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Artificial intelligence 
for distinguishment of hammering 
sound in total hip arthroplasty
Yasuhiro Homma1*, Shun Ito2, Xu Zhuang1, Tomonori Baba1, Kazutoshi Fujibayashi3, 
Kazuo Kaneko1, Yu Nishiyama1,2 & Muneaki Ishijima1

Recent studies have focused on hammering sound analysis during insertion of the cementless stem 
to decrease complications in total hip arthroplasty. However, the nature of the hammering sound is 
complex to analyse and varies widely owing to numerous possible variables. Therefore, we performed 
a preliminary feasibility study that aimed to clarify the accuracy of a prediction model using a 
machine learning algorithm to identify the final rasping hammering sound recorded during surgery. 
The hammering sound data of 29 primary THA without complication were assessed. The following 
definitions were adopted. Undersized rasping: all undersized stem rasping before the rasping of the 
final stem size, Final size rasping: rasping of the final stem size, Positive example: hammering sound 
during final size rasping, Negative example A: hammering sound during minimum size stem rasping, 
Negative example B: hammering sound during all undersized rasping. Three datasets for binary 
classification were set. Finally, binary classification was analysed in six models for the three datasets. 
The median values of the ROC-AUC in models A–F among each dataset were dataset a: 0.79, 0.76, 
0.83, 0.90, 0.91, and 0.90, dataset B: 0.61, 0.53, 0.67, 0.69, 0.71, and 0.72, dataset C: 0.60, 0.48, 0.57, 
0.63, 0.67, and 0.63, respectively. Our study demonstrated that artificial intelligence using machine 
learning was able to distinguish the final rasping hammering sound from the previous hammering 
sound with a relatively high degree of accuracy. Future studies are warranted to establish a prediction 
model using hammering sound analysis with machine learning to prevent complications in THA.

Technologies based on machine learning algorithms, often called artificial intelligence (AI), are beginning to 
be used in everyday life in various ways. Machine learning methods, especially supervised learning, are used to 
solve classification issues in the healthcare field. Several recent studies have shown that machine learning and 
big data mining approaches effectively improve screening, prediction, selection, and diagnosis in healthcare1–6.

Very recently, AI has also been assessed in the orthopaedic field, especially in image diagnosis6,7. One study 
demonstrated that AI performed at a human level in interpretating 256,000 orthopaedic radiographs6. Another 
study showed that AI exhibits a diagnostic ability similar to that of orthopaedists and a performance superior to 
that of radiologists in distinguishing anteroposterior wrist radiographs with distal radius fractures from normal 
images under limited conditions7.

Although few studies have assessed whether AI could contribute to total hip arthroplasty (THA)8–11, it is 
expected that AI could help surgeons and improve the clinical outcome of THA. One of the major unresolved 
complications in THA is intra-operative fracture12,13, which reportedly occurs at a rate of 1.5–27.8%12. In addi-
tion to recent developments such as three-dimensional (3D) templating of the soft tissue and modern implant 
shapes, studies have focused on sound analysis during insertion of the cementless stem to decrease the incidence 
of intra-operative femoral fracture14,15. One study identified the specific pattern (in a non-quantitative manner) of 
the hammering sound during cementless stem insertion related to stem subsidence and intra-operative fracture15. 
However, the nature of the hammering sound of cementless stem insertion is complex and varies widely owing 
to numerous possible variables such as the bone quality, femoral morphology, implant design, and hammering 
method. Thus, it is difficult to analyse the hammering sound using ordinary statistics and to clinically apply such 
sound analysis to prevent complications such as intra-operative fracture in THA.

Therefore, we hypothesized that AI could contribute to the understanding of and analyse the hammering 
sound of cementless stem insertion. As no study has used AI to analyse the sound during THA, we performed a 
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preliminary feasibility study that aimed to clarify the accuracy of a prediction model using a machine learning 
algorithm to identify the final rasping hammering sound recorded during surgery.

Material and methods
Patients.  All procedures performed in this study involving human participants were in accordance with 
the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declara-
tion and its later amendments or comparable ethical standards. The study protocol was approved by the Ethics 
Committee of Juntendo University. Informed consent was obtained in a manner approved by the Ethics Com-
mittee from all individual participants included in this study. The sound data recorded during 36 primary THA 
procedures performed on patients who agreed to participate in this study were initially included (sampling 
frequency: 44.1 kHz). The exclusion criteria were stem subsidence (> 2 mm) within 3 weeks post-operatively 
(n = 7) and intra- or post-operative femoral fracture (n = 0). The sound data from 23 women and six men (age 
range 48–89 years) were finally included.

Surgical procedure.  The operations were performed by one member of the hip specialist team via the 
direct anterior approach with different implants, including a cementless proximally hydroxyapatite (HA)-coated 
stem (Accolade 2; Stryker, Tokyo, Japan), Taperloc Complete Microplasty (Zimmer Biomet, Warsaw, IN, USA), 
full-HA porous triple tapered stem (Twinsys; Matys Ltd., Bettach, Switzerland), and meta-diaphyseal anchoring 
short-stem system (Optimys; Mathys Ltd., Bettlach, Switzerland). The direct anterior approach with the patient 
in the supine position on a surgical traction table was performed. Intra-operative radiography was used to con-
firm the alignment and size of the implant. All patients were allowed full weight-bearing initiated on the first day 
post-operatively with standardized protocol.

Sound data collection during THA.  A highly sensitive sound level meter (LA-7500; Onosokki, Kanagawa, 
Japan) was employed to record the hammering sound of stem insertion. In every case, the sound level meter was 
set on a tripod mount at 1 m high and 2 m away from the surgical table in the same operation theatre (Fig. 1). 
The rasping procedure was performed by standard technique. The size of rasping was started from the smallest 
one and sized up one by one. Although the exact protocol of hammering technique was not set, the standard 
hammering technique was performed. Range of 40–110 dB using Z frequency weighting (flat-weighted filter) 
and fast time weighting at a sampling rate of 64 kHz and 16-bit sampling depth were set for recording.

Signal extraction of the hammering sound.  As the sound data consisted of various sounds such as the 
hammering sound, conversation, monitoring sounds, and background noise, the following method was applied 
to extract the signals of the hammering sound made by the stem rasping.

Step 1: Automatic detection of the signals of the hammering sound using the python library of the voice 
processing system (Librosa) (Fig. 2A).
Step 2: Every automatically detected sound was reviewed by a human, and all sounds other than the hammer-
ing sound were deleted manually (Fig. 2B).
Step 3: The hammering sound was assessed during the period from the onset to 0.093 s (Fig. 3A).
Step 4: The final hammering sound of the stem rasping for each stem size was categorized. When the final 
hammering sound was overlapped with conversation or other noise, those sounds were excluded.

Figure 1.   A highly sensitive sound level meter (LA-7500; Onosokki, Kanagawa, Japan) was used to record the 
hammering sound of stem insertion. In all cases, the sound level meter was set on a tripod mount at 1 meter 
high and 2 meters away from the surgical table in the same operation room.
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Datasets for machine learning.  To prepare the dataset for machine learning, the following definitions 
were adopted.

•	 Undersized rasping: all undersized stem rasping before the rasping of the final stem size.
•	 Final size rasping: rasping of the final stem size.
•	 Positive example: hammering sound during final size rasping.
•	 Negative example A: hammering sound during minimum size stem rasping.
•	 Negative example B: hammering sound during all undersized rasping.

For example, in an operation ID, Optimys stem was used, undersized rasping was tried with size index [0, 
2, 3, 4] in ascending order, and final size rasping was determined as 4 by a skilled hip specialist, which resulted 
in no subsidence. In this case, positive examples (n = 9) were extracted from the hammering sound data dur-
ing stem size 4. Negative examples A (n = 8) were extracted from the hammering sound data during stem size 
0. Negative examples B (n = 19) were extracted from the hammering sound data during stem sizes [0, 2, 3]. To 
distinguish hammering sound data between positive example and negative example B would be more difficult 
than to distinguish hammering sound between positive example and negative example A, because sizes of 3 and 
4 are closer than sizes of 0 and 4.

In this study, a total of 523 hammering sounds were analysed and the following three datasets for binary 
classification were set.

Dataset A: no subsidence and cases with the Accolade 2 stem (positive example: n = 109, negative example 
A: n = 50).
Dataset B: no subsidence and cases with the Accolade 2 stem (positive example: n = 109, negative example 
B: n = 207).
Dataset D: no subsidence and cases with all stem types (positive example: n = 168, negative example B: 
n = 355). Dataset D includes various hammering sound data of various stem types. Therefore, to distinguish 
hammering sound data between positive example and negative example B would be most difficult in the 
three datasets A, B, and D.

Evaluation settings.  A test operation ID to evaluate the prediction accuracy of trained models was ran-
domly selected over all the operation IDs, and the hammering sound data within the selected operation ID were 

Figure 2.   Signal extraction of the hammering sound. Step 1; Automatic detection of the signals of the 
hammering sound using the python library of the voice processing system (Librosa) (2A). Step 2; Every 
automatically detected sound was reviewed by a human, and all sounds other than the hammering sound were 
deleted manually (2B).

Figure 3.   Signal extraction of the hammering sound. Step. 3; The hammering sound was assessed during 
the period from the onset to 0.093 s (3A). Input variable setting; the sound data was analysed by Fast Fourier 
transform analysis (3B).
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used as test data, while the others were set as training data (leave-one-out cross-validation). The classification 
accuracy was measured using the area under the receiver operating characteristic curve (ROC-AUC).

Input variable settings.  The sound data of the ith hammering sound were defined as Ai ∈ R
4096 (4096 

sampling points). The sound data after Fast Fourier transform (FFT) analysis (Fig. 3B) was defined as Pi ∈ R
4096 . 

The power spectral Pi(ω) (ω ∈ [0; 22000], sampling points) of all or partial frequency bands under the Nyquist 
frequency λS/2 = 22.05 (kHz) were used as input variables.

Discriminative model settings.  Binary classification was analysed in the following six models for the 
three datasets (A, B, and D). The hyperparameter for L2 regularization was C = 0.1.

•	 Model A: logistic regression (LR). LR analysis was performed with the input variable Pi ∈ R
4096and output 

variable Yi ∈ {0, 1}.
•	 Model B: truncated singular value decomposition (tSVD) + LR. Dimension reduction was performed from 

Pi ∈ R
4096 to pi ∈ R

10 by tSVD. LR analysis was performed with the input variable pi ∈ R
10 and output 

variable Yi ∈ {0, 1}.
•	 Model C: ensemble learning (LRs). All the hammering sound learning data were randomly divided into 

(K − 1) subdata, where K − 1 is the number of operation IDs used for training data, and (K − 1) weak learners 
(LRs) were trained using subdata. The prediction probability of (y = 1) in the ith test hammering sound of 
the kth weak learner was defined as p(k)i  . The final prediction probability of the ith test hammering sound 
was determined by voting of 1

K−1

∑K−1
k=1 p

(k)
i  in the (K − 1) weak learners.

•	 Model D: ensemble learning (tSVD + LRs). The difference of model D from model C is that input variables for 
training (K − 1) weak learners were changed from Pi ∈ R

4096 to pi ∈ R
10 by a dimension reduction method 

(tSVD), similar to the setting of model B. Other settings were the same as for model C.
•	 Model E: ensemble learning (LRs). Hammering sound data may vary depending on various factors includ-

ing patients’ backgrounds, stem types, skilled operators, and sound-collected operating rooms. Considering 
this, training data were not merged with different operations, but a weak learner was trained operation-wise. 
Other settings were the same for model C.

•	 Model F: ensemble learning (tSVD + LRs). The difference of model F from model E is that input variables for 
training (K − 1) weak learners were changed from Pi ∈ R

4096 to pi ∈ R
10 by a dimension reduction method 

(tSVD), similar to the setting of model B. Other settings were the same as for model C.

Ethical approval.  All procedures performed in this study involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declara-
tion and its later amendments or comparable ethical standards. The study protocol was approved by the Ethics 
Committee of our institution.

Consent to participate.  Informed consent was obtained in a manner approved by the Ethics Committee 
from all individual participants included in this study.

Results
For dataset A, models D and F performed better than the other models; the median values of the ROC-AUC 
in models A–F were 0.79, 0.76, 0.83, 0.90, 0.91, and 0.90, respectively (Fig. 4A). For dataset B, models E and F 
performed better than the other models; the median values of the ROC-AUC in models A–F were 0.61, 0.53, 
0.67, 0.69, 0.71, and 0.72, respectively (Fig. 4B). For dataset C, models E and F performed better than the other 
models; the median values of the ROC-AUC in models A–F were 0.60, 0.48, 0.57, 0.63, 0.67, and 0.63, respec-
tively (Fig. 4C).

Discussion
Recent technology has used FFT analysis of the hammering sound during cementless stem implantation in THA 
as a novel method to decrease the incidence of complications15. However, the complex nature of the hammering 
sound of cementless stem insertion is a large obstacle to the development of this technology. We conducted this 
preliminary feasibility study to assess the accuracy of a prediction model using a machine learning algorithm to 
identify the final rasping hammering sound using only the hammering sound recorded during THA. Our study 
demonstrated that AI using machine learning distinguished the final rasping hammering sound from the former 
hammering sound with a relatively high degree of accuracy.

Although further development of hammering sound analysis is needed, the present results suggest that this 
may be a novel method to distinguish between correct and incorrect hammering sounds during the surgery 
to decrease complications in THA. So far, there are no reliable methods with which to predict THA complica-
tions such as intra-operative fracture and subsidence. To decrease the complications in THA, pre-operative 3D 
templating and intra-operative navigation have been used to avoid inadequate stem selection and achieve better 
stem positioning16. The accuracy of predicting the right stem size reportedly improves from 45.7 to 58.6% using 
3D templating compared with 2D surgical planning16. However, although greater accuracy in stem size selec-
tion has been achieved, surgical errors such as excessive hammering may lead to intra-operative fracture, while 
inadequate hammering leads to subsidence post-operatively. Therefore, monitoring of appropriate hammering 
could represent an advanced method with which to prevent THA complications. A previous study analysed the 
acoustic frequency patterns and found that a natural hammering frequency of approximately 7 kHz is the most 
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prominent frequency in patients without complications15. Furthermore, another study reported that a frequency 
of around 1 kHz better predicts an adequately sized stem using spectrographs14. However, these previous studies 
had limitations, as the results differed and could not be easily distinguished. This discrepancy is probably due to 
the complex nature of the hammering sound of cementless stem insertion. Moreover, the data in these previous 
studies were not objectively evaluated. Our results are unique because the data analysis was fully objective and 
systematically analysed by AI.

To achieve a higher degree of accuracy in detecting appropriate hammering sounds, it is necessary to perform 
machine learning with not only hammering sounds but also other information such as implant data. Our data 
showed a higher degree of accuracy in dataset B, which included only the one implant type, rather than dataset 
C, which included different cementless stems. The cementless stems used in the present study were the Acco-
lade 2, Taperloc Complete Microplasty, Twinsys, and Optimys. Although the Accolade 2 and Taperloc are both 
classified as taper-wedge proximal coated stems, they have slight differences in the size, stem proportion, and 
contact point with the femoral cortex. The Twinsys is classified as a full-HA porous triple tapered stem, which is 
relatively longer than the taper-wedge proximal coated stem. The Optimys is classified as a short stem, which is 
completely different from the taper-wedge proximal coated stem. In addition to these morphological differences 
among stems, the characteristics of the hammering sounds may be influenced by the weight, contact point with 
the femoral cortex, and instruments used for each stem. Therefore, future studies are needed to investigate the 
effects of these variables on the sound pattern.

We believe that the hammering sound may also be influenced by patient background characteristics such as 
age, height, weight, bone quality, and femoral morphology. When the cementless stem is fixed in the canal of 
the femur, the stem-femoral complex is vibrated as one object. Therefore, there is no doubt that these variables 
affect the vibration of the stem-femoral complex, leading to the characterization of the hammering sound. The 
importance of various affects is also supported by our results that training multiple models in a stratified way to 
deal with various factors was better rather than training a single linear model using all the merged hammering 
sound data. The reasons why models E and F were better than other models are explained by follows. Models 
A and B attempted to predict positive or negative samples by training a single linear model, even though ham-
mering sounds would be vary depending on operation IDs due to various factors such as patients’ backgrounds, 
stem types, skilled operators, and sound-collected operating rooms. Models C, D, E and F attempted to establish 
a nonlinear model via training multiple linear models (weak learners) and integrating their prediction results 
by voting. Especially, models E and F attempted to train weak learners operation-wise (including operator-wise 
and operating-room-wise) to take into account various factors of different operation IDs.

Furthermore, the FFT method also affected the results. In the present study, the analysed area was 0.093 s 
from the onset. The onset point and periods of the analysed area must affect the results of FFT. Therefore, future 
studies should also investigate the effect of the patient characteristics and the method of FFT analysis on the 
hammering sound. Since this study is conducted as a preliminary study to test AI for sound analysis, possible 
factors which might affect on the sound characteristics were not assessed in current study. Further investigation 
under control of those factors is needed.

This study had several limitations. First, relatively few operations were analysed. Although the maximum 
number of hammering sounds in a dataset was 523, hammering sound data from a larger number of operations 
might change the result. However, despite the small samples, the ROC-AUC value was higher than we expected. 
Second, it is unknown whether AI with machine learning can distinguish the hammering sound related to 
complications from the hammering sound in a case without complications. However, this study was designed 
to investigate the feasibility of using AI with machine learning to analyse the hammering sounds. Further estab-
lishment of a prediction model to prevent complications using hammering sounds in combination with other 
variables such as implant type and patient background characteristics must be studied in the future. Third, the 
positive example in this study was the hammering sound during final size rasping. We consider that there is 
likely to be variance among hammering sounds during final size rasping, which may have influenced our results. 
Correct definition of the positive example is mandatory for further investigations. Fourth, the area analysed for 
FFT was 0.093 from the onset. The analysis of a different area might lead to a different result. Future research is 
required to identify the most reliable area for FFT sound analysis.

Conclusion
Our study demonstrated that AI using machine learning was able to distinguish the final rasping hammer-
ing sound from the previous hammering sound with a relatively high degree of accuracy. Future studies are 
warranted to establish a prediction model using hammering sound analysis with machine learning to prevent 
complications in THA.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
Not applicable.
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