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Abstract: Here, we report a first comprehensive genomic analysis of SARS-CoV-2 variants circulating
in North African countries, including Algeria, Egypt, Libya, Morocco, Sudan and Tunisia, with
respect to genomic clades and mutational patterns. As of December 2021, a total of 1669 high-
coverage whole-genome sequences submitted to EpiCoV GISAID database were analyzed to infer
clades and mutation annotation compared with the wild-type variant Wuhan-Hu-1. Phylogenetic
analysis of SARS-CoV-2 genomes revealed the existence of eleven GISAID clades with GR (variant of
the spike protein S-D614G and nucleocapsid protein N-G204R), GH (variant of the ORF3a coding
protein ORF3a-Q57H) and GK (variant S-T478K) being the most common with 25.9%, 19.9%, and
19.6%, respectively, followed by their parent clade G (variant S-D614G) (10.3%). Lower prevalence
was noted for GRY (variant S-N501Y) (5.1%), S (variant ORF8-L84S) (3.1%) and GV (variant of the
ORF3a coding protein NS3-G251V) (2.0%). Interestingly, 1.5% of total genomes were assigned as
GRA (Omicron), the newly emerged clade. Across the North African countries, 108 SARS-CoV-2
lineages using the Pangolin assignment were identified, whereby most genomes fell within six major
lineages and variants of concern (VOC) including B.1, the Delta variants (AY.X, B.1.617.2), C.36,
B.1.1.7 and B.1.1. The effect of mutations in SAR-CoV-2 genomes highlighted similar profiles with
D614G spike (S) and ORF1b-P314L variants as the most changes found in 95.3% and 87.9% of total
sequences, respectively. In addition, mutations affecting other viral proteins appeared frequently
including; N:RG203KR, N:G212V, NSP3:T428I, ORF3a:Q57H, S:N501Y, M:I82T and E:V5F. These
findings highlight the importance of genomic surveillance for understanding the SARS-CoV-2 genetic
diversity and its spread patterns, leading to a better guiding of public health intervention measures.
The know-how analysis of the present work could be implemented worldwide in order to overcome
this health crisis through harmonized approaches.

Keywords: North Africa; SARS-CoV-2; Algeria; genomics; clade; Omicron; mutation annotation

1. Introduction

Officially, in late December 2019, the World Health Organization (WHO) was notified
by the Chinese Health Authorities of pneumonia cases of unknown etiology detected in
Wuhan City, Hubei Province [1], which could mark the emergence of a novel and serious
threat to public health. On 7 January 2020, researchers from the Shanghai Public Health
Clinical left and School of Public Health reported the isolation of a new type of coronavirus
(novel coronavirus, nCoV) [2] and a preliminary analysis of the Wuhan virus sequence
(WH-Human_1.fasta.gz), [Genbank/NCBI release (MN908947.1)] suggesting a possible
zoonotic origin [3].

Between 10 and 15 January 2020, findings of unexplained pneumonia in a Shenzhen
family cluster confirmed the presence of the novel coronavirus, and suggested possible
sustained human-to-human transmission [4], despite the fact that the extent of this mode
of transmission is unclear. Since the first report, other territories, areas and countries
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outside China have reported cases among travelers returning from different countries and
the epidemiologic picture is changing on a daily basis. As of 30 January 2020, the WHO
officially declared that the new coronavirus outbreak [coronavirus disease (COVID-19)] is a
public health emergency of international concern and later on March 11 declared it as a
pandemic, acknowledging what has seemed clear—that the virus will likely spread to all
countries on the globe, possibly intensified by high population density, socio-demographic
profiles, host immune responses, and viral genetics [5].

The virus causes a respiratory illness that is often severe, and at least 5.3 million
deaths have been reported globally [6]. The current estimates of the case fatality rate of
SARS-CoV-2 at any time point of analysis should be interpreted with caution since the
outcome of the emerging COVID-19 is as yet unknown.

The coronaviruses are incredibly diverse, encompassing a broad spectrum of animal
and human enveloped RNA viruses. Prior to 2003, CoV commonly caused mild but
occasionally severe community-acquired acute respiratory infections in humans [7]. The
recent outbreak takes us back to other coronavirus endemics caused by SARS-CoV (Severe
Acute Respiratory Syndrome-related coronavirus) in China in 2002 and the zoonosis caused
by the Middle East Respiratory Syndrome coronavirus (MERS-CoV), which first emerged
in Saudi Arabia in 2012 before spreading to other countries [8]. In fact, the epidemiology
reports of MERS-CoV and SARS-CoV infections have been characterized by recurrent
zoonotic leaks from the known primary animal reservoir (bats) to intermediary sources
‘Dromedary camels or civet cats’ and human to human transmission with fatality rates close
to 9.5% and 35%, respectively [9,10]. The disease outbreak highlights the hidden reservoir
of the viruses in wild animals and their potential to spill out into humans.

