
Review Article
Modulated Autophagy by MicroRNAs in
Osteoarthritis Chondrocytes

Yinghao Yu and Jijun Zhao

Department of Orthopedics,TheAffiliatedWuxi People’s Hospital of NanjingMedical University,Wuxi 214000, Jiangsu Province, China

Correspondence should be addressed to Jijun Zhao; med zhao@163.com

Received 14 February 2019; Accepted 24 April 2019; Published 8 May 2019

Academic Editor: Monica Fedele

Copyright © 2019 Yinghao Yu and Jijun Zhao. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage regression.The etiology of OA is diverse, the exact
pathogenesis of which remains unclear. Autophagy is a conserved maintenance mechanism in eukaryotic cells. Dysfunction of
chondrocyte autophagy is regarded as a crucial pathogenesis of cartilage degradation in OA. MircoRNAs (miRNAs) are a category
of small noncoding RNAs, acting as posttranscriptional modulators that regulate biological processes and cell signaling pathways
via target genes. A series of miRNAs are involved in the progression of chondrocyte autophagy and are connected with numerous
factors and pathways. This article focuses on the mechanisms of chondrocyte autophagy in OA and reviews the role of miRNA
in their modulation. Potentially relevant miRNAs are also discussed in order to provide new directions for future research and
improve our understanding of the autophagic network of miRNAs.

1. Introduction

OA is a common chronic joint disease, reducing the function
of joints in middle-aged and elderly individuals [1]. As
society ages, the prevalence of OA has increased globally.
The etiological factors of OA are diverse, including the
female sex, aging, obesity, joint injury, mechanical pressure,
heredity, etc. [2–4]. However, the precise pathogenesis of
OA remains unclear. Subchondral osteosclerosis and syn-
ovitis are considered contributors to the progression of OA.
Additionally, due to characteristic and pathological changes
in the wear and degeneration of articular cartilage, it has
been widely recognized as the principal tissue involved
in OA [5]. Autophagy, a highly conserved maintenance
mechanism, is vital for endochondral homeostasis and cell
survival [6]. It executes a strict quality control function by
degrading damaged or dysfunctional organelles or macro-
molecules and recycling the products. Aberrant expres-
sion of autophagy-related genes (ATGs) and dysfunction of
autophagy are observed during OA progression [7, 8]. Inhi-
bition of autophagy is considered to be associated with OA-
related cartilage degeneration and chondrocyte apoptosis. In
consideration of its protective and antiapoptotic functions [9,

10], chondrocyte autophagy has gradually become a hotspot
in OA research.

miRNAs are endogenous, noncoding, and single-
stranded RNAs, comprising approximately 22 nucleotides. As
important modulators of gene expression, miRNAs mediate
the posttranscriptional regulation of protein-coding genes in
biological processes by binding to the 3-untranslated region
(3-UTR) of specific targeted mRNAs. Many miRNAs have
been analyzed to explore their functions and mechanisms in
OA [11–13].Through in-depth research, a growing number of
miRNAs have been confirmed to regulate autophagy in OA
chondrocytes. Since cartilage loss is irreversible, it is particu-
larly important to investigate the undiscovered mechanisms
of miRNAs in the maintenance of steady autophagy.

Focusing on mechanisms of chondrocyte autophagy in
OA, this review aims to summarize the recent advances of
miRNAs which have been confirmed to be involved in the
regulation of autophagy. In addition, we discuss a series of
miRNAs whose involvement is uncertain and which have
aberrant expression with specific targets, in order to bring
attention to the exploration of potential mechanisms and
improve the understanding of the regulatory network of
miRNAs in autophagy.
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Figure 1: miRNAs, specific targets and signaling pathways in the process of chondrocyte autophagy in OA. Note: miRNAs highlighted in red
represent confirmed mechanisms while those highlighted in blue represent hypothesized mechanisms.

2. Chondrocyte Autophagy

2.1. General Processes. Autophagy is a dynamic and sequen-
tial process in eukaryotic cells that principally involves the
following events: induction, nucleation, elongation, matura-
tion, fusion, and degradation. ATGs, in addition to coded
proteins, mediate the entire process (Figure 1). In mam-
malian cells, autophagy begins with the formation of an
uncoordinated 51-like kinase (ULK) complex, which consists
of ULK1/2, ATG13, ATG101, focal adhesion kinase (FAK),
and family interacting protein of 200 kDa (FIP200). The
complex is recognized as a target of mammalian target
of rapamycin (mTOR). Under certain circumstances the
combinedmTORandULK1/2 proteins dissociate, resulting in
complex activation and phagophore initiation [14]. The class
III PtdIns3K (PI3K) complex, composed of class III PI3K,
Beclin1, ATG14L, p150, and a series of related modulators,
mediates the following nucleation of autophagic vesicles.

Because of Beclin1, these related modulators are recruited
and activated, includingBax-interacting factor 1 (Bif-1), ultra-
violet irradiation resistant-associated gene (UVRAG), acti-
vating molecule in Beclin1-regulated autophagy (Ambra1),
and Rubicon protein [15]. Additionally, as an essential family
of apoptosis-related proteins, the Bcl2 family, which plays a
dual role in apoptosis, can also modulate autophagy through
Beclin1 [16]. ATG12 and microtubule-associated protein 1
light chain 3 (LC3) can then be recognized as ubiquitin-
like protein conjugation systems, which are required dur-
ing the elongation and maturation of autophagosome [15].
The ATG16L1-ATG12-ATG5 complex is formed through
successive conjugations of several ATGs, including ATG12,
ATG7, ATG10, ATG5, and ATG16L1. While LC3 is first
cleaved into its cytosolic form (LC3-I) by ATG4B [17], LC3-
I becomes successively bound to ATG7, ATG3, and phos-
phatidylethanolamine (PE), creating a lipidated form termed
LC3-II. During the process, the ATG12 complex is vital to the
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LC3 system, indicating that it is required by LC3 to complete
subsequent assembly. The specific dependency lies in the
targeting of the LC3 lipidation site and formation of an amide
bond between LC3-I and PE [18, 19].Moreover, ATG4B is also
identified to maintain the critical function of compensating
for defects in lipidation and PE deconjugation processes
[17, 20]. The two additional important structures are Atg9
and vacuole membrane protein 1 (VMP1). They are essential
transmembrane proteins which directly participate in the
elongation and maturation process outside of the complex
assembly [15]. These are subsequently assembled together to
form amature autophagosomemembrane. Completion of the
fusion of the mature autophagosome and lysosome results in
formation of the autophagolysosome and degradation of the
cell contents.

2.2. Signaling Pathways in OA Chondrocytes. A number of
essential signaling pathways are involved in the process of
autophagy (Figure 1). The class I PI3K-protein kinase B-
mTOR (PI3K/AKT/mTOR) pathway is most well-known,
acting as a principal regulator in autophagy. mTOR can cou-
ple to Raptor or Rictor, correspondingly forming the mTOR
complex 1 (mTORC1) or mTOR complex 2 (mTORC2), both
of which are able to regulate the process of autophagy [21].
The activated upstream signals from the PI3K/AKT pathway
can be integrated by mTORC1 to further suppress autophagy
by combining with the ULK complex. Furthermore, AMP-
activated protein kinase (AMPK) is a signal site that has been
identified and once activated; it directly promotes autophagy
and protects chondrocytes from degeneration. Under con-
ditions of energy depletion, which are characterized by a
low ATP/AMP ratio, AMPK is able to activate ULK1 [22].
Meanwhile, other signaling pathways of AMPK are also able
to downregulate mTORC1 activity through phosphorylation
of the Raptor component and an intermediate factor named
the tuberous sclerosis complex 1/2 (TSC1/2) [23]. Sirtuin-
1 (SIRT1), regarded as a prolongevity factor, mediates pro-
gression of both senescence and autophagy. Interventions
in autophagy result from direct actions towards a particular
endpoint. Cascade reactions of SIRT1 in the modulation of
AMPK and mTOR pathways have already been proposed
[24, 25]. Furthermore, on account of its deacetylase activity,
SIRT1 protects chondrocytes from oxidative stress-mediated
death via increased levels of LC3-II [26], also interfering
with acetylated p53 and downstream genes, including Bax
and Bcl-2 [27, 28]. Interestingly, p53 holds dually positive
and negative influences in the induction of autophagy.
Activation of p53 in the nucleus induces autophagy by
activating AMPK and then inhibiting mTORC1, the inverse
of cytoplasmic p53 [29, 30]. Indeed, activation of mTOR and
inhibition of autophagy in OA cartilage have already been
clarified [31, 32], indicating a crucial pathogenic mechanism.
Complex and mutual interfering modes are emerging in
the network of autophagy regulation during the progres-
sion of OA [33], implicating PI3K/AKT/mTOR, AMPK,
SIRT1, P53 pathways and a series of related growth factors,
cytokines, and proteins, which are still under intense investi-
gation.

