequence features to pre-
dict a global quality score—the global similarity between a protein model and its native 
structure. ProQ3 [9] added the Talaris energy as a new feature on top of the ProQ2. 
ProQ3D [10] used a multi-layer perceptron with the same features used in ProQ3 for 
protein model quality prediction. Recently, deep learning-based models have been 
applied to improve the estimation of model accuracy. DeepQA [3] utilized deep belief 
networks to predict the global quality score. ProQ4 [11] exploited the transfer learning 
and 1D convolutional neural network (CNN) to predict the Local Distance Difference 
Test (LDDT) score [12]. DeepRank [5] applied deep learning to integrate multiple fea-
tures including residue-residue contact features to predict model quality and performed 
best in selecting best protein models in the CASP13 experiment. DeepRank2 [6] added 
a new inter-residue distance feature with a deeper and wider neural network to predict 
global model quality. Some recent methods leverage more complex deep learning archi-
tectures. Treating a protein structural model as a graph, ProteinGCN [13], GraphQA 
[14] and VoroCNN [15] applied graph convolutional networks (GCN) to estimate the 
model accuracy. ResNetQA [16] and DeepAccNet [17] used deep residue networks to 
address the problem.

In addition to the inference technology, the performance of EMA method depends on 
input features. In CSAP13, DeepRank [5] demonstrated that accurate residue-residue 
contacts (a simplified representation of distances between residues) predicted by deep 
learning improved the prediction of the quality of protein structural models, suggesting 
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that more detailed residue-residue distance predictions could further improve EMA. 
However, only a few methods [6, 16, 17], use residue-residue distances to estimate the 
accuracy of protein structural models.

Instead of extracting features from the predicted residue-residue distance maps based 
on human intuition or expertise as most existing methods did, we designed a 2D con-
volutional neural network (2D-CNN) with the channel-wise attention to directly use 
the raw difference map between the distance map of a model and the distance map pre-
dicted from the protein sequence to estimate the accuracy of a single protein model. On 
the CASP13 dataset, our method—DISTEMA—achieved the better performance than 
other state-of-art single-model methods in terms of the ranking loss of selecting the best 
models for protein targets. The results show that the attentive 2D-CNN methods can 
automatically extract useful information from raw residue-residue distance maps alone 
to predict the quality of a single protein model without using other protein structural 
features.

Results and discussion
Results on the CASP13 dataset and comparison with single‑model QA methods

We evaluated DISTEMA with several single-model EMA methods on CASP13 dataset. 
The results of ProQ2 [18], ProQ3 [9], ProQ3D [10], ProQ4 [11], and the two VoroMQA 
methods [19] on the CASP13 dataset were taken from [8]. The results of a distance-
based method—QDeep [20] were obtained by running it on the same CASP13 dataset. 
The average ranking loss and Pearson’s Correlation Coefficient (PCC) of these methods 
are reported in Table  1. DISTEMA and ProQ4 have the lowest ranking loss of 0.079, 
which is a 9% improvement over the second-lowest loss of 0.086. The PCC of DISTEMA 
is 0.929, which is 38% higher than the second highest PCC achieved by QDeep.

Figure 1 is the scatter plot of the true GDT-TS score of the best model of each target 
against the true GDT-TS score of the top model selected by DISTEMA for the target. 
The solid red line denotes the regression line between predicted GDT TS and true GDT 
TS and the yellow line is the 45-degree line on which points have 0 loss. Larger the dis-
tance between a data point and the yellow line, bigger the loss is. For four targets (i.e., 
T0949, T0987, T0980s2, T1019s2), their best models were successfully selected as top 
models by DISTEMA, yielding a loss of 0. Two outliers—T1008, T1022s2—have the 

Table 1  The ranking loss and PCC of eight methods on the CASP13 dataset

The best performance is denoted by the bold font

Model Ranking loss Pearson’s 
correlation 
coefficient (PCC)

DISTEMA 0.079 0.929
ProQ4 0.079 0.711

ProQ3D 0.086 0.652

ProQ3 0.089 0.594

VoroMQA-B 0.095 0.618

VoroMQA-A 0.109 0.642

QDeep 0.110 0.895

ProQ2 0.114 0.604
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largest loss for DISTEMA. Figure 2 illustrates the distribution of the ranking losses of 
DISTEMA on the CASP13 dataset. The vertical dashed black line is the mark for the 
mean loss. More data points are located on the left side of the black line. The skewness 
of the distribution 
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is 2.377.