As of 25 February 2020, a case of COVID-19 was reported in the first Member State
of the AFRO Region [11] and the questions were raised of whether more human cases
will occur in Africa and what measures would African countries take to mitigate the
SARS-CoV-2 threat? Eighteen months later, data as reported by national authorities on
August 2021, have shown large community spread of COVID-19 cases with more than
seven and a half million confirmed cases [12] and at least 198,000 deaths attributed to
the virus.

Generally, new changes and variants of SARS-CoV-2 constantly emerge and circulate
around the world during the COVID-19 pandemic [13]. Most changes have little to no
impact on the virus’ properties. However, some changes may affect the virus’ properties
such as transmission, the associated disease severity, the performance of vaccines, thera-
peutic medicines, diagnostic tools, or other public health and social measures [14]. More
recently, a Variant Classification scheme that defines three classes of SARS-CoV-2 variants
has been developed in order to prioritize global monitoring and research, and ultimately to
inform the ongoing response to the COVID-19 pandemic including: (i) variants of concern
(VOC); (ii) variants of interest (VOI); and (iii) variants of severe consequence (VOHC) [15].
The variants of concern (VOC) are B.1.1.7 (WHO labeled Alpha) first identified in the UK,
B.1.351 (WHO labeled Beta) in South Africa, P.1 (Gamma) in Brazil and B.1.617.2, AY.X
(Delta) in India. VOIs include variants B.1.427/9 (Epsilon), B.1.525 (Eta), B.1.526 (Iota),
B.1.617.1 (Kappa), C.37 (Lambda) and Mu (B.1.621). On November 24, 2021, a new variant,
B.1.1.529, was first reported to the WHO by South Africa, identified from an immunocom-
promised patient in Johannesburg and, based on the evidence presented indicative of a
detrimental change in COVID-19 epidemiology, the WHO designated B.1.1.529 a VOC,
named Omicron [15]. Currently, there are no SARS-CoV-2 variants that rise to the level of
high consequence (VOHCs).

As COVID-19 vaccines become available and are implemented, genomic surveillance,
together with real-time tracing and data-sharing networks, has become a valuable tool
to improve understanding of SARS-CoV-2 transmission patterns and epidemic dynamics.
Analysis of these data played a key role in the response to the pandemic by tracking
the global spread of novel SARS-CoV-2 variants, leading to a greater understanding of
COVID-19 outbreaks around the world. By using a comprehensive genomic analysis,



Microorganisms 2022, 10, 467 3 of 19

the current study aims to provide information, for the first time, about the geographic
distribution of SARS-CoV-2 genomic lineages and potential diversification pathways of the
virus in Algeria and North African countries. The circulation of these variants has broad
epidemiological implications for public health, including ongoing vaccination efforts.

2. Materials and Methods
2.1. Epidemiological Dynamics and Genomic Data Processing

The complete genome sequences of SARS-CoV-2 isolates from Algeria and North
African countries, including Egypt, Libya, Morocco and Tunisia, were retrieved from the
EpiCoV database of the GISAID initiative [16]. As of 20 December 2021, 2599 genomes
were downloaded and only viruses affecting human hosts were selected, removing low-
quality sequences (>5% NNNs) and using only full-length sequences (>29,000 nt). In
total, 1669 complete, high coverage genome sequences from the dataset were selected to
investigate the genetic characterization (Table 1).

Table 1. COVID-19 cases distribution and total analyzed SARS-CoV-2 genomes from North
African countries 1.

Country Total Cases Sequenced Genomes Analyzed Genomes

Algeria 214,592 85 36
Egypt 375,330 1418 971
Libya 381,749 56 38
Morocco 952,814 609 352
Sudan 45,112 116 31
Tunisia 721,031 315 241
Western Sahara 10 ND ND

Total 2,690,638 2599 1669
1 20 December 2021; ND No data available.

Daily updates on the number of confirmed new cases of COVID-19 in Algeria were
analyzed up of February 2020 (for 20 months) from publicly released data provided by the
Algerian Ministry of Health, Population and Hospital Reform (https://www.sante.gov.dz/)
(accessed on 20 December 2021).

2.2. Sequence Alignment and Phylogenetic Analysis of Algerian Genomes

For the local Algerian virus comparison, thirty-six sequences were first aligned using
a multiple sequence alignment algorithm (MAFFT v7. 471) [17]. The maximum likeli-
hood tree was reconstructed with the IQ-TREE server using the general time-reversible
(GTR) model with rate heterogeneity (GTR + G) and 1000 ultrafast bootstrap repeti-
tions (http://www.iqtree.org accessed on 20 December 2021) [18]. The SARS-CoV-2
genomes were classified into lineages using the PANGOLIN web application (Phylo-
genetic Assignment of Named Global Outbreak LINeages) (https://pangolin.cog-uk.io
accessed on 20 December 2021) [19]. The viral clades were assigned by the Nextclade tool
(https://clades.nextstrain.org/ accessed on 20 December 2021) [20] and through the UShER
web interface from the University of California, Santa Cruz (https://genome.ucsc.edu/
cgi-bin/hgPhyloPlace accessed on 20 December 2021). Viral clades were defined on the
basis of available genomes sharing the same pattern of mutations. The Algerian population
was comparatively evaluated against the Wuhan reference genome (NC_045512.2-Wuhan-
Hu-1) obtained from NCBI GenBank. Quality checks of the sequences and evaluation of
genetic distance were performed in MEGA software version 6 [21] and the final dataset
was displayed using Interactive Tree of Life (iTOL) v.4 (https://itol.embl.de/ accessed on
20 December 2021) [22].

