
https://doi.org/10.1177/0022034520972335

Journal of Dental Research
2021, Vol. 100(4) 369 –376
© International & American Associations 
for Dental Research 2020

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/0022034520972335
journals.sagepub.com/home/jdr

Research Reports: Clinical

Introduction
Dental caries affects more than 3 billion individuals globally 
and generates significant costs and health care burden 
(Kassebaum et al. 2017). Building on the understanding that 
initial (noncavitated) caries lesions can be arrested non- or 
microinvasively (e.g., fluoride varnish application, sealing, 
caries infiltration), the traditional invasive/restorative therapy 
of caries is restricted to advanced lesions, mainly as the place-
ment of restorations has been demonstrated to initiate a spiral 
of escalating and increasingly expensive retreatments (Frencken 
et al. 2016; Schwendicke, Splieth, et al. 2019).

Early management of noncavitated lesions requires their 
detection first. The standard diagnostic strategy, visual-tactile 
inspection, does usually not permit detecting early lesions on 
nonassessable (e.g., proximal) surfaces (Gimenez et al. 2015). 
A common additional method to detect early lesions on proxi-
mal surfaces and to assess their extent is bitewing radiography 
(Schwendicke, Stolpe, et al. 2015). While being more sensitive 
for detecting early lesions than visual-tactile assessment, the 
assessment of bitewings comes with significant variance 
between examiners and a considerable proportion of false- 
positive or false-negative detections (Schwendicke, Stolpe, et al. 
2015).

Artificial intelligence (AI), specifically deep learning using 
convolutional neural networks (CNNs), has been suggested to 
help overcome the limited reliability and validity of dental 
image analysis. CNNs allow to map an input (image) to an 
output (classification), based on a set of weights, learned from 
data (LeCun et al. 2015). The learning process involves 
labeling an image and providing both the image and the label 

972335 JDRXXX10.1177/0022034520972335Journal of Dental ResearchCost-effectiveness of Deep Learning Caries Detection
research-article2020

1Department of Oral Diagnostics, Digital Health and Health Services 
Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
2Department of Operative and Preventive Dentistry, Charité–
Universitätsmedizin Berlin, Berlin, Germany
3Department of Orthodontics, Dentofacial Orthopedics and 
Pedodontics, Charité–Universitätsmedizin Berlin, Berlin, Germany
4Department of Oral and Maxillofacial Surgery, Charité-
Universitätsmedizin Berlin, Berlin, Germany
5Department of Oral Medicine and Radiology, King George’s Medical 
University, Lucknow, India

A supplemental appendix to this article is available online.

Corresponding Author:
F. Schwendicke, Department of Oral Diagnostics, Digital Health 
and Health Services Research, Charité–Universitätsmedizin Berlin, 
Aßmannshauser Str. 4-6, Berlin, 14197, Germany. 
Email: falk.schwendicke@charite.de

Cost-effectiveness of Artificial Intelligence 
for Proximal Caries Detection

F. Schwendicke1 , J.G. Rossi1, G. Göstemeyer2, K. Elhennawy3, A.G. Cantu1, 
R. Gaudin4, A. Chaurasia5, S. Gehrung1, and J. Krois1

Abstract
Artificial intelligence (AI) can assist dentists in image assessment, for example, caries detection. The wider health and cost impact of 
employing AI for dental diagnostics has not yet been evaluated. We compared the cost-effectiveness of proximal caries detection on 
bitewing radiographs with versus without AI. U-Net, a fully convolutional neural network, had been trained, validated, and tested on 
3,293, 252, and 141 bitewing radiographs, respectively, on which 4 experienced dentists had marked carious lesions (reference test). 
Lesions were stratified for initial lesions (E1/E2/D1, presumed noncavitated, receiving caries infiltration if detected) and advanced 
lesions (D2/D3, presumed cavitated, receiving restorative care if detected). A Markov model was used to simulate the consequences 
of true- and false-positive and true- and false-negative detections, as well as the subsequent decisions over the lifetime of patients. A 
German mixed-payers perspective was adopted. Our health outcome was tooth retention years. Costs were measured in 2020 euro. 
Monte-Carlo microsimulations and univariate and probabilistic sensitivity analyses were conducted. The incremental cost-effectiveness 
ratio (ICER) and the cost-effectiveness acceptability at different willingness-to-pay thresholds were quantified. AI showed an accuracy 
of 0.80; dentists’ mean accuracy was significantly lower at 0.71 (minimum–maximum: 0.61–0.78, P < 0.05). AI was significantly more 
sensitive than dentists (0.75 vs. 0.36 [0.19–0.65]; P = 0.006), while its specificity was not significantly lower (0.83 vs. 0.91 [0.69–0.98]; 
P > 0.05). In the base-case scenario, AI was more effective (tooth retention for a mean 64 [2.5%–97.5%: 61–65] y) and less costly (298 
[244–367] euro) than assessment without AI (62 [59–64] y; 322 [257–394] euro). The ICER was −13.9 euro/y (i.e., AI saved money at 
higher effectiveness). In the majority (>77%) of all cases, AI was less costly and more effective. Applying AI for caries detection is likely 
to be cost-effective, mainly as fewer lesions remain undetected. Notably, this cost-effectiveness requires dentists to manage detected 
early lesions nonrestoratively.
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to the CNN, which iteratively adjusts itself to eventually be 
able to predict the presence of the labeled entity (a carious 
lesion) on unseen data. For detecting caries lesions, we previ-
ously trained, validated, and tested a fully convolutional neural 
network, U-net, yielding an accuracy superior to individual 
dentists (Garcia Cantu et al. 2020). Notably, the CNN showed 
significantly higher sensitivity than dentists, especially for 
detecting early lesions (more details are provided below). 
Dentists would use this AI technology via a software applica-
tion, in our case allowing to display detected carious lesions on 
bitewings provided to the software via an upload function. The 
clinical flow would be expanded by the radiographic viewing 
software, for instance, allowing to assess bitewings in their 
native state and using an overlay of AI-detected lesions (assist-
ing the assessment of lesion extension/depth).

In clinical care, the detection of a pathology (a caries lesion) 
has only limited impact on the patient (e.g., his or her health) or 
the health care system (e.g., the generated costs). Health out-
comes and costs are instead determined by the subsequent treat-
ment decisions (the costs for the diagnostics themselves are 
usually only a fraction of the treatment costs). We previously 
demonstrated that a systematic evaluation of diagnostic strate-
gies should be performed in combination with the provided 
therapy, ideally over a long-term horizon, mainly as initial treat-
ment decisions come with long-term consequences (e.g., 
retreatments required and costs generated) (Schwendicke, 
Paris, et al. 2015; Schwendicke, Stolpe, et al. 2015). In the pres-
ent study, we aimed to assess the cost-effectiveness of employ-
ing AI for proximal caries detection on bitewing radiographs.

Methods

Study Design

A model-based cost-effectiveness study was performed, build-
ing on a previously conducted diagnostic accuracy study 
(Garcia Cantu et al. 2020), in which a CNN was trained, vali-
dated, and tested on 3,686 retrospectively collected bitewing 
radiographs from a German dental clinic. Bitewings had been 
assessed for proximal caries lesions by a total of 4 experts (ref-
erence test). Only proximal caries lesions on permanent teeth 
were included. The yielded accuracy data were used to inform 
an established cost-effectiveness model (Schwendicke, Paris, 
et al. 2015). Note that, in a real-life setting, dentists would not 
only rely on AI but also triangulate the findings with those 
from clinical assessments and so on. They would further inte-
grate patient-level aspects (e.g., caries risk) and employ a 
range of further treatments (e.g., fluoride varnish instead of 
caries infiltration). Reporting of this study follows the 
Consolidated Health Economic Evaluation Reporting Standards 
(CHEERS) (Husereau et al. 2013).

Setting, Perspective, Population, Horizon

This study adopted a mixed public-private-payer perspective 
in the context of German health care (for more details, see the 

Appendix). Note that given this perspective, the true costs to 
clinicians and society (e.g., opportunity costs, nonmedical 
costs) are not fully reflected. For reimbursement decisions, 
though, this perspective is most relevant, which is why it has 
been the most common one in dental health economics in the 
past.

We modeled a population of posterior permanent teeth in 
initially 12-y-old individuals using TreeAge Pro 2019 R1.1 
(TreeAge Software), with the teeth’s proximal surfaces at the 
beginning of the simulation being sound, initially carious, or 
advanced carious according to prevalence data drawn from a 
previous study (Schwendicke, Paris, et al. 2015). We assumed 
all teeth to have a vital sensible pulp and not more than 1 lesion 
to occur per tooth.

Comparators

We compared 2 detection strategies for proximal caries lesions. 
In both groups, biannual visual-tactile caries detection was 
assumed to be performed, allowing to detect advanced (D2, 
D3) with some accuracy but not initial lesion stages. For these 
advanced stages, the only treatment available was restorative 
care (Schwendicke, Paris, et al. 2015).

In the control group (no AI), radiographic caries detection 
on bitewings by individual dentists was assumed to be pro-
vided in addition to visual-tactile detection every 2 y, allowing 
to detect also initial lesions and to increase the sensitivity to 
detect advanced ones. The accuracy data informing this group 
were built on a systematic review and meta-analysis 
(Schwendicke, Tzschoppe, et al. 2015), assuming this to be the 
most robust data available. In addition, and for the purpose of 
sensitivity analyses, we used the diagnostic accuracies of 7 
independent dentists who had evaluated the same test data of 
141 bitewing radiographs on which the CNN had been tested 
(Garcia Cantu et al. 2020). In the test group (AI), radiographic 
caries detection on bitewings provided every 2 y was assumed 
to be assisted by a diagnostic assistance system, based on a 
fully convolutional neural net, U-Net (Ronneberger et al. 
2015), that had been trained, validated, and tested as described 
elsewhere (Garcia Cantu et al. 2020). The emanating accuracy 
differences between groups translated into different treatment 
decisions and thereby cost differences. For the test groups, 
costs were further modified by the AI intervention generating 
costs on a per-use basis (see below).

Cost-effectiveness Model and Assumptions

We used a Markov simulation model, consisting of initial and 
follow-up health states. We modeled posterior teeth over their 
lifetime, with sound surfaces, initial carious lesions (E1/2/D1), 
or advanced ones (D2–D3) being the initial health states, the 
distribution of which was derived as described below. E1/2/D1 
may be detected and therapeutically arrested or not; in this 
case, they could progress to D2–D3 lesions, which would at 
some point be restored using a composite restoration (with a 
risk of endodontic complications for D3 lesions). Restorations 
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could fail and be replaced or repaired, and after repeated fail-
ure, a crown was to be placed, which again could fail and be 
replaced once. Similarly, endodontic complications could 
occur, which would be treated using root canal treatment, fol-
lowed by nonsurgical and eventually surgical retreatment in 
case of endodontic complications. If no further restorative or 
endodontic treatment option remained, an extraction was 
assumed, and teeth were replaced (with a certain probability) 
using implant-supported single crowns (ISCs, with both the 
implant and the crown coming with risks). The possibility of 
teeth transitioning to the next health state was based on transi-
tion probabilities. Simulation was performed in discrete annual 
cycles. The model (Fig. 1) had been previously employed and 
validated (Schwendicke, Paris, et al. 2015).

Input Variables

The sources of accuracy data have been described; data on 
prevalence are described in the Appendix. Further transition 
probabilities were largely built on data used in previous studies 

and the therein included calculations, as described in Table 1. 
Notably, the used data stemmed mainly from large cohort stud-
ies or systematic reviews (i.e., showed robustness), and their 
validity has been demonstrated before (Schwendicke et al. 
2013; Schwendicke, Graetz, et al. 2014; Schwendicke, Meyer-
Lueckel, et al. 2014; Schwendicke, Paris, et al. 2015; Schwendicke, 
Stolpe, et al. 2015).

Health Outcomes, Costs, and Discounting

Effectiveness was measured as the mean time a tooth was 
retained (in years). We assumed the valuation attached to the 
various health states of retained teeth (e.g., nonrestored, filled, 
crowned tooth) