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Abstract: In our organism, mucous surfaces are important boundaries against the environmental mi-
lieu with defined fluxes of metabolites through these surfaces and specific rules for defense reactions.
Major mucous surfaces are formed by epithelia of the respiratory system and the digestive tract.
The heme peroxidases lactoperoxidase (LPO), myeloperoxidase (MPO), and eosinophil peroxidase
(EPO) contribute to immune protection at epithelial surfaces and in secretions. Whereas LPO is
secreted from epithelial cells and maintains microbes in surface linings on low level, MPO and EPO
are released from recruited neutrophils and eosinophils, respectively, at inflamed mucous surfaces.
Activated heme peroxidases are able to oxidize (pseudo)halides to hypohalous acids and hypoth-
iocyanite. These products are involved in the defense against pathogens, but can also contribute
to cell and tissue damage under pathological conditions. This review highlights the beneficial and
harmful functions of LPO, MPO, and EPO at unperturbed and inflamed mucous surfaces. Among
the disorders, special attention is directed to cystic fibrosis and allergic reactions.

Keywords: lactoperoxidase; myeloperoxidase; eosinophils peroxidase; mucous surfaces; inflamma-
tion; hypothiocyanite; hypochlorous acid; cystic fibrosis; allergies

1. Introduction

Our organism is permanently exposed to various kinds of microorganisms. With
the predominant majority of these microorganisms, we are living in peaceful co-existence.
The immune system controls the activities of bacteria, viruses, fungi, protozoa, parasites,
etc., as well as the responses to any threat by the recruitment and activation of immune
cells and the formation of antibodies [1]. In addition, proteins of the acute phase, comple-
ment, coagulation, and contact systems can be activated and closely assist the immune
response [2]. These activities are directed to decrease tissue damage and to restore home-
ostasis of the affected tissues. Nevertheless, local or systemic inflammations can culminate
with pronounced tissue destruction and pathological states in severe cases. The division
of microorganisms into innocuous or harmful ones highly depends on the current im-
munological state of the individuals. It is well known that usually harmless microbes can
provoke serious deteriorations in immunosuppressed patients [3,4].

Mucous surfaces form specialized, indispensable to life compartments in the organism
with their own specific rules for defense reactions [5]. Important internal surfaces are
the epithelia of the upper respiratory system and the lungs (bronchia, bronchioles, and
alveola), and surfaces of the digestive tract (epithelia of oral cavity, esophagus, stomach,
small intestine, and colon). In addition, several glands expel their secretions at these and
other surface areas. Maintaining the integrity of mucous surfaces is highly essential for the
long-term functioning and survival of the organism. On the one hand, these epithelia form
a physical barrier. On the other hand, they are embedded in multiple functional processes
with defined fluxes of certain metabolites through these surfaces.

Heme peroxidases are known to contribute to immune protection in humans and many
other organisms. In mucous linings and secretions, lactoperoxidase (LPO) is an essential
component to maintain pathogen contamination on low level [6]. Myeloperoxidase (MPO)
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is another heme peroxidase that is enriched in polymorphonuclear leukocytes, also known
as neutrophils [7,8]. At inflamed sites, these cells recognize, phagocytose, and degrade
microbes and fungi under the involvement of MPO. A third peroxidase, the eosinophil
peroxidase (EPO) contributes to killing larger pathogens such as helminths by eosinophil
granulocytes (eosinophils) [9]. Under inflammatory conditions, immune cell-derived
heme peroxidases are also discussed for their involvement in destructive reactions. In
particular, MPO is known to exert a dual role as a beneficial or damaging agent in immune
reactions [10].

This review highlights the participation of heme peroxidases in immune reactions at
unperturbed and inflamed mucous surfaces and the involvement of peroxidase-derived
agents in the pathogenesis of diseases of mucous epithelia.

2. Organization of Immune Defense at Mucous Surfaces

At mucous surfaces, the immune defense is directed to ensure the physical integrity of
the epithelium and to protect adjacent tissues from any threat without disturbing specific
metabolic exchange processes within and through the epithelial layer. Two major activities
of epithelial cells contribute to immune protection: (i) Gel-forming mucins and an arsenal
of antimicrobial agents, including LPO and thiocyanate, are permanently secreted by
epithelial cells into the luminal space, and (ii) activation and damage of epithelial cells can
induce immune defense reactions.

2.1. Secretion of Immune-Protective Agents

Different immune-protecting agents are secreted by the epithelial cells of mucous
surfaces (Figure 1). These agents are directed to maintain homeostatic conditions in the
surface epithelia and adjacent luminal space.
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The epithelia of inner surfaces are covered by a thin mucous layer, in which the
main components are produced and released by epithelial Goblet cells and mucous cells
in submucosal glands [11]. This mucous lining consists of polymeric glycoproteins, the
mucins that form a network with viscoelastic and lubricious properties. In mucins, oligosac-
charide units are linked to a polypeptide backbone. Non-glycosylated regions of mucin
chains enable interchain disulfide crosslinking and are vulnerable to proteolysis [12,13].
Mucin molecules and rheology of the mucous layer differ at various mucosal epithelia in
dependence on their key physiological functions [14,15].
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Intact mucin networks protect the underlying cell layer from dryness, allow the
selective permeability of gases and nutrients, and represent a physical barrier that keeps
commensal microorganisms and pathogens away from the epithelial surface [5,14,16].
Usually, the mucous lining is free of or contains only a few pathogens.