3. miRNAs in Autophagy

3.1. Biological Synthesis and Functional Mode. Since the
discovery of miRNAs, they have been investigated across
various fields due to their conserved sequences. The biolog-
ical synthesis of miRNAs is precisely regulated, beginning
with coding genes. In general, coded genes are recognized
as being independent. However, in some situations, they
may be located in the intronic regions of other genes
[34]. Generally, RNA polymerase II mediates the classical
transcription of miRNA genes [35]. After formation of a
primary RNA (pri-miRNA) in the nucleus, a protein complex
consisting of Drosha and DiGeorge syndrome critical region
gene 8 (DGCR8) cleaves it into a hairpin of approximately
70 nucleotides [36], which is a precursor of miRNA (pre-
miRNA). Exportin-5 then acts as a transport molecule
to export pre-miRNA from the nucleus to the cytoplasm
[37]. Once completed, the stem-loop structure of the pre-
miRNA is further processed by Dicer [38], a type of RNase
III, with approximately 22 nucleotides of double-stranded
miRNA remaining.The guide strand ofmaturemiRNA stably
combines with proteins of the argonaute (AGO) family, form-
ing a biological complex termed miRNA-induced silencing
complex (mRISC) [13, 39], while the other passenger strand
is rapidly degraded.

The behavior of themRISC that remains can demonstrate
how mature miRNA operates. mRISC is able to recognize
certain genes and bind to the 3-UTR of targeted mRNAs.
Interestingly, the degree of complementary of base pairing
transpires to be the determinant of the degree of regulation.
This explains why mRNA degradation occurs rather than
attenuation of protein translation in some circumstances
[40]. On account of the pivotal role of the first 2∼8 bases
of miRNA sequence in target binding [41], partial comple-
mentary base pairing triggers inhibition of mRNA transla-
tion, whereas perfect complementarity induces cleavage and
degradation [13, 42].

Strictly speaking, miRNAs become crucial factors in
the pathogenesis of OA due to their widespread target
genes. Increasing numbers of miRNAs have been identified
as regulating different processes in chondrocyte autophagy
through the targeting of particular ATGs, signaling pathways
or other related proteins and mediating interventions in
endochondral homeostasis (Figure 1). Table 1 displays a list
of miRNAs and their targets that have been identified.

3.2. miR-155. Based on an integrated omics analysis, miR-
155 was found to be highly upregulated in OA cartilage
[68]. Considering previous findings in the induction of
autophagy by miR-155 via mTOR signals [69], researchers
have already conducted studies to explore the autophagic
mechanism in human chondrocytes. They verified that miR-
155 did participate in the downregulation of autophagy by
targeting several ATGs, including ULK1, FOXO3, ATG3,
ATG5, ATG14, GABARAPL1 and MAP1LC3 [43]. miR-155
significantly suppressed both mRNA and protein levels of
these ATGs, while silencing miR-155 demonstrated the con-
verse. Simultaneously, the overexpression of miR-155 also
decreased the conversion of LC3-I, which is essential for the
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Table 1: miRNAs and their targets that have been identified in the autophagy of OA chondrocytes.

microRNAs Targets (upstream or
downstream) Mechanisms Research cells

or models References

miR-155

ULK1, FOXO3, ATG3,
ATG5, ATG14,

GABARAPL1 and
MAP1LC3

Autophagy

Human
chondro-
cytes,

T/C28a2 cells

[43]

miR-155 Rictor mTORC2 signaling

MCF-7,
MDA-MB-
157, BT-549
human breast
cancer cell

lines

[44]

miR-30b Beclin1, ATG5 Autophagy and
apoptosis ATDC5 cells [45]

miR-30a,
miR-30b,
miR-30c,
miR-30d,
miR-30e

Beclin1 Autophagy Adipocytes [46]

miR-30a-5p AKT Cell cycle and
apoptosis

Human
osteoarthritic
chondro-
cytes,

SW1353 cells

[47]

miR-30c ATG5, ATG16L1 Autophagy

Human
intestinal

epithelial T84
cells

[48]

miR-146a TRAF6, IRAK1 Autophagy
C57BL/6J
mouse

chondrocytes
[49]

miR-146a Bcl2 Autophagy
C57BL/6J
mouse

chondrocytes
[50]

miR-146a HIF-1𝛼 Autophagy
C57BL/6J
mouse

chondrocytes
[50]

miR-17-5p SQSTM1/p62 Autophagy

C57BL/6J
mouse,
SW1353

human chon-
drosarcoma

cells

[51]

miR-17-5p ULK1 Growth modulation

Murine
macrophage
RAW264.7
cells, human
HEK 293T

cells

[52]

miR-17-5p Beclin1 Autophagy-related
resistance

A549 and
H596 lung
cancer cells

[53]

miR-17-5p Mcl-1, STAT3 Autophagy

Murine
macrophage
cell line

RAW264.7,
HEK293 cells

[54]
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Table 1: Continued.