https://www.sante.gov.dz/
http://www.iqtree.org
https://pangolin.cog-uk.io
https://clades.nextstrain.org/
https://genome.ucsc.edu/cgi-bin/hgPhyloPlace
https://genome.ucsc.edu/cgi-bin/hgPhyloPlace
https://itol.embl.de/
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2.3. Mutation Signature and Clade Assignment Analysis

The Nextclade web tool (https://clades.nextstrain.org accessed on 20 December 2021)
and the online COVID-19 genome annotator ‘coronapp’ [23] were used to perform mutation
signature calling and SNP profile defining of total genome sequences from North African
countries by checking amino acid substitutions, deletion or insertion mutations on specific
regions, including; spike surface glycoprotein (S), polyprotein 1ab (nsp1-nsp16), structural
proteins (S, E, M, and N) and other accessory proteins. In addition, genomic lineages and
clades were inferred by GISAID and PANGOLIN databases according to the nomenclature
system at the time of data collection.

3. Results
3.1. Epidemiology of SARS-CoV-2 in Algeria and North Africa

By 20 December 2021, over 2,500,000 SARS-CoV-2 cumulative cases had been reported
in North African countries (Figure 1A) of which 214,592 cases were confirmed in Algeria
with more than 6190 deaths attributed to the virus and a case fatality ratio (CFR) of
2.88%. In addition, Algeria’s western neighbor, Morocco, registered the highest rate of
positivity among the North African countries with 34.3% of total cases (952,814) followed
by Tunisia, Libya, Egypt, and Sudan with 721,031; 381,749; 375,330 and 45,112 of positive
cases, respectively (Table 1).

Figure 1. Total COVID-19 cases distribution in North African countries (A) and Algeria (daily new
cases and cumulative deaths) (https://africacdc.org/covid-19/ accessed on 20 December 2021),
(B) Graph based on a data source available online at (https://covid19.sante.gov.dz/carte/) (accessed
on 20 December 2021).

The first confirmed positive case of SARS-CoV-2 infection in Algeria was reported
on 25 February 2020, initially among international travelers until flights were stopped in
March 2020. Immediately after the first case, the country experienced several waves of
the pandemic. The second wave of viral introductions occurred between October and
December 2020 and included migrants returning from Europe, followed by a third wave of
rapid growth in Mid July and August 2021 in terms of the daily incidence of positivity and
deaths (Figure 1B).

3.2. Phylogenetic Analysis of SARS-CoV-2 Genomes in Algeria

Of the 85 available sequences, 36 genomes that met the quality criteria for analysis
(>90% coverage) were used to construct a maximum-likelihood phylogenetic tree. As
presented in Figure 2, the phylogenetic analysis is in support of the PANGOLIN lineages
assignment of which the analyzed SARS-CoV-2 genomes belonged to six different B lineages

https://clades.nextstrain.org
https://africacdc.org/covid-19/
https://covid19.sante.gov.dz/carte/
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(B.1, B.1.1, B.1.159, B.1.36, B.1617.2 and BA.1) and three other A lineages (AY.20, AY.44 and
AY122) clustered together compared to the reference NC_045512.2-Wuhan-Hu-1.

Figure 2. Rooted-Maximum likelihood phylogenetic tree of Algerian SARS-CoV-2 genome sequences
(36 genomes). The genomes were classified into lineages using PANGOLIN clades, Nextclade and
GISAID. The branch length on the phylogenetic tree represents the calendar time of sample collection:
18/36 samples were collected between March and June 2020, the 17/36 samples (21J—Delta) were
collected late in May and July (2021) while the 2/36 samples were collected in November 2021
(21K-Omicron). The tree is rooted to the Wuhan reference genome (Wuhan/Hu-1/2019).

Algeria has little diversity in variant mapping, which is not surprising given limitations
to whole genome sequencing. The Nextclade analysis revealed that seventeen of the
36 SARS-CoV-2 genomes belonged to the Delta clade (21J), with the rest being part of
clades 20A, 20B and 20C. More recently, two genomes were submitted in December 2021 to
the EpiCoV database and were grouped with 21K. Furthermore, GISAID analysis showed
that the selected sequences belong to four high-level phylogenetic groups including G,
GH, GR and GK with 16 genomes (44.4%) as part of the GK (Delta) clade and nine others
(25.8%) of the GH (Beta) clade. The time course of the phylogenetic analysis and clade
distribution showed that clades G (Variant S-D614G), GH (Variant ORF3a-Q57H) and
GR (Variant N-G204R) were the most prevalent in the first and second waves of viral
introductions. However, this was no longer the case in early May and mid-July 2021, in
which clade GK took over. Expanded phylogenetic analysis was conducted to examine the
genetic divergence of Algerian samples against global representative SARS-CoV-2 genomes
present in the Nextstrain database. The mutation-resolved ML phylogenetic tree confirmed
the PANGO and Nextclade lineages assigned, since 17 genomes grouped with the 21J
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representatives, six (16.6%) with the 20A clade, four (11.1%) belong to the 20B clade, eight
(22.2%) with the 20C sequences and two (5.4%) with the 21K (Omicron) clade (Figure 2).

3.3. Distribution of SARS-CoV-2 Lineages and Clades in North Africa

The variants from 1669 retrieved genomes were clustered in 108 SARS-CoV-2 lineages
using the Pangolin web services tool, whereby most samples fell within six dominant
lineages (Figures 3 and 4) including B.1, the Delta variants (AY.X, B.1.617.2), C.36, B.1.1.7
and B.1.1 with 20.2%, 19.1%, 17.8%, 6.9%, and 5.9%, respectively. The Nextstrain clade
assignment revealed that the analyzed genomes formed fifteen distinct clades with 20A, 20D
and 21J (Delta) being the most common with 26.4%, 24.1% and 18.7% respectively, followed
by 20I (Alpha) and 20B with 8.1%–6.7% each. Analysis of the distribution of SARS-CoV-2
clades in North African countries showed that clade GR was the most frequently identified
with 25.9% among the total genomes, followed by GH and GK (19.9%–19.6%) and their
parent clade G (10.3%). Other less common clades including S and L were also identified
in 3.1% and 1.7% of the analyzed sequences, respectively. Furthermore, about 5% of the
genomes were not clustered into any of the major clades. Interestingly, 1.5% of total
genomes were assigned as GRA (Omicron), the newly emerged clade.

3.3.1. Egypt

A total of fifty-two lineages have been identified by the Pangolin phylogenetic classifi-
cation, of which five were most prevalent including C.36 (30.6%), followed by B.1 (25.2%),
C.36.3 (7.2%), B.1.1 (5.1%) and B.1.617.2 with 5.1% of total analyzed genomes (Figure 4).
These lineages are associated with clades GR, GH, and GK respectively. The Nextclade anal-
ysis revealed that 41.2% of the 971 SARS-CoV-2 genomes belonged to clade 20D, followed
by 20A (29.1%) and 21J (Delta) (13.1%) with the rest being part of clades 19B, 20B, 20C, 21I
(Delta), 20I (Alpha, V1) and only one genome classified as 21K (Omicron) submitted in
December 12, 2021, isolated from a hospitalized male patient aged 67 years.

3.3.2. Libya

Eight Pango lineages were identified in the analyzed sequences from Libya. The
B.1.525 was identified as the dominant sublineage with 57.9% of total analyzed SARS-CoV-2
genomes retrieved from GISAID. The lineage (A) ranked in second place with 18.4%
followed by the sublineages B.1 and B.1.1.7 with 7.9% and 5.3% respectively (Figure 3).

3.3.3. Morocco

Forty-six Pango lineages and sublineages were observed in Morocco, of which the
B.1.17 presented the most prevalent lineage of 104/352 sequenced genomes (29.5%) fol-
lowed by B.1 (73 genomes, 20.7%), B.1.1 (9.4%), B.1.528 (6.0%) and the new lineage
(BA.1-Omicron) with (6.3%) (22/352) of analyzed genomes. Morocco have reported the
most diverse clades (ten clades) among north African countries, of which clade G was the
highest with 25.0%, followed by GRY (22.2%), GR (19.0%), GH (11.1%), GK (10.5 %), GRA
(6.3%), GV (3.4%), O (1.7%), L (0.6%) and V with 0.3% of total analyzed genomes.

3.3.4. Sudan

Nine Pango lineages were identified from Sudan, of which the A.9 and B.1.351 present
the most prevalent lineages with 25.8% each followed by B.1 with 12.9% of total analyzed
genomes. In addition, four different clades were reported with GH (51.6%) and S (35.5%)
as dominant compared to GR, the clade with 9.7%.

3.3.5. Tunisia

The variants from 241 analyzed genomes clustered in twenty-six SARS-CoV-2 lineages
and eleven clades (Figure 3), whereby most samples fell within four dominant lineages
of the total for AY.122 (Delta) with 57.7%, B.1.160 (9.5%), B.1.177 (8.7%) and B.1.1 (3.3%).
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Among the studied genomes, clades GK, GH, GV, and GR were found to be dominant with
58.5%, 19.9%, 9.1% and 7.5% respectively (Figure 3).

Figure 3. Distribution of various SARS-CoV-2 clades and lineages from Algeria and North African countries.
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Figure 4. Unrooted phylogenetic relationship of analyzed SARS-CoV-2 sequences from North African
countries to the global SARS-CoV-2 genomes. Clades distribution according to the Nextclade online
tool (https://clades.nextstrain.org/) (accessed on 30 December 2021) and the phylogenetic tree was
generated using the UShER Interface.

3.4. Phylogenetic Analysis of Omicron Genome Sequences from North Africa

A total of 25 genome sequences were obtained from GISAID, collected between
October and December 2021. Spatiotemporal phylogenetic analyses were conducted using
the complete genomes available at the time, with two genomes from Algeria, one genome
from Egypt and 22 genomes from Morocco. As is shown Figure 5A, the global phylogeny
of SARS-CoV-2 sequences (Delta and Omicron) from North Africa (as of 20 December 2021)
showed that Omicron sequences (21K) could have been a progeny of the nextclade 20B. The
global subtrees (Figure 5B) showed evidence of different geographic origins of Omicron
lineage. The majority of analyzed sequences were closely related with BA.1 sequences
from England and the remained genomes were related to sequences from Scotland and
United States suggesting multiple introductions of SARS-CoV-2 variants into North African
countries. In addition, the phylogenetic analysis showed that the BA.1 genomes formed
monophyletic clusters indicating local transmission of Omicron lineage in Morocco com-
pared to the two Algerian sequences.

https://clades.nextstrain.org/
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Figure 5. (A) Phylogenetic analysis generated by UShER interface of 350 SARS-CoV-2 sequences from
North African countries. Subtrees including Omicron and Delta sequences plus 2031 random nearest
sequences from the GISAID, GenBank, COG-UK, and CNCB databases (updated 30 December 2021).
(B) Sequence comparison showing concordance, nucleic acid, and amino acid changes in the twenty-
five Omicron sequences with respect to the SARS-CoV-2 Reference Sequence.
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3.5. Genomic Variation and Mutation Signature

The retrieved SARS-CoV-2 genomes from North African countries were compared
with the reference NC_045512.2-Wuhan-Hu-1 and, as expected, significant numbers of non-
synonymous and synonymous mutations were detected. The annotated mutations, event
by event, are summarized in Figure 6. The analysis of 1669 SARS-CoV-2 genomes have high-
lighted a total of 42,685 mutation events compared to the reference (Supplementary data).
A high prevalence of single-nucleotide polymorphisms (SNPs) was noted with 26,532
(62.17%) events over indels (insertion or deletions) with 2.31% and 0.014%, respectively.
Furthermore, 11,222 events of silent SNPs falling in coding regions were detected, repre-
senting 26.30% of the total events. Overall, the C>T transition presents the most common
events accounting for 42.63% with 18,198 in total, followed by G>T transversion at 16.81%
with 7178 occurrence, A>G transition with 4449 events (10.42%) and G>A transition with
2071 (6.83%) of all observed viral mutations.

The effects of mutations on the protein sequences of SARS-CoV-2 highlighted similar
profiles in the North African countries with a mutation affecting the nucleotide adenosine
in position (23,403) transformed into a guanosine (A23403G) causing a D614G spike (S)
variant as the most common amino acid change occurring in 1553 (95.27%) of total SARS-
CoV-2 genomes. A similar occurrence was also detected for the nucleotide cytosine in
position (3037) (C3037T) affecting 1433 (87.91%) genomes causing an amino acid changing
mutation in P314L, affecting the NSP12 (non-structural protein 12) and the viral RNA-
dependent RNA polymerase (Figures 6 and 7). Two other silent mutations were noted
including C241T (92.57%) and C14408T (87.91%), targeting the 5′UTR and the NSP3 (a
viral predicted phosphoesterase) in position 14408. In addition, mutations affecting other
protein sequences appeared frequently including; N:RG203KR and N:G212V (Nucleocapsid
protein N) with (636 genomes, 39.01%) and (339 genomes, 20.79%), respectively, M:I82T
(Membrane protein) (411 genomes, 25, 25%), NSP3:T428I (phosphoesterase, papain-like
proteinase) (400, genomes, 24.53%), ORF3a protein (ORF3a:Q57H) (350 genomes, 21, 47%),
S:N501Y (Spike protein) (163 genomes, 10.0%), and E:V5F (Envelope protein) with a lower
occurrence (2.21%) of total SARS-CoV-2 genomes (Figure 7).

3.6. Variant Analysis of Omicron SARS-CoV-2 Genomes

The analysis of the genetic polymorphism of Omicron SARS-CoV-2 genomes compared
to the Wuhan-Hu-1 reference genome revealed variable mutations between viruses. A
total of 1455 mutation events were noted with a high prevalence of single-nucleotide
polymorphisms (SNPs) (914, 62.8%) and events followed by silent SNPs (235, 16.15%) over
deletion with 5.85% of total events (Supplementary data). The frequent mutation events
observed for Omicron genomes are summarized in Table 2.

The amino acid substitutions (D614G, D614G, D796Y, T547K, N856K, N679K, N969K,
P681H, L981F) in the spike protein, P314L, A1892T, T492I, I189V and A1892T in the non-
structural proteins (NSP3, NSP4, NPS6, and NSP12b) occurred in 100% of analyzed SARS-
CoV-2 genomes. In addition, fifteen other substitutions affect the spike protein including
Q954H, N764K, H655Y, K417N, G339D, N211K, Q493R, S371L, S373P, S375F, S477N, T478K,
E484A, N440K and G446S were detected as the most frequent mutation events in more than
84% of total genomes. Other mutations were found in 24/25 analyzed sequences distributed
in the nonstructural proteins (nsp3, nsp4, nsp6, nsp14) which had the highest number of
variants in the analyzed samples, followed by Nucleocapsid proteins (N), Membrane (M)
protein (Table 2) and Open Reading Frame proteins (ORF3a, ORF7a, ORF7b, ORF8, ORF9b)
(Supplementary data).
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Table 2. The frequent mutation events observed in Omicron SARS-CoV-2 genomes.

Genomic
Coordinate Effect N Samples Class Genomic Region

A23403G S:D614G 25

SNP Spike protein

G23948T S:D796Y 25
C23202A S:T547K 25
C24130A S:N856K 25
T23599G S:N679K 25
T24469A S:N969K 25
C23604A S:P681H 25
C24503T S:L981F 25
A24424T S:Q954H 24
C23854A S:N764K 24
C23525T S:H655Y 24
G22813T S:K417N 24
G22578A S:G339D 24
T22195G S:N211K 23
A23040G S:Q493R 22
TC22673CT S:S371L 22
T22679C S:S373P 22
C22686T S:S375F 22
G22992A S:S477N 22
C22995A S:T478K 22
A23013C S:E484A 22
G22898A S:G446S 21

C10029T NSP4:T492I 25 SNP
SNP Transmembrane proteinA11537G NSP6:I189V 25

11286TGTCTGGTT NSP6:L105 24 Deletion

G8393A NSP3:A1892T 25 SNP Predicted
phosphoesteraseA2832G NSP3:K38R 24 SNP

6513GTT NSP3:S1265 24 Deletion

C28311T N:P13L 24
SNP Nucleocapsid protein

GGG2881AAC N:RG203KR 24

G26709A M:A63T 24
SNP MembraneA26530G M:D3G 22

C26577G M:Q19E 24

C26270T E:T9I 25 SNP Envelope

A18163G NSP14:I42V 22 SNP 3′-to-5′ exonuclease

C10449A NSP5:P132H 24 SNP 3C-like proteinase

C14408T NSP12b:P314L 25 SNP RNA-dependent
RNA polymerase

A28271T 3′UTR:28271 25 Extragenic 3′ Untranslated Region

C241T 5′UTR:241 24 Extragenic 5′ Untranslated Region
SNP. Single-nucleotide polymorphism.
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Figure 6. Distribution of numbers of mutational events of analyzed SARS-CoV-2 genomes in North
African countries. (A) Distributions of number of mutations for each sample, (B) Distribution of
SARS-CoV-2 mutation classes “SNP,” “deletion,” and “insertion”, (C) Listed nucleotide changes
represent those found in the viral RNA, (D) distribution of SARS-CoV-2 most frequent specific events,
annotated as nucleotide coordinates over the reference genome, (E) distribution of SARS-CoV-2 most
frequent specific events, annotated protein changes using the format protein-mutation.
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Figure 7. Occurrence of mutations in the SARS-CoV-2 structural proteins S (Spike) (A), M (Membrane) (B),
N (Nucleocapsid protein (C), and E (Envelope (D). The frequency (in percentage) of the top amino acid-
changing mutations is indicated.
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4. Discussion

Despite substantial advances, the implementation of genomic surveillance remains a
challenge for most African countries where access to whole genome sequencing is limited.
Since the first description of the SARS-CoV-2 sequence in late 2019 [3], an exponentially
increasing number of virus genomes have been reported across the globe with over ten
million complete genomes deposited in the GISAID (https://www.gisaid.org accessed on
20 December 2021) and Genbank (https://www.ncbi.nlm.nih.gov/sars-cov-2/ accessed on
20 December 2021) databases (accessed on 20 December 2021). Nonetheless, SARS-CoV-2
genome sequence data from Africa constitute less than 0.7% with 70,421 sequences in
genome repositories.

Due to the naturally expanding genetic diversity of SARS-CoV-2 viruses, extensive
molecular surveillance and efforts to understand the patterns of the global spread of
the pandemic have been introduced including the three main nomenclatures, PANGO
lineages (PANGO, Phylogenetic Assignment of Named Outbreak LINeages) [19], Nextstrain
clades [20] and GISAID classification. While PANGO lineages provide more detailed
outbreak cluster information, the other two nomenclatures offer broad geographical and
temporal clade trends.