Airway epithelia are covered by a periciliary and a mucous layer. The first layer is
responsible for lubrication of ciliary beat, transport of the mucous layer, and represents a
size exclusion barrier. In the mucous layer, mucins form a viscoelastic, isotonic fluid. Both
layers act together in mucociliary elimination of inhaled pathogens [12,16].

In the lungs, there is an intense cross-talk between epithelial cells and alveolar
macrophages to maintain homeostasis [17]. Alveolar macrophages are maintained in
a quiescent state by neighbored epithelial cells under non-activating conditions [18]. This
regulatory interaction is lost due to epithelial damage or by the presence of pathogens.
Lung epithelial cells are able to secrete a wide variety of antimicrobial agents such as
β-defensins, lactoferrin, LL-37, lysozyme, and secretory leukocyte proteinase inhibitor.
In addition, they can produce various surfactant proteins that are involved in pathogen
clearance [19]. Macrophages phagocytose undergoing cells, cell debris, and pathogens and
contribute to the regulation of the inflammatory process [20].

In the mucous lining, additional protection is given against potential invaders by
bactericidal components such as resistin-like molecule β and zymogen granulae protein
16 that are secreted from Goblet cells [21,22], as well as by antifungal peptides such as
histatins and MUC7 12-mer [23,24]. In the small intestine, Paneth cells release bactericidal
defensins, lysozyme, and cryptdins into the gut lumen [25].

In addition to these directly acting microbicidal agents, components of the lactoperoxidase-
H2O2-thiocyanate system are secreted at mucous epithelia. As outlined in more detail
in Section 4, this system exerts immune protection in mucous linings and secretions by
synthesis of the antimicrobial agent hypothiocyanite/hypothiocyanous acid.

Mucous epithelial cells secrete glutathione, which is a major protective agent against
oxidants. Particular high levels of glutathione are found in airway lining fluid [26]. In
lung epithelial fluid, other abundant species with antioxidative properties are ascorbate
and uric acid [27]. Lactoferrin is another protective component at mucous surfaces. It
exhibits antibacterial activity against Gram-negative bacteria and prevents bacterial growth
by sequestration of free iron ions [28]. Moreover, the iron-binding protein transferrin is
enriched in human bronchoalveolar fluid [29].

2.2. Immune-Activating Mechanisms at Mucous Surfaces

While secretory processes from epithelial cells are usually sufficient to warrant home-
ostatic conditions in the surrounding luminal space, the activation of the host’s immune
system is important when any molecular patterns are sensed by pattern recognition re-
ceptors in the epithelium. Under inflammatory conditions, both pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs, also
known as alarmins) initiate the recruitment and activation of immune cells to the inflamed
area [30–32].

Immune response depends on the pathogen type and the degree of cell and tissue
destruction. According to the dominating pathogens, three major routes for immune
response are differentiated [33]. The type 1 immune response with monocytes as effector
cells is directed to protect cells and tissues against intracellular bacteria, protozoa, and
viruses. Helminths and other extracellular parasites are targeted by basophils, mast
cells, and eosinophils in the type 2 immune response. In a third route, neutrophils are
mainly involved to recognize and kill extracellular bacteria and fungi. These pathways
are characterized by their own set of secreted cytokines and immunoglobulins, as well as
by the development of typical disease scenarios in the case of dysregulation. A general
problem in the thorough description of alterations at diseased mucous surfaces results
from the fact that several routes of immune response can concomitantly be activated.
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Although all of the three types of immune response can play a role at inflamed mucous
surfaces, the attention is often focused on type 2 immune reactions as parasites, helminths,
and viruses target predominantly mucous epithelial surfaces. Stressed and damaged
epithelial cells release several molecules playing the role of DAMPs and initiators of
allergic inflammations. Among them are thymic stromal lymphopoietin (TSLP), IL-33, and,
IL-25 [34–36]. These epithelial-derived cytokines regulate a broad spectrum of immune cell
responses and are involved most of all in the induction of Th2 cells, production of IgE by
B-lymphocytes, elicitation and activation of mast cells, eosinophils, and basophils [37].

Concerning heme peroxidases, LPO is commonly available in secretions also under
normal, non-inflammatory conditions. The other two peroxidases, MPO and EPO, can
be found at inflamed areas of mucous surfaces when neutrophils and eosinophils are
additionally recruited and activated.

3. Important Properties and Reactions of Heme Peroxidases
3.1. Selected Structural Properties

Whereas LPO and EPO are monomeric proteins [38,39], MPO has a dimeric structure,
where two identical subunits are linked by a disulfide bridge and each subunit consists
of a light and heavy polypeptide chain [40]. At neutral pH values, all of the three heme
peroxidases are cationic proteins. The isoelectric point of LPO is about 9.5 [41]. The
corresponding values for the two other peroxidases are usually given as >10 for MPO [42]
or >11 in the case of EPO [43]. Myeloperoxidase is rich in surface-located lysine and
arginine residues, which are important for the interaction with negatively charged proteins,
glycosaminoglycans, and DNA [44].

Common to all of the three mentioned peroxidases, MPO, EPO, and LPO, is the
presence of a heme group (ferric protoporphyrin IX) in each monomeric unit that is coupled
in contrast to other heme proteins (such as hemoglobin or cytochromes) by two (LPO, EPO)
or three (MPO) covalent linkages to the apoprotein, as shown by X-ray data (MPO, LPO)
and biochemical analysis (EPO) [39,45,46]. As a result, the heme becomes more or less
bow-shaped, the heme iron is marginally shifted from its central position to the proximal
side, electrons of the porphyrin ring are additionally stressed, and the position of the Soret
band is redshifted. The strongest effects on heme are observed in the case of MPO. These
heme deteriorations provide the basis for the extraordinary reactivity of heme peroxidases
including the oxidation of (pseudo)halides and the oxidation of numerous small molecules.
In Table 1, selected structural peculiarities of MPO, EPO, and LPO are summarized.

Table 1. Selected structural properties of heme peroxidases.

Property MPO EPO LPO

Overall structure dimeric [40] monomeric [38] monomeric [39]

Molecular weight 144 kDa [40] 71 kDa [38] 77.5 kDa [11],
Faraji 2017

p-value >10 [42] >11 [43] 9.5 [41]

Number of linkages
between heme and

apoprotein
3 [46] 2 [45] 2 [39]

Heme bending stronger as in EPO
and LPO slight slight

Displacement of central
heme iron to the proximal

side
0.2 Å [46] unknown 0.1 Å [39]

Soret band location 430 nm [47] 413 nm [48] 412 nm [49]
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3.2. Formation of Compound I

Depending on heme iron valency and the presence of a radical moiety, several redox
states of heme peroxidases can be differentiated. In the resting enzyme, heme iron is in
the ferric state. Upon reaction with hydrogen peroxide (H2O2), the so-called Compound
I is formed from the ferric enzyme. In Compound I, oxygen is coupled to ferryl iron by
a double bond and a further electron is taken from the porphyrin ring that represents a
porphyryl cation radical [50]. The highly reactive Compound I is able to catalyze two- and
one-electron oxidations of numerous small substrates. In the case of LPO Compound I, the
radical moiety of the porphyrin ring can spontaneously be transferred to the apoprotein,
most likely a tyrosine residue, forming an apoprotein radical that is known as Compound
I* [51,52]. This radical transfer is unknown for MPO and EPO.

3.3. Halogenation Cycle

The important substrates for the two-electron oxidation of Compound I of MPO, EPO,
and LPO are (pseudo)halides. Their oxidation yields hypohalous acids or hypothiocyanite
(OSCN−) as major products. Upon these two-electron oxidations, Compound I is recon-
verted into the ferric enzyme form. The sequence of the two reactions (ferric enzyme→
Compound I→ ferric enzyme) is called the halogenation cycle (Figure 2).
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Figure 2. Halogenation and peroxidase cycles of heme peroxidases. Further explanations are given
in the text. Por-Fe denotes the porphyrin-iron complex. X− stands for Cl−, Br−, I−, and SCN−. HOX
is the corresponding (pseudo)hypohalous acid. AH is an oxidizable substrate, and A· the resulting
substrate radical.

The three heme peroxidases differ in their ability to oxidize (pseudo)halides. At
neutral pH values, only MPO oxidizes Cl− at a reasonable rate [47]. Bromide is well
oxidized by MPO and EPO [47,48] and to a minor degree by LPO [51]. Oxidation of
I− and thiocyanate (SCN−) is known for all of the three heme peroxidases [47,48,51].
Lactoperoxidase Compound I* is unable to oxidize halides and thiocyanate. With increasing
acidity, rate constants increase for (pseudo)halide oxidation by MPO and EPO [47,48].
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Moreover, at pH 5, EPO is able to oxidize Cl− [48]. Furthermore, the ability of LPO to
oxidize SCN− increases under slightly acidic conditions [49].

3.4. Peroxidase Cycle

In one-electron oxidations of substrates by Compound I of these peroxidases (and
also by Compound I* of LPO) Compound II is formed, which contains an oxo-ferryl heme
iron, but no radical moiety neither in the porphyrin ring nor the apoprotein [40]. The list
of potential one-electron substrates of Compound I is long. The important one-electron
substrates for MPO are selected polyphenols, urate, tyrosine, tryptophan, sulfhydryls,
indole derivatives, nitrogen oxide, nitrite, H2O2, and superoxide anion radicals [53–58].