microRNAs Targets (upstream or
downstream) Mechanisms Research cells

or models References

miR-21 PTEN/AKT/mTOR Autophagy

Human
degenerated
nucleus

pulposus cells

[55]

miR-21 GAS5 Autophagy
Human

osteoarthritic
chondrocytes

[56]

miR-21 GDF5 Chondrogenesis

Human
articular
chondro-
cytes, CH8
cell lines

[57]

miR-335-5p Unknown
Autophagy,

proliferation and
apoptosis

Human
osteoarthritic
chondrocytes

[58]

miR-9 SIRT1 Autophagy and
protection

Human
chondro-

cytes, C-28/I2
cells

[59]

miR-449a SIRT1 Autophagy and
protection

Human
chondro-
cytes,

SW1353 cells

[60]

miR-4262 SIRT1,
PI3K/AKT/mTOR Autophagy SD rat

chondrocytes [61]

miR-206 IGF-1,
PI3K/AKT/mTOR

Autophagy and
apoptosis

Wistar rat
chondrocytes [62]

miR-20 ATG10,
PI3K/AKT/mTOR

Autophagy and
proliferation

SD rat
chondrocytes [63]

miR-128a ATG12 Autophagy

Human
chondro-

cytes, SD rat
chondrocytes

[64]

miR-107 TRAF3, AKT/mTOR Autophagy and
apoptosis

Human
osteoarthritic
chondro-
cytes, SD

rats

[65]

miR-140-5p,
miR-149 FUT1 Autophagy, apoptosis

and proliferation

Human
osteoarthritic
chondrocytes

[66]

miR-590-5p TGF-𝛽1 Autophagy and
apoptosis

Human
chondrocytes [67]

elongation and enclosure of autophagosomes. Regrettably,
D’Adamo et al. [43] predicted the matched targets and other
genes but did not conduct further bidirectional verification.
What was unexpected was that mTOR activity suppressed
by miR-155 seemed to be contradictory to downregulation
of autophagy in chondrocytes. Inhibition of mTOR activity
was achieved via an important constituent part of mTORC2
named Rictor [70], possibly a target of miR-155 which was
able to phosphorylate AKT and activate mTORC1 [44].
Directly targeting regulation of ATGs may explain the dif-
ferences. Sufficient biological efficiency of miR-155 through

downstream target genes independently results in a decrease
in the degree of autophagy, without concerning mTOR
activity. Actually, further studies are required in order to gain
a better understanding of the controversial mechanism of
miR-155 in chondrocyte autophagy.

3.3. miR-30b. It is of interest that the miR-30 family demon-
strates a specific role in autophagy. The family members,
including miR-30a, miR-30b, miR-30c, miR-30d, and miR-
30e, have been reported to directly bind to the 3-UTR
of Beclin1 and greatly impacts phagophore nucleation [46].
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ATG16L1, which participates in elongation and enclosure, is
also involved [48]. In particular, of all family members, miR-
30b is the most prominent in the regulation of chondrocyte
autophagy. Chen et al. [45] constructed differential models
of autophagy with tumor necrosis factor-𝛼 (TNF-𝛼), 3-
methyladenine and rapamycin in ATDC5 cells, confirming
the interaction of Beclin1 and ATG5 targeted by miR-30b.
In contrast to miR-30b overexpression, its inhibition ulti-
mately causes the upregulation of autophagy and represses
apoptosis and cartilage degradation. Overall, miR-30b can be
regarded as a key factor in maintaining the balance between
autophagy and apoptosis induced by TNF-𝛼. Song et al. [71]
subsequently performed an additional study and clarified that
suppression of chondrocyte autophagy, which was related
to decreased expression of Beclin1, strongly correlated with
progression of OA via PI3K/AKT/mTOR. That suggests that
theremight be a potential signaling pathway initiated bymiR-
30b, the specific mechanism of which remains undiscovered
in OA cartilage.