This paper presents the first insight into a comprehensive analysis of genome se-
quences of SARS-CoV-2 circulating in Algeria and North African countries. The data of
1669 SARS-CoV-2 genomes submitted to the EpiCoV GISAID database as of 20 December
2021 were analyzed with respect to genomic clades and their geographic distribution.
The results revealed the presence of different clades and variants as defined by GISAID,
PINGOLIN and Nextclade tools that could be involved in the varied exacerbation of symp-
toms and disease severity in local residents.

As of 25 February 2020, a case of COVID-19 was reported in the first Member
State of the AFRO Region leading the Algerian and neighboring health authorities to
set up a response plan with rapid implementation to prevent and control SARS-CoV-2
spreading [24,25]. Despite the restrictions and the lockdown measures applied in most
North African countries, the virus continued to spread from one region to another [26],
and evolved with numerous genetic variants being associated with higher infectivity [27].
So far, the retrieved SARS-CoV-2 genomes were clustered into twelve major clades, as
defined by the GISAID database, and at least 108 pingolineages, with six dominant variants
including B.1, the Delta variants (AY.X, B.1.617.2), C.36, B.1.1.7 and B.1.1. Clades GR, GH
and GK were the most frequently identified among the analyzed genomes, followed by G,
GRY, GV and O clades, with lower prevalence confirming the heterogeneity of circulating
strains. Interestingly, 1.5% of total genomes were assigned as GRA (Omicron), the newly
emerged clade.

Early on in the first outbreak, the SARS-CoV-2 genomes were classified in two ma-
jor lineages, named the European superclade A (also referred to L) and the East Asian
superclade B (referred to S) [28,29], and later several sublineages in the GISAID nomen-
clatures have been introduced including V, G, GH, GR, GV and GRY clades based on
marker mutation and phylogenetic analysis [30] (https://www.gisaid.org/ accessed on
20 December 2021).

Globally, the G clade and its derivatives GH, GR, and GV are the most common
clades amongst the sequenced SARS-CoV-2 genomes [31]. Mercatelli and Giorgi [23]
reported that GISAID clades G, GR and GV are prevalently present in Europe with relatively
higher COVID-19 cases, deaths and CFRs, while the clades GH and GR have been mostly
observed in the Americas, the top ranked continents with respect to CFR and local disease
epidemiology parameters.

The dynamics of SARS-CoV-2 spreading in North Africa was not so different from
that which was observed worldwide, with first and second waves dominated by viruses
belonging to clades 20A and 20B, followed by a third wave linked to the circulation of
variants characterized by an increase in the number of severe forms of COVID-19, leading
to more deaths. Similarly, a study that investigated SARS-CoV-2 sequences collected in the

https://www.gisaid.org
https://www.ncbi.nlm.nih.gov/sars-cov-2/
https://www.gisaid.org/
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Eastern Mediterranean Region found that more than 65.8% of the viruses belong to clades
20A, 20B, and 20C (GISAID clades GR, GH, G and GV) [32]. Similarly, genome sequencing
of SAR-CoV2 isolated from Egyptian patients showed that most of the sequences can
be assigned clades G/GR/GH/O (as per GISAID system) [33]. In addition, genomic
surveillance applied to SARS-CoV-2 transmission in Morocco [34] between March and
May 2020, revealed different aspects of the epidemic with the introduction of SARS-CoV-2
strains from different European countries where most genomes fell within Clades 20A,
20B with different mutation patterns giving rise to the diversity of SARS-CoV-2 lineages
reported in this study.

New changes and variants of SARS-CoV-2 constantly emerge as long as ongoing trans-
mission persists causing major epidemics in the United Kingdom (UK) [19], Brazil [35,36],
and South Africa [37]. The Delta variant (PANGO lineage: B.1.617.2), first detected in
India, has spread quickly across the world, and is designated a variant of concern by the
World Health Organization likely due to higher transmissibility prior to wild type infection,
estimated to be about 60% more transmissible than the Alpha variant [38].

Recently, the Omicron variant (B.1.1.529) has been primarily of concern after the Delta
variant due to its large number of mutations (26 to 32) in the genome compared with other
variants, especially in the spike protein, many of which are located within the receptor
binding domain (RBD) [39], known or predicted to contribute to escape from neutralizing
antibodies and existing countermeasures. Recently, Omicron (B.1.1.529) was predicted
to be associated with a rapid increase of COVID-19 cases (https://www.who.int/news/
item/28-11-2021-update-on-omicron) (accessed on 30 December 2021). In a short period,
the circulation of Omicron has been found in at least 65 countries and territories with
thousands of confirmed cases (https://www.gisaid.org/hcov19-variants/ accessed on
20 December 2021).