The reduction of Compound II to the ferric enzyme is also coupled with the one-
electron oxidation of substrates. In contrast to Compound I, the ability of Compound II
for substrate oxidation is restricted to a limited number of substrates. As a result of this
restriction, heme peroxidases can accumulate as inactive Compound II in the absence of
substrates that are well oxidized by Compound II. For MPO and LPO, efficient substrates
for Compound II are superoxide anion radicals, urate, tyrosine, serotonin, nitrite, and
selected flavonoids [53,57–63]. In the presence of these substrates, an accumulation of
Compound II can be avoided and the halogenation activity can be enhanced.

The reaction sequence (ferric enzyme → Compound I → Compound II → ferric
enzyme) is known as the peroxidase cycle (Figure 2). In the case of LPO, the conversion
of Compound I to Compound II can also occur via Compound I*, which is formed from
Compound I by an isoelectronic transition.

4. The Lactoperoxidase-Hydrogen Peroxide-Thiocyanate System in Mucous Fluids
and Secretions
4.1. Distribution of LPO

Lactoperoxidase is synthesized in the epithelial cells of secretory surfaces and secreted
into the luminal space. This protein is found in the epithelial lining covering the upper
airways, and in secretions such as milk, tears, and saliva [64]. In the gut, LPO is expressed
in the mouse epithelium, but not in human epithelial cells [65]. Evidently, in the human
small intestine and distal colon, the complex immunological defense is ensured without
the participation of LPO.

4.2. The LPO Knockout Mouse

In mutant mice, the total knockout of the LPO gene causes complex multisystem
inflammatory pathology as assessed by histological examination [66], namely inflammation
of myocardium, coronary artery, aorta, and cardiac valves. Moreover, other pathologies
concern inflammatory airway disease, glomerulonephritis, inflammation in the digestive
system, and the development of tumors in different organs [66]. LPO knockout mice have
a limited lifetime. About 30% of these mice died before they reached 1 year of age or
needed to be killed for human endpoints. Both overweight (and even obese) as well as
underweight mice were observed in the LPO knockout cohort [66].

These data indicate that LPO is an important component of immunological control at
mucous surfaces and in secretions that can only partly be compensated by other defense
mechanisms.

4.3. Formation of Hypothiocyanite/Hypothiocyanous Acid

At mucous surfaces and in secretions, LPO is known to act together with H2O2
and SCN−. These components are shortly referred to as the LPO-H2O2-SCN− system.
Two major aspects are under discussion about the mode of action of this system in anti-
inflammatory defense at these loci: (i) The formation of the microbicidal hypothiocyan-
ite/hypothiocyanous acid; and (ii) the control over the H2O2 level.

In the presence of low micromolar levels of H2O2, ferric LPO is converted into Com-
pound I that oxidizes SCN− to OSCN− in a very rapid reaction [51]. The latter ion is
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in equilibrium with its protonated form, the hypothiocyanous acid (HOSCN) with a p-
value of 5.3 [67] or 4.85 [68]. In contrast to HOCl [69,70] and HOBr [71], the reactivity of
OSCN−/HOSCN is more specific. It predominantly reacts with targets containing accessi-
ble sulfhydryl groups or selenocysteine residues [72,73]. Moreover, the uncharged HOSCN
is able to permeate through membranes and thus, can enter intracellular compartments.
In microorganisms, intracellular glutathione and sulfhydryls in cytosolic enzymes are
pronounced targets for oxidized SCN− [74,75]. In secretions, HOSCN can even penetrate
into biofilms [74,75].

In epithelial cells, cytosolic and mitochondrial thioredoxin reductases are known to
metabolize HOSCN to SCN− and H2O and thus, protect these cells from side reactions
of HOSCN [76]. Bacteria are unable to inactivate HOSCN in this way [76]. With these
activities, the LPO-H2O2-SCN− system contributes to the control over microorganisms at
numerous mucous surfaces and in secretions.

4.4. Secretion of Thiocyanate

Thiocyanate is also secreted from epithelial cells of mucous surfaces and secretory
glands. In circulating blood, SCN− concentration is about 10–120 µM [77,78]. The blood
level of SCN− depends on the patient’s smoking habit and diet regime. Higher SCN−

serum concentrations are found in persons smoking heavily or with a strong cabbage diet.
In secretory epithelial cells, SCN− is enriched from capillary blood by an active transport
mechanism via the sodium-iodide symporter [79]. This transporter, well known from
thyroid epithelium, accumulates both SCN− and I− in epithelial cells. Moreover, iodide is
well oxidized by LPO Compound I under the formation of an arsenal of oxidized iodine
species [80]. However, these products play only a minor role in mucosal defense due to the
low abundance of I− in the blood. The plasma level of I− is below 100 nM [81].

Secretion of SCN− (and also I−) from epithelial cells at the apical site occurs through
several mechanisms [82]. The main focus is usually directed on two anion channels, cystic fi-
brosis trans-membrane conductance regulator (CFTR) and pendrin. The transport of SCN−

through CFTR is stimulated by cAMP, whereas pendrin is sensitive to interleukin-4 [83]. A
third mechanism of SCN− transport is mediated by Ca2+-dependent Cl− channels [83].

In saliva, SCN− concentrations are around 0.5–4 mM [84,85], while the I− value is
reported to be 5–22 µM [84]. High micromolar SCN− concentrations were found in tears
(150 µM [86]), nasal airway fluid (300–450 µM [87]), and lung airway fluid (270–650 µM [88]).

4.5. Sources for Hydrogen Peroxide

There are several sources for H2O2 in mucous linings. Duox1 and Duox2 are assumed
to be the main sources of H2O2 in the mucous lining. These enzymes are expressed in the
apical plasma membrane of airway epithelial cells [89–91]. They use electrons from NADPH
to reduce dioxygen in order to superoxide anion radicals, which dismutate spontaneously
or are catalyzed by superoxide dismutases to H2O2 and O2.

Xanthine oxidase is an additional enzyme that reduces O2 to superoxide anion radicals
and H2O2 [92]. Enhanced activities of xanthine oxidase were observed in inflammatory
airways epithelia [93,94].

Few bacteria, which can colonize at mucous surfaces, are known to produce H2O2 [95],
namely Streptococcus pneumoniae and a few other Streptococcus species [96,97]. Microbial
H2O2 inhibits inflammasome-dependent processes of innate immune defense and thus,
promotes bacterial colonization [97].

4.6. Control over Hydrogen Peroxide

The second major aspect of the mode of action of the LPO-H2O2-SCN− system con-
cerns the control over the H2O2 level by LPO. The increased H2O2 level is assumed to favor
oxidative stress and numerous oxidative damage reactions of biological components most
probably via the Fenton reaction.
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In SCN− oxidation, LPO cycles permanently between the ferric form and Compound
I and thus, utilizes 1 mol H2O2 per 1 mol oxidized SCN−. This (pseudo)halogenation
cycle can be abated at low SCN− level in mucous linings. Under these conditions, the
probability rises for the spontaneous transformation of Compound I into Compound I* [51].
In addition, a broad range of substrates can be oxidized by Compound I (and also by
Compound I*) by abstracting one electron under formation of Compound II [52]. In the
absence of substrates that are able to reduce Compound II to ferric LPO, this can lead to
the arrest of the enzyme as inactive Compound II. As a result of low external SCN−, the
formation of microbicidal OSCN−/HOSCN is diminished and the level of H2O2 rises.

Hydrogen peroxide is freely permeable through biological membranes. In cells, the
level of H2O2 is controlled by several H2O2 consuming enzymes such as peroxiredoxins,
catalase, and glutathione peroxidase [98–100]. In mucous linings and secretions, LPO is a
major agent controlling H2O2. In the airway lining fluid, additional control of the H2O2
level is carried out by the high yield of glutathione together with extracellular glutathione
peroxidase [26,101].

Hydrogen peroxide reacts in the so-called Fenton reaction with transition metal ions
(Fe2+, Cu+) under the formation of highly reactive hydroxyl radicals and/or perferryl
species [102,103]. The probability for their formation rises at an enhanced H2O2 level and
in the presence of free metal ions. In order to avoid dangerous reactions of metal ions,
they are tightly controlled by several mechanisms in cells and tissues [104,105]. In airway
lining fluids, transferrin is the major component for binding iron ions [29]. In secretions,
lactoferrin is also able to scavenge and inactivate transition free iron ions [28].

5. Heme Peroxidases at Inflamed Epithelia
5.1. Major Functions of MPO and EPO at Inflamed Loci

With invading neutrophils, and to a minor degree with monocytes, MPO is attracted
to inflamed loci. Several major functions of MPO are discussed [10]. This enzyme plays an
active role during the phagocytosis of pathogens by neutrophils. It is apparently involved in
the rapid pH increase in newly formed phagosomes and thus, provides optimal conditions
for the action of serine proteases and microbicidal proteins.

In undergoing neutrophils, MPO is essential for the formation of neutrophil extracel-
lular traps [106], where MPO and other proteins from neutrophils are tightly associated
with DNA [107,108]. Traps are important for the defense against hyphenated fungi and
microbes, independent of phagocytosis [109,110].

In addition, MPO released from neutrophils attaches to negatively charged surface
areas, and forms complexes with several acidic proteins and polymers [44,111–117]. It
is able to penetrate into endothelial cells. Moreover, after residing at the basolateral
side, it affects the bioavailability of nitrogen monoxide in blood vessels [118,119]. On
the basis of these findings, an involvement of MPO is discussed in the pathogenesis of
numerous disease scenarios including atherosclerosis, vasculitis, rheumatoid arthritis,
neurodegenerative diseases, etc. [120–122].

Attachment of MPO to cell surfaces at inflamed loci can induce the formation of
antibodies against this protein [123]. The so-called myeloperoxidase-antineutrophil cyto-
plasmic antibodies play a role in the pathogenesis of different forms of vasculitis such as
glomerulonephritis [124] and vasculitis of the upper and lower respiratory tract [125].