3.4. miR-146a. The function of miR-146a in OA remains
unclear. Li et al. [72] discovered the induction of miR-
146a in chondrocyte apoptosis and a few years later, a
further research study that simulated themechanical pressure
of OA on chondrocytes in vitro, found targeting effects
towards Smad4 by miR-146a during mechanical injury [11].
Nonetheless, Smad4was considered not to be connected with
chondrocyte autophagy, while the role of the novel target
genes TNF receptor associated factor 6 (TRAF6) and IL-1
receptor associated kinase 1 (IRAK1) was established in the
meantime [49]. TRAF6 is a ubiquitin ligase that performs a
role in cell signal transmission. Activated TRAF6 can bind
to phosphorylated IRAK1 and initiate NF-𝜅B signaling, an
important process that mediates inflammatory cytokines and
reactions during degradation of OA cartilage [73]. According
to the basic experimental results of chondrocyte autophagy
induced by miR-146a via Bcl-2 and the mismatch between
miR-146a and Bcl-2 mRNA [50], intense research established
that TRAF6 and IRAK1 are direct targets of miR-146a and
intermediate factors of the regulation of Bcl-2 in hypoxia-
induced chondrocyte autophagy [49]. Considering these
results, the induction of hypoxia inducible factor-1𝛼 (HIF-1𝛼)
should be highlighted. HIF-1𝛼 can be detected in both OA
and normal cartilage [74], the expression levels of which may
be influenced by inflammatory cytokines or growth factors
[75]. Beclin1/Bcl-2 modulation [76], AMPK activation, and
mTOR suppression [77] are involved in autophagy induced
by HIF-1𝛼. During hypoxia-related processes, no increase in
miR-146a has been observed after the blocking of HIF-1𝛼
[50]. In general, HIF-1𝛼 acts as an upstream site and directly
targets miR-146a, regulating downstream genes and inducing
autophagy in chondrocytes.

3.5. miR-17-5p. miR-17-5p, a member of the miR-17∼92
cluster, is vital for growth and skeletal development [78].
miR-17-5p has received more attention in the field of
autophagy in recent years. Sequestosome-1/p62 (SQSTM1),
known as a selective autophagy adaptor protein, plays an

essential role in ubiquitin-mediated protein degradation.
The decreased expression of p62 has already been reported
on account of the ubiquitination pathway in the process
of autophagy [79]. Recent research has demonstrated that
autophagy is promoted by miR-17-5p through p62 in SW1353
human chondrosarcoma cells [51]. Overexpression of miR-
17-5p suppresses p62 expression and increases LC3 dots
(punctate spots) in cell experiments, consequently activating
autophagy, with researchers also obtaining the same results
in experimental OA animal models. Decreased LC3 puncta
and increased P62 protein levels in knee joints of OA mice
have been observed [51]. According to these findings, it is
speculated that there may be similarly low levels of miR-
17-5p and autophagy in human OA cartilage. In other non-
OA studies, several ATGs were found to be associated with
miR-17-5p, such as ULK1 [52], Beclin1 [53], and myeloid cell
leukemia-1 (Mcl-1, an antiapoptotic Bcl-2 family member)
[54]. But whether the autophagic mechanisms of these genes
exist in cartilage still require investigation.

3.6. miR-21. In spite of definite inhibition of autophagy by
miR-21 being established in nucleus pulposus cells [55], little
progress has been achieved in chondrocytes. Early miRNA
microarray research discovered differential expression of
miR-21 in cartilage [80]. Song et al. [56] demonstrated
reduced expression of miR-21 in OA compared to normal
cells and the downregulation of ATGs and LC3B induced
by the suppression of miR-21. Furthermore, they also ascer-
tained the critical role of growth arrest-specific transcript
5 (GAS5) in chondrocyte autophagy through suppression
of miR-21 for the first time. GAS5, belonging to the class
of long noncoding RNAs (lncRNAs), serves as a sponge
to bind to a series of miRNAs, blocking the interaction
between miRNAs and mRNAs. The induction of exogenous
GAS5 is able to reduce the expression of miR-21 and lead to
the downregulation of Beclin1, ATG7, and LC3B, indicating
a decreased level of autophagy [56]. Another researcher
predicted that growth differentiation factor 5 (GDF5) was
a potential downstream target of miR-21 in chondrocytes,
finally proving that it was [57]. Nevertheless, there is no
definite evidence to verify the targeting association between
them in autophagy. Findings of higher miR-21 expression in
OA from Zhang et al. [57] contradict the research of Song et
al. [56]. Different tissue sources and stage of OA contribute
to this divergence. The former research compared cartilage
specimens in OA with that in traumatic amputees, while the
latter compared the femoral condyle and tibial plateau, using
a relatively normal concept of OA. Prior to clinical patients
receiving a total knee replacement, the stages of OA disease
are not static. That is to say, not only does the degree of
cartilage degeneration interfere with miR-21 expression and
autophagy, but so too do other factors, such as mechanical
pressure and inflammation.

3.7. Emerging miRNAs. In addition to the miRNAs men-
tioned above, which have been investigated in depth, a
few miRNAs have just come to the fore. miR-335-5p has
been found in OA cartilage in which it directly promoted



BioMed Research International 7

autophagy of chondrocytes [58]. However, the specific mech-
anisms or pathways of miR-335-5p were not elucidated. Sev-
eral miRNAs, including miR-9 [59] and miR-449a [60], have
been considered to directly target SIRT1, which has protective
effects and regulate autophagy in chondrocytes. In recent
research, miR-4262 was also demonstrated to be effective
in these miRNAs. miR-4262 overexpression resulted in the
inhibition of SIRT1 and activation of PI3K/AKT/mTOR,
ultimately decreasing chondrocyte autophagy and induc-
ing the development of OA [61]. The PI3K/AKT/mTOR
signaling pathway has been mentioned above due to its
vital role in autophagy. This pathway encompasses a series
of associated genes, proteins, or cytokines, explaining why
miRNAs have effects on autophagy by targeting these factors.
For instance, researchers have recently clarified the negative
regulation of miR-206 targeting insulin-like growth factor-
1 (IGF-1) in autophagy through this pathway [62]. Another
notable miRNA is miR-20 [63], whose mechanisms in the
PI3K/AKT/mTOR pathway are similar to those of miR-
206. However, inhibition of autophagy is dependent on the
targeting effect of miR-20 on ATG10 too. ATG10, along with
ATG12 which is targeted by miR-128a [64], is essential in
the elongation process. Silencing of these ATGs triggers the
termination of autophagy. Zhao et al. [65] identified miR-107
as a promoter of autophagy in OA models. They also discov-
ered its target TRAF3 and inhibition of AKT/mTOR activa-
tion under miR-107 overexpression. Besides, miRNAs within
OA pathophysiological factors have also been discussed. It
was reported that proliferation, apoptosis, and autophagy
in chondrocytes could be influenced by miR-140-5p and
miR-149 [66]. Fucosyltransferase 1 (FUT1) was the direct
target, and disorders of glycosylated protein modification
mediated by FUT1 are responsible for aberrant autophagy.
Wang et al. [67] simulated the pathogenesis of OA by exerting
mechanical pressure on primary chondrocytes. They found
that increased expression of miR-590-5p in experimental
models demonstrated promotion of chondrocyte autophagy
via transforming growth factor 𝛽1 (TGF-𝛽1). Similar to
miR-146a, miR-590-5p is also involved in pressure-mediated
cartilage degeneration.

3.8. Potentially Relevant miRNAs. Although autophagy has
been widely studied, the mechanisms of the autophagic
network of miRNAs in chondrocytes still require further
investigation and to be better understood. Apart from their
identification, there are indications that a number of other
miRNAs are potential candidates, whose differential expres-
sions in OA cartilage have already been elucidated. Further-
more, through noncartilage research it has been established
that they are also involved in autophagic processes in other
tissues. A list of these miRNAs is presented in Table 2.

miR-140 is the most promising owing to its high cartilage
specificity in numerous basic research studies [131]. Wang
et al. [66] demonstrated a targeting relationship between
miR-140-5p and FUT1. Meanwhile ULK1 [81], a novel target
of miR-140 (miR-140-5p), has also been identified in 293T
cells. It can be predicted that the same mechanisms might
exist in OA chondrocytes, and intervention of miR-140 in

autophagy remains to be further clarified. miR-93 is an
additional miRNA that was found to target ULK1, mediating
hypoxia-induced autophagy in either MEFs or CHO cells
[83]. Similar to miR-93, miR-26a-5p shares the same target
[86]. Thus, one can speculate that it is a possibility that
miR-93 and miR-26a-5p participate in regulating the balance
of autophagy in chondrocytes. According to the analyses
of Haseeb et al. [85] and Akhtar et al. [113], miR-27b-
3p is considered to be the most abundant miRNA in OA
cartilage, possibly regulating the expression of MMP13 in
chondrocytes. In consideration of the autophagic clearance
of mitochondria induced by miR-27b-3p [114], miR-27b-
3p is likely to be involved in a number of undiscovered
autophagic activities in chondrocytes. Recently, miR-22-3p
has been investigated for MTDH-mediated autophagy in the
regulation of proliferation and sensitivity in osteosarcoma
cells [122]. With high expression levels of miR-22-3p in carti-
lage [91], researchers will showmuch interest in its induction
and pathways of chondrocyte autophagy. Research in OA
cartilage has confirmed differential expression of miRNAs,
including miR-218-5p, miR-634, miR-145, and miR-30a-5p
[47, 97–99]. Since PI3K/AKT/mTOR represents a common
pathway used by miR-218-5p, miR-634, and miR-145, degrees
of autophagy can be regulated due to potential targeted
upstream or downstream factors. Interestingly, the findings
also suggest that miR-30a-5p targets AKT genes during the
apoptosis of chondrocytes. Other teams have ascertained
several additionalmiRNAswhichmodulatemTOR signaling,
including miR-302b, mir-148a-3p, miR-99a-5p, miR-222-3p,
and miR-199a-3p [104, 105, 107, 109, 112]. Taken together,
as mTOR is at the core of autophagy, any interventions are
likely to regulate the process in chondrocytes. Furthermore,
regarded as a target towards SIRT1, miR-34a behaves in
accordance with miR-449a [28, 60]. Other target genes of
miR-34a, including ATG4B andATG9A, were also identified.
Considering the upstream circRNA.2837, which acts as a
sponge to miR-34a, its knockdown could induce neuronal
autophagy in vivo [119–121]. It is particularly important to
understand whether miR-34a modulates autophagy in OA
cartilage.

4. Conclusions and Future Perspectives

Failure of homeostasismodulated bymiRNAs in chondrocyte
autophagy represents a pivotal mechanism in the progres-
sion of OA. Although achievements have been obtained,
understanding of miRNA interventions in autophagy is
still in its infancy. Under the constant identification of
ATGs, additional miRNAs that have a potential role will
be explored in the near future. A giant regulatory network
of autophagy among miRNAs, target genes, and signaling
pathways is gradually emerging as bioinformatic prediction
has increased in popularity. Independent one-to-many or
many-to-one targeting relationships and specific crosstalk
effects are crucial in interfering with chondrocyte autophagy,
which remains indefinite and has become a great chal-
lenge. Moreover, the theory of competing endogenous RNAs
(ceRNAs) reveals the existence of an upstream regulatory
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Table 2: Predicted miRNAs and their potential targets in autophagy of OA chondrocytes.

microRNAs
Differential
expression in
OA cartilage,
References

Potential related
targets or genes

Mechanisms or
functions

Research
diseases, cells or

models
References

miR-140-5p [66] ULK1 Autophagy Human HEK
293T cells [81]

miR-93 [82] ULK1 Autophagy

Mouse
embryonic
fibroblasts
(MEFs),
Chinese

hamster ovary
cells (CHO)

[83]

miR-26a-5p [84, 85] ULK1 Autophagy
Primary cardiac
fibroblasts from
neonatal rats

[86]

miR-25 [87] ULK1 Autophagy

Human breast
cancer cells
(MCF-7),

normal human
mammary

epithelial cell
(MCF-10A)

[88]

miR-558 [12, 89] lncRNAMALAT1,
ULK1

Autophagy and
apoptosis

Rat myocardial
cells, H9C2 [90]

miR-210 [91] ATG7 Autophagy
Human lumbar
degenerated NP

cells
[92]

miR-29a [1, 91] TFEB, ATG9A Autophagy

Human
pancreatic

epithelial cells,
HPNE and
HPDE

[93]

miR-23b-3p [87] ATG12 Autophagy Traumatic brain
injury, SD rats [94]

miR-125b-5p [85, 95] UVRAG Autophagy
Systemic lupus
erythematosus,
human PBMCs

[96]

miR-218-5p [97] PIK3C2A,
PI3K/AKT/mTOR

Matrix
synthesis,

proliferation
and apoptosis

Human
osteoarthritic
chondrocytes,
SW1353 and
C28/I2 cells

[97]

miR-634 [98] PIK3R1,
PI3K/AKT/mTOR/S6

Matrix synthesis
and survival

Human
osteoarthritic
chondrocytes,
HEK293 cells

[98]

miR-145 [95, 99, 100] PI3K/AKT/mTOR Autophagy

Human
umbilical

cord-derived
mesenchymal

stem cells, HK-2
cell

[101]

miR-181b [102] PTEN/Akt/mTOR Autophagy
Parkinson’s
disease, PC12

cells
[103]

miR-302b [104] Smad3, Notch2,
mTOR pathway

Inflammation
suppression

Human
chondrocytes,
C-28/I2 cells

[104]
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Table 2: Continued.

microRNAs
Differential
expression in
OA cartilage,
References

Potential related
targets or genes

Mechanisms or
functions

Research
diseases, cells or

models
References

mir-148a-3p [85, 95] RAB12, mTOR1 Autophagy

Gastric cancer,
BGC823/CDDP

and
SGC7901/CDDP

cells

[105]

miR-99a-5p [106] mTOR Autophagy and
apoptosis

Human
immortalized
uroepithelial

cells (SV-Huc1),
bladder cancer

cells 5637
(HTB-9) and
T24 (HTB-4)

[107]

miR-222-3p [108] ATG12/p27-mTOR Autophagy

Human MM
cells, MM.1S,

MM.1R,
RPMI-8226,

U266,
NCIH929, and

ARH-77

[109]

miR-199a-3p [110, 111] IGF-1, mTOR Autophagy Osteocyte-like
MLO-Y4 cells [112]

miR-27b-3p [85, 113]
PTEN-induced
putative kinase 1

(PINK1)
Autophagy

Human cervical
HeLa,

dopaminergic-
like M17
cells

[114]

miR-24 [115] SIRT1, deacetylated
LC3 Autophagy Uterine sarcoma [116]

miR-138-5p [117] SIRT1 Autophagy
Human

neuroblastoma
cells (SH-SY5Y)

[118]

miR-34a [28] ATG4B Autophagy Tubular
epithelial cells [119]

miR-34a [28] ATG9A Autophagy SD rat
cardiomyocytes [120]

miR-34a [28] circRNA.2837 Neuronal
autophagy

SD rat spinal
neurons [121]

miR-22-3p [85, 91] Metadherin (MTDH) Autophagy
Human

osteosarcoma
cells (MG-63)

[122]

miR-377 [91, 100] Rapamycin Autophagy
Murine

macrophage
RAW264.7 cells

[123]

miR-103 [91, 100] SOX2 Autophagy and
apoptosis

LPS-injured
PC12 cells, SD

rats
[124]

miR-193b [110] Stathmin 1
Autophagy and
non-apoptotic
cell death

Human
oesophageal
cancer cells,

OE19, OE21 and
OE33

[125]

miR-16-5p [87]
Guanine

nucleotide-binding
𝛼-subunit12 (G𝛼12)

Autophagy Hepatic stellate
cells, HSCs [126]
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Table 2: Continued.

microRNAs
Differential
expression in
OA cartilage,
References

Potential related
targets or genes

Mechanisms or
functions

Research
diseases, cells or

models
References

miR-320 [95, 127] HIF-1𝛼 Autophagy Human RB cells
(WERI-RB1) [128]

miR-195 [129] GABARAPL1

Autophagy,
proliferation,
migration and
angiogenesis

Human
endothelial

progenitor cells
(hEPCs)

[130]

pathway referring to lncRNAs or circular RNAs (circRNAs),
breaking new ground inmiRNA research. Referring to recent
studies, lncRNA-ROR (lncRNA-regulator of reprogramming,
involved in chondrocyte proliferation and apoptosis) and
lncRNA-CIR (OAcartilage injury-related lncRNA) have been
demonstrated to directly participate in OA progression by
modulation of autophagy [132, 133]. Compared with these
findings, there are no explicit or similar reports about
circRNAs in OA chondrocytes. In other words, research on
circRNAs and their target miRNAs are urgently required
to achieve a more complete understanding of chondrocyte
autophagy.

Gene interference by miRNAs has become a promising
and required direction in the therapy of maintenance of
autophagy. Interventions in several known miRNAs have
been conducted in both in vitro and in vivo models, such
as miR-206 inhibitor andmiR-128a antisense oligonucleotide
[62, 64], ultimately achieving satisfactory autophagy recovery
and chondrocyte survival. However, autophagy is not the
sole factor that determines the fate of chondrocytes. OA
progression is holistic and closely associated with chondro-
cyte autophagy, apoptosis, and senescence, in whichmiRNAs
are likely to participate simultaneously. Considering the
multitargeting character of miRNAs, single functional stud-
ies appear insufficient to elucidate the complex autophagic
network. Comprehensive research on chondrocyte function
regulated by miRNAs is required before clinical application
of gene manipulation in autophagy is utilized.
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