The D614G spike mutation characterizes the G clade and its derivate has spread expo-
nentially across the world and become rapidly the most prevalent lineage worldwide [40],
occurring in over 92% of total analyzed genomes in this study. However, the A23403G
mutation leading to the D614G spike (S) variant was found to be located in a heavily glyco-
sylated residue in the viral spike, was implicated in increased infectiveness and allows fast
spreading of the virus during the COVID-19 pandemic compared to the wild type variant
Wuhan-Hu-1 [41].

It is worth mentioning that the Spike D614G mutation accompanies other frequent
mutation sites in the ORF1ab (NSP3:C3037T, NSP3:T428I and NSP12:C14408T) region, the
mutation at position 241 (C241T) targeting the 5′UTR, as well as the mutations at positions
203 and 212 in the Nucleocapsid protein (N:RG203KR, N:G212V), in the receptor binding
domain (RBD) of Spike (S:N501Y), and in the ORF3a protein (ORF3a:Q57H). Generally,
Spike D614G and ORF1b-P314L variants are consistently related and co-occur in all geo-
graphic locations with increasing frequency [42]. The spike glycoprotein region mediates
the infection of target cells through binding to its cognate receptor angiotensin convert-
ing enzyme 2 (ACE2) and initiating viral–host fusion and replication [43]. This region is
reported to be the most essential for viral attachment and entry into the host cells [44,45].
Therefore, ACE2 expression in different tissues and interactions with SARS-CoV-2 are
critical for the infection’s progression to severe coronavirus disease 2019 (COVID-19) [46].
The P314L mutation in NSP12 (RNA-dependent polymerase) may play a causal role in
viral replication, therefore enhancing its transmission ability and infectivity [44]. Moreover,
extragenic SNPs in 5′ UTR:C241T may also affect the folding of the ssRNA and influence the
replication rates of SARS-CoV-2 as it is found to occur most prominently [47]. Comparative
genomic analysis of SARS-CoV-2 genomes revealed multiple crucial mutations to the Spike
gene including K417N, K417T, E484K, N501Y, A570D, D614G, P681H, T716I, S982A and
D1118H, which may aggravate the severity of SARS-CoV-2 more than the wild type variant,
and potentially raise the concern of vaccine efficacy against novel strains [41,48].

The broad SARS-CoV-2 lineage diversity circulating in North African countries could
intensify the impact of the pandemic in the region, affecting the efficacy of vaccines and
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displaying reduced antibodies neutralization, even reducing the reliability of diagno-
sis schemes including the current primary method of detecting SARS-CoV-2 (Reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)) [49,50]. However, and
within a very short period of time, research applied to COVID-19 diagnosis has advanced
with ever-increasing knowledge and inventions, in adapting available virus detection
technologies and exploiting the power of interdisciplinary research to design novel diag-
nostic tools to improve detection efficiency [51,52]. Given the epidemiological behaviors,
current evidence supports that VOCs, including Delta and the newly emerged Omicron
variant, have rapidly escalated, becoming predominant in the globe and replacing pre-
viously circulating variants (https://nextstrain.org/ncov/gisaid/global) (accessed on
12 February 2022), adding up to a complex epidemiological scenario.

Compared with other variants and the early identified SARS-CoV-2 strains, the high
frequency of mutations in the spike sequence of the Omicron variant raises concern about
potential immune escape and its impact remains to be determined [53]. However, a
complete experimental evaluation of Omicron might take weeks or even months. Large-
scale case-control studies are essential for investigating clinical severity and the current
situation must lead national governments to place a higher priority on timely collection
and analysis. In fact, COVID-19 severity varies enormously depending on the country,
the prevalence of vaccination, the population’s characteristics and medical management
guidelines [54].

5. Conclusions

Despite the presence of some limitations in the study, such as the absence of clini-
cal data on patients, as well as unbalanced sample sizes among the analyzed countries,
the data provide valuable information about the SARS-CoV-2 clades circulating in North
African countries and may help inform the dynamics of the disease for better control
measures and appropriate public health action as the pandemic spreads in Africa. Analysis
of SARS-CoV-2 sequences highlighted, for the first time, the changing pattern of circulating
SARS-CoV-2 lineages in Algeria and North Africa between February 2020 and December
2021. Distinct lineages of SARS-CoV-2 contributing to three separate waves of infections
reflective of the epidemiological pattern were identified, leading to the detection of pre-
viously major circulating variants of concern (VOC) in addition to the newly emerged
Omicron variant.

As is known, the African region is characterized by the largest infectious disease
burden and the weakest public health infrastructures, which can be explained by the
fact that a large population is vulnerable due to conflict, poor socio-economic status,
food insecurity and limited access to better health services. Furthermore, the prolonged
humanitarian crises facilitate the spread of the actual disease within and between countries
as well as causing extensive deterioration of health. Given the current epidemic and
limited understanding of the epidemiology of this disease, the coronavirus poses a serious
challenge for the continent and the emergence of a serious health threat highlights the need
to support African countries with ‘Weaker Health Systems’.
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