In addition to the ranking loss, we applied a non-parametric method Kolmogorov 
Smirnov test (KS test) to measure the distance between the distribution of true GDT-TS 
scores and that of predicted GDT-TS scores of the CASP13 models. We conducted the 
KS test on the two datasets. The first dataset contains the true GDT-TS scores of all the 
CASP13 models, and their GDT-TS scores predicted by DISTEMA. The distributions of 
the two kinds of scores were compared. The second dataset include the true GDT-TS 
scores of the best models for the CASP13 targets and the true GDT-TS scores of the top 
models selected for them. For both tests, we used the same null hypothesis H0: no differ-
ence between the two distributions. We calculated Kolmogorov–Smirnov statistics 
D(n,m) (i.e., sup

x
|F1,n(x)− F2,m(x) ) the measurement of the difference between the two 

distributions. Here, supx is the supremum function, which in this case is considered as 

Fig. 1  The plot of the true GDT-TS scores of the best models against the true GDT-TS scores of the top 
models selected by DISTEMA for 80 CASP13 targets. The histogram at the top is the distribution of the GDT-TS 
scores of the top selected models. The histogram on the right shows the distribution of the GDT-TS scores of 
the best models. The yellow is a 45-degree line with the slop of 1. The points on the yellow line represent the 
targets whose best models and top selected models have the same GDT-TS score (i.e., 0 loss). Four targets 
(T0949, T0987, T0980s2, T1019s2) have 0 loss. Closer a point to the yellow line, lower loss of GDT-TS score for 
the target. Two targets (T1008 and T2022s2) are the two outliers with very high loss. The red line is the linear 
regression line between the two groups of GDT-TS scores. The correlation between the two groups of the 
scores is 0.93
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the max function. F1,n and F2,m are the empirical distribution functions for first and sec-
ond sample respectively, where n and m are sample size.

On the dataset 1, D-statistics of the KS test is 0.11266, and the p-value (2.2e − 16) is 
smaller than a significance threshold (i.e., 0.05), which means these two samples come 
from different distributions. Figure  3 shows the two samples’ cumulative distribution 

Fig. 2  Histogram of the distribution of the ranking loss of DISTEMA over the 80 CASP13 targets. The vertical 
black dashed line represents the position of the mean value

Fig. 3  K-S plot for true GDT-TS scores of the models (blue) V.S. predicted GDT-TS scores of the models (red). D 
statistics: 0.11266, p-value: 2.2e − 16
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function (CDF) curves. The red vertical dashed line is the D-statistics, representing the 
maximum absolute difference between these two CDF. The shapes of the two curves are 
different.

The analysis shows that the distribution of the true GDT-TS scores of all the models 
and the distribution of their predicted GDT-TS scores have somewhat different distribu-
tions, indicating that the quality scores of some models (e.g., some models of very low 
quality) are hard to predict. Enlarging the training dataset may alleviate the problem.

In contrast, on the dataset 2, the D-statistics is 0.2 and the p-value of KS-test is 
0.08152, higher than the threshold, suggesting the null hypothesis be accepted. That is, 
the distribution of the true GDT-TS score of the best model for each target has no differ-
ence than the distribution of the true GDT-TS score of the top model selected for each 
target. Figure 4 illustrates the two distributions’ CDF curves, where the blue line and red 
line are generally in the same shape. The similar distribution of the GDT-TS scores of 
best models and top selected models further confirm that the ranking capability of DIS-
TEMA is sound.

Comparison with a distanced‑based EMA method

We further compared DISTEMA with the distance-based single-model method QDeep 
on the same 3000 models of 20 CASP13 targets whose true structures are publicly avail-
able [21] used to evaluate QDeep in [20]. QDeep uses one dimensional CNN with inter-
residue distance features derived from distance predictions, sequence information, and 
energy scores, while DISTEMA only uses the raw distance maps as input. Table 2 reports 
the results of the two methods. DISTEMA performed better than QDeep according to 
the ranking loss even though it only used one kind of input information, but worse than 
QDeep according to PCC. The results show that using only raw distance maps with deep 

Fig. 4  K-S plot for true GDT-TS scores of the best models (red) V.S. the true GDT-TS scores of the top selected 
models (blue). D statistics:0.2, p-value:0.08152
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learning can predict the quality of a single protein model reasonably well and integrat-
ing other features with the distance information may further improve the prediction 
performance.

Contribution of squeeze‑and‑excitation (SE) blocks with attention

We trained two deep learning networks to investigate the impact of SE blocks with atten-
tion. The two networks have the same architecture except one network has SE blocks, 
but another does not. The two networks were trained with the same experimental setting 
and were evaluated on the CASP13 dataset. The network with SE blocks has the ranking 
loss of 0.079, 7.5% lower than 0.085 of the network without SE blocks, indicating that 
attentive SE blocks can improve the performance of model quality prediction. The atten-
tion mechanism in SE blocks can more effectively pick up the relevant features anywhere 
in the input and assign them higher weights to improve the prediction performance.

Conclusion and future work
We designed and developed an attentive 2D CNN with the channel-wise attention 
to directly leverage a raw inter-residue distance map to predict the global quality of a 
single protein model. Using only the protein distance information, the deep learning 
method with the attention mechanism is able to automatically extract features relevant 
to model quality from the raw input and achieves the lower model ranking loss than 
other state-of-the-art single-model EMA methods that use various expert-curated pro-
tein structural features. The results demonstrate that raw protein distance maps con-
tain substantial information that can be captured by advanced deep learning methods 
to estimate the accuracy of a single protein model. In the future, larger training datasets, 
additional input features, and more advanced deep learning architectures [22] can be 
used to further improve the distance map-based methods for improving the prediction 
of protein model quality.

Methods and materials
Difference map as input feature

We applied a real-value distance predictor DeepDist [23] to predict an inter-residue dis-
tance map from the sequence of a protein target as matrix A(L× L) , where L denotes 
the sequence length and A[i, j] is the distance between residues i and j . A was compared 
with the distance matrix B(L× L) calculated from the coordinates of residues in a pro-
tein structure model to generate a difference map D . Because A can be considered the 
expected distances between residues and B the actual distances between residues in a 
model, D measures how well the model meets the expectation and therefore provides 

Table 2  The ranking loss and PCC of DISTEMA and QDeep

The bold numbers denote the best results

Methods Ranking loss Pearson’s 
correlation 
coefficient (PCC)

QDeep 0.088 0.866
DISETMA 0.083 0.826
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useful information about the quality of the model. Considering that large distances tend 
to have little impact on the fold of a protein structure, before the generation of the dis-
tance map, a distance threshold (i.e., 16 Angstrom) was applied A and B to filter out the 
distances that are greater than the threshold. That is, if either A[i, j] or B[i, j] is greater 
than 16, both A[i, j] or B[i, j] were set to 0, producing two filtered distance matrices A∗ 
and B∗ . The difference map D was an element-wise subtraction between A∗ and B∗ . Since 
A∗ and B∗ are symmetrical, D is also symmetrical. To speed up the training of the deep 
learning method, the distances in the lower triangle of D is set to 0 to produce a matrix 
U . U that only contains the values of the upper triangle of D is used as input for the deep 
learning method to predict model quality. For example, Fig. 5 visualizes A∗ , B∗ , D , and U 
of a model of CASP13 target T0949.

Deep learning architecture and training

The architecture of the deep learning network of DISTEMA is illustrated in Fig.  6. 
The network takes the difference map U of a model as input to predict the global dis-
tance test total score (GDT-TS) [24] of the model. A GDT-TS score ranges from 0 
to 1, measuring the global similarity between a model and its corresponding native 
structure. Higher the score, better is the model quality. A true GDT-TS score of a 
model can be calculated by comparing a model with its native structure using some 

Fig. 5  The difference map for CASP13 target T0949. a and b are filtered matrices from predicted distance 
map, and model structure distance map. c is the element-wise subtraction between a and b . d is the upper 
triangular part of c . d is the difference map. For those four maps, the lighter area represents for larger value
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tools like TM-score [25] if the latter is known. Otherwise, the GDT-TS score needs to 
be estimated or predicted from the features of the model.

The protein models of CASP8-12 whose true GDT-TS scores are known were used to 
train the deep learning method to predict their GDT-TS scores. The input size for the 
deep learning method is b× 1× L× L , and the output size is b× 1 . Here b denotes the 
batch size, 1× L× L the size of the difference map, and 1 the number of input channel 
(i.e., the distance difference value). We let the input in the same batch have the same L 
to speed up training, even though the Ls in different batches can be different. The deep 
network is composed of four convolutional (Conv) blocks, a global pooling layer, a flat-
ten layer, and four dense blocks. The four Conv blocks extract features from the input. 
Each of the first two Conv blocks contains a squeeze-and-excitation (SE) block [26] with 
the channel-wise attention mechanism to automatically assign higher weights to more 

Fig. 6  The schematic shows the architecture of DISTEMA. We applied four CONV blocks, two SE blocks, four 
dense blocks to build this model. The input is difference map and predicted GDT TS score is output
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relevant features. Both SE blocks use the same squeeze-and-excitation ratio (i.e., 16). In 
each SE block, the global average pooling layer extracts single average value from the 
previous convolutional layer’s channels; two fully connected layers shrank the inner 
neural size first and then increase the size to the original number; the sigmoid function 
scales each value into the range [0, 1], which is treated as an independent weight score 
for each channel; and the previous convolutional layer’s weights multiply the weight 
score as the re-scored weights.

The four Conv blocks increase the input channel number from 1 to 256. A global max-
pooling layer is applied to the last Conv block to extract each channel’s max value. A flat-
ten layer combined these features and reshaped the size to b × 256. The following four 
dense blocks reduce the feature size from b × 256 to b× 1 to get the predicted GDT-TS 
score.

Except the sigmoid activation function used in the two SE blocks and the ReLu acti-
vation used in the last output layer, all the other layers use the Leakey-ReLu activation 
function if applicable. The deep learning network above was trained with the Smooth 
L1 loss function [27]. Unlike the mean squared error (MSE) loss and standard L1-loss 
function, the Smooth L1 loss is less sensitive to the outliers and derivable at 0 point. 
The Eq. 1 is the formula of the smooth L1 loss, where x denotes the difference between 
the predicted and true GDT-TS scores. It is a combination of MSE loss and L1 loss. The 
derivative of the smooth L1 loss is represented by Eq. 2. The derivative is x when x is 
in the range [1, 1], which is linear. Otherwise, it is a constant (1 or − 1). This property 
ensures the deep network is stable and converges fast.

For the convolutional and linear layers, we utilized the kaiming initialization [28] to 
initialize the start values. We implemented the deep network with PyTorch [29]. It was 
trained by Adam optimization method [30] with β1 = 0.9 and β2 = 0.999 . The learning 
rate was set as a constant value of 0.00005 and the batch size as 16.

Datasets and evaluation metrics

We generated the difference map for each structural model predicted for CASP8-13 
targets by CASP8-13 structure prediction servers. Each CASP protein target may 
have up to a few hundred structural models (decoys). The true GDT-TS scores of 
these models were calculated as labels to train the deep learning method. 120,064 
structural models were used for training and validation, and 14,580 structural models 
of CASP13 were used as the test dataset. CASP8-12 targets used for training have dif-
ferent sequence lengths (see Fig. 7 for the length distribution). To improve the effec-
tiveness of training on the models of different lengths, the CASP8-12 models were 
divided into many batches, each of which consisted of 16 structural models of the 

(1)smoothL1(x) =

{

0.5x2 |x| < 1
|x| − 0.5 otherwise

(2)smoothL1(x)
′ =







x −1 < x < 1
−1 x ≤ −1
1 x ≥ 1
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same length. 80% of randomly selected models in each batch were pooled together 
to form the training dataset and the remaining models were used as the validation 
dataset. Figure 8 illustrates the GDT-TS score distribution of the training dataset. The 
density plot shows that it is approximately a mixture distribution composed of two 
Gaussian distribution components.

The predicted performance of DISTEMA and other methods for a target was evalu-
ated by the GDT-TS score loss of ranking the models of the target, which is defined as 
the absolute difference between the true GDT-TS score of the best model of a target 
and that of the top model selected by the predicted GDT-TS scores of the models 
of the target. A ranking loss of 0 means that the best model for a target has been 
selected by the predicted GDT-TS scores. The average GDT-TS loss of ranking models 

Fig. 7  The distribution of the sequence length of CASP8-12 targets

Fig. 8  The GDT-TS score distribution of the training dataset. This mixture distribution is approximately 
composed of two Gaussian distributions N1(0.241, 0.015) and N2(0.667, 0.018) . The red line represents the 
mean of N1 and the blue line the mean of N2
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of all the targets in the test dataset was used to evaluate the performance of the EMA 
methods. Moreover, the Pearson’s correlation coefficient between the predicted GDT-
TS scores of the models of a target and their GDT-TS scores was calculated. The aver-
age Pearson’s correlation coefficient over all the targets in the test dataset was also 
employed to estimate the performance of the EMA methods.
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