In reactions of type 2 immune response, eosinophils are recruited and activated
together with mast cells and basophils [33]. Eosinophils are involved in the inactivation
and killing of larger pathogens such as helminths and other parasites [126,127]. Moreover,
they exhibit pronounced antimicrobial, antiviral, and antifungal activities [128]. After
contact with pathogens, they release highly cationic proteins from their granules including
EPO. In targeted cells, granule proteins create toxic pores, exhibit antiviral activities,
and promote oxidative stress [9]. EPO contributes to the damage of the reactions via
formation of HOBr [129]. Furthermore, these cells are important mediators of allergic
diseases [130,131].
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Similar to neutrophils, eosinophils are also known to release DNA-containing extracel-
lular traps, the so-called eosinophil extracellular traps [132,133]. In contrast to neutrophils,
the underlying process of trap formation in eosinophils is accompanied by the release of
free extracellular granules that can target conidia from Aspergillus fumigatus, a fungus that
is very common in allergic bronchopulmonary mycoses [134,135].

5.2. Disturbed Ion Transport in Cystic Fibrosis

In cystic fibrosis (CF), a multiorgan disease, secretion of anions from epithelial cells is
disturbed as a result of genetic defects in CFTR. Mutations of the CFTR gene are classified
into six main categories according to their impact on the CFTR protein. Severe CF pheno-
type is developed in people who are homozygous for class I, II, and III mutations [136]. In
class I mutation, translation of the CFTR protein is prematurely terminated. Protein mis-
folding and enhanced proteasome degradation are key characteristics for class II mutations.
The CFTR protein bearing class III mutation is incorporated into the plasma membrane, but
is defective and exists most likely in a closed conformation. In the less severe phenotypes
of classes IV to VI, functions of the anion channel are only partly disturbed. In many CF
reviews, the type of CFTR mutations is not specified or CF is related to the most common
∆F508 mutation [137] belonging to the class II mutation.

The apical ion channel CFTR transports SCN−, chloride, bicarbonate, glutathione,
and other anions into the mucous lining [138–140]. Together with the epithelial sodium
channel and other proteins, the CFTR channel contributes to the regulation of volume and
composition of extraepithelial fluid. In airway CF epithelia, reduced Cl− and bicarbonate
secretion and increased compensatory absorption of Na+ are responsible for water loss
in the periciliary layer, enhanced adherence of mucins to epithelial cells, altered mucin
properties, and decreased ciliary activity [141].

Moreover, it has been assumed that CF is associated with a lower SCN− level in mucous
linings and thus, with a decreased ability to generate the microbicidal −OSCN/HOSCN [142].
Indeed, in cell culture experiments with airway epithelial cells that are defective in the
CFTR channel, the ability to kill pathogens by −OSCN/HOSCN was impaired [139,142].
However, the analysis of nasal airway surface liquids of persons with or without CF
revealed no differences in SCN− concentrations between both groups [143]. Evidently, the
anion transporter pendrin can compensate deficient SCN− transport by CFTR. Furthermore,
pendrin is upregulated in airway epithelial cells by pro-inflammatory cytokines such as
interleukin-4 [83,144,145].

On the contrary, the SCN− concentration in nasal airway surface liquids was about
30 times higher than the SCN− level in the serum of both the CF patients and healthy
individuals [143]. In airway surface liquids, a similar ratio of 30 was determined for the
SCN− serum values of both the CF and healthy individuals [146,147].

5.3. Alterations in Mucous Properties in Cystic Fibrosis

In inflamed airway mucous fluids of CF patients, a lower pH of 6.8 was found as
opposed to the unperturbed linings with a pH of 7.1 [148]. Moreover, protons were enriched
in the nasal airway fluid of CF subjects with a pH of 6.57 in contrast to normal individuals
with a pH of 7.18 [149]. In another study, equilibrium pH values of freshly excised sinonasal
epithelia of CF patients were 7.08 as opposed to healthy subjects with a pH of 7.34 [150].

In the affected CF airways, a thicker and more viscous mucous was present that can
result in mucous stasis, dilation of gland ducts, and reduced mucous clearance [151,152].
For the observed diminished mucociliary transport in CF, the effect of mucous concentration
is more important than airway acidification [152]. Several factors are associated with
the formation of a more compact and viscous mucous in CF patients. The diminished
bicarbonate transport favors a more acidic pH [150,153,154] and higher Ca2+ concentration
in the airway surface liquid [155]. A decrease in the pH enhances electrostatic interactions
between mucins and thus, affects mucous viscosity [156]. The elevated Ca2+ mediates a
tighter cross-linking of mucin strands most likely via binding to specific domains [155,157].
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In CF patients, airway surface fluids are more susceptible due to their increased
viscosity to different opportunistic bacteria and fungi. Lung infections by Pseudomonas
aeruginosa, Burkholderia cepacia, and Aspergillus fumigatus are very common in CF [136,158].
These pathogens affect predominantly immunocompromised persons. In CF, a decrease in
the pH of airway fluids contributes also to impaired bacterial killing [159].

Since early childhood, CF patients suffer from recurrent infections in lungs and many
other organs. Deficiency in CFTR favors pro-inflammatory conditions including injury
of epithelial cells. This damage can be further promoted by recruited immune cells,
most of all by agents released from invading neutrophils as evidenced by the presence
of elastase [160,161], MPO, and MPO products such as methionine sulfoxide in airway
linings [162]. In severe cases, a progressive bronchiectasis can cause death by respira-
tory failure.

Moreover, the presence of oxidants contributes to more compact mucin structures by
inducing additional disulfide cross-links [163]. Oxidants generated by MPO from invading
neutrophils are known to contribute to mucous alterations. In addition, in the sputum of
CF patients, a higher yield of 3-chlorotyrosine and other tyrosine oxidation products was
detected [164].

5.4. Formation of HOCl by MPO in Inflamed Mucous Layers

Similar to LPO, MPO is also able to oxidize SCN−. Considering (pseudo)halide con-
centrations in blood, it has been found that MPO oxidizes at 0.1 M Cl− and 0.1 mM SCN−

at a pH of 7, which is nearly the same amount as these anions [165]. In mucous linings,
oxidation of SCN− by MPO dominates due to the markedly higher SCN− concentrations
(see Section 4.4). Moreover, SCN− is rapidly oxidized by HOCl and competes efficiently
with other targets for HOCl [166]. Therefore, at a first glance, the MPO-mediated formation
of HOCl seems to be unlikely in mucous linings. The preference of SCN− over Cl− in
reactions with MPO Complex I at pH 7 is attenuated with the decreasing pH. At pH 5, the
second order rate constant for the reactions of MPO Complex I with SCN− in comparison
to Cl− is only 20 times higher in contrast to a ratio of nearly 400 at pH 7 [47].

In mucous linings and epithelia, pH data were usually evaluated by pH microelec-
trodes or pH-sensitive fluorophors in droplets taken from biopsies. In particular, in the
case of inflamed materials, these kinds of measurements do not consider any local pH
deviations that might result from the formation of microcompartments within the more
compact mucous layer. Moreover, in the inflamed mucous of CF patients, DNA is known to
be complexed with mucins [163]. Similar to negatively charged polyelectrolyte films [167],
the more dense structure of mucous polymers and DNA can locally enhance the negative
charges of these polymers and thus, enrich protons and other cations at local areas within
the inflamed mucous layer. Interestingly, horseradish peroxidase and glucose oxidase
complexed with DNA exhibit a higher activity resulting from a significant decrease of pH
near the DNA surface [168].

The presence of MPO and MPO products was reported by several authors in the
inflamed mucous of CF patients [162,164,169,170]. The cationic MPO resides predomi-
nantly at acidic loci [44,111–117]. Myeloperoxidase-DNA complexes are well known from
neutrophil extracellular traps [106–108]. It is likely that undergoing neutrophils release
traps at inflamed mucous surfaces.

The attraction of MPO to mucous polymers and the possibility of more acidic pH
values at local areas would favor the formation of HOCl by the activated MPO. The ability
of MPO to generate free HOCl rises considerably below pH 6 [171,172].

5.5. Allergic Inflammations

Different allergic diseases are closely associated with the unbalanced type 2 immune
response, namely allergic asthma, atopic dermatitis, food allergies, hay fever, etc. Although
the pathogenesis of asthma and related allergic diseases is very complex and far from
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thorough understanding, enhanced oxidation of SCN− by heme peroxidases and, in
particular, activation of EPO are under discussion to contribute to disease development.

An overproduction of −OSCN/HOSCN has been assumed to play a role in the de-
velopment of allergic inflammation in the lung, as shown in asthma model mice and
asthma patients [173,174]. Upregulation of pendrin by IL-13 [145] and enhanced activity
of heme peroxidases are responsible for this overproduction [173]. In airway epithelial
cells, enhanced HOSCN activates via protein kinase A NFκB. At higher doses, HOSCN
induces epithelial cell necrosis [175]. The release of IL-33 and other mediators from necrotic
epithelial cells triggers an inflammatory response in airways [176,177]. Importantly, IL33
induces eosinophilia, and promotes several functions of eosinophils [178]. A vicious circle
under participation of IL-13, IL-33, and −OSCN may exaggerate and prolong the type 2
immune response in allergic diseases [175].

In SCN− oxidation, both MPO and more efficiently EPO, produce in addition to
the major product OSCN−, cyanate (−OCN) as a minor product [179]. The latter agent,
which is in equilibrium with urea, promotes carbamylation of proteins, a condition that
markedly affects the function of proteins and favors endothelial dysfunction and pro-
inflammatory processes [180–182]. Although different amino acid residues can be modified
in this way, lysine residues are a preferred target for carbamylation with the formation of
homocitrulline moieties. At sites of eosinophilic inflammations, an increased number of
carbamylated proteins was detected [183].

In addition, activation of EPO favors bromination and nitration of target molecules.
The 3-bromotyrosine, 3,5-dibromotyrosine, as well as 3-nitrotyrosine residues were detected
in proteins of the airway epithelium of patients with asthma [184–186].

5.6. Tissue Damage by Heme Peroxidases and Their Products

During an inflammatory response, additional tissue damage can occur by agents
released from the activated immune cells and undergoing tissue cells. Under chronic
inflammatory conditions, the repeated release of DAMPs from necrotic tissue cells can
frequently foment the inflammatory process [30]. In other words, inflammation is not termi-
nated and tissue homeostasis is not restored adequately. Immunocompromised individuals
are most of all affected by recurrent inflammations and opportunistic infections [3,187,188].
In the host’s tissues, there is a tight balance between the damage by agents from immune
and necrotic cells and the already existing mechanisms to resist and inactivate these de-
structive agents [1]. A shift in this balance towards damaging processes due to insufficiency
or exhaustion of the host’s defense mechanisms favors chronic conditions and disease
processes with long-lasting inflammations. Examples for the interplay between potentially
damaging agents and antagonizing principles are given in reference [10].

The major focus will be directed here on the potential role of MPO and EPO and their
products in the damage of epithelial cells of mucous surfaces under chronic inflammatory
conditions. Activated neutrophils and eosinophils release potential cytotoxic agents at
inflammatory loci. In addition to MPO and MPO-derived oxidants, neutrophils participate
in destructive reactions with numerous proteolytic enzymes such as elastase, cathepsin G,
proteinase 3, lysozyme, collagenase, and gelatinase and the formation of superoxide anion
radicals and H2O2 [10]. Cytotoxic eosinophil agents include EPO and EPO products, major
basic proteins, eosinophil-derived neurotoxins, eosinophil cationic proteins, superoxide
anion radicals, and H2O2 [9]. Therefore, heme peroxidases do not act alone in tissue
damage, but in concert with other destructive components. It is very challenging to predict
which agents predominate preferentially in damaging reactions. This highly depends on
the individual status of antagonizing components in the host’s cells and tissues.

In mucous linings, another set of antagonizing agents is present that can deactivate
toxic components in comparison with other body fluids. In blood, MPO released from
neutrophils is antagonized by the plasma protein ceruloplasmin, forming a tight inhibitory
complex with MPO [189–193]. Moreover, ceruloplasmin forms an inhibitory complex with
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EPO [193]. Only minor amounts of ceruloplasmin were detected in the airway lining
fluid [194].

Heme peroxidases can contribute to the formation of hypohalous acids and hypothio-
cyanite in order to damage the reactions. In mucous lining fluids, glutathione deactivates
these halogenated species and functions as a cofactor for extracellular glutathione peroxi-
dase to reduce H2O2 [26,101]. In healthy individuals, glutathione levels of the airway lining
fluid are more than 100-fold higher than in the plasma [26]. In addition to antioxidative
activities, this extracellular glutathione pool is a reservoir of cysteine for the synthesis
processes in epithelial cells [195]. Several pathological conditions are known with a reduced
level of glutathione in airway mucous linings, namely CF and idiopathic pulmonary fibro-
sis [196,197]. Therefore, a reduced level of extracellular glutathione attenuates protection
against HOCl and HOBr, and worsens the control over −OSCN/HOSCN and H2O2.

6. Conclusions

As important components of immune reactions, the heme peroxidases LPO, MPO,
and EPO and their products contribute to the protection against pathogens. On the other
hand, they can be involved in different pathologies concerning secretory mucous epithelia.
These opposite activities of heme peroxidases reflect the general situation of immune
defense. Aggressive metabolites have to be used to control and combat against pathogens.
Under certain conditions, these metabolites can be directed against the host’s own cells
and tissues.

Mucous epithelial cells secrete a variety of immune-protective agents, namely major
agents LPO, H2O2, and SCN−, which produce bactericidal −OSCN/HOSCN, as well as
mucins, glutathione, and transferrin. In unperturbed mucous linings, secreted components
maintain microorganisms under control and scavenge potential toxic agents. Alterations
in the composition of mucous linings, as well as damage of epithelial cells promote the
development of inflammatory processes. In CF, the secretion of anions such as chloride,
glutathione, bicarbonate, and SCN− is disturbed due to the defective CFTR channels.
Therefore, serious alterations in mucous properties result, which can favor colonization
of microbes on mucous surfaces. On the other hand, damage of epithelial cells of mu-
cous surfaces is associated with the induction of type 2 immune response, including the
recruitment and activation of eosinophils. Moreover, overproduction of −OSCN/HOSCN,
carbamylation of proteins, and appearance of brominated and nitrated amino acid residues
can contribute to epithelial cell necrosis. The latter mechanisms are discussed in the
pathogenesis of allergies such as asthma.

At inflammatory sites, invading leukocytes release MPO and EPO. Unlike LPO, these
two heme peroxidases are able to produce the powerful oxidants HOCl and HOBr. In
inflamed mucous linings, the chlorinating activity of MPO is apparently favored by com-
plexes of MPO with DNA, the resulting decrease of local pH, by glutathione deficiency,
and when competing effects by SCN− are limited. Further research is highly necessary to
verify these preliminary conclusions. Similar corollaries are valid for the participation of
EPO and EPO products in disease progression at mucous surfaces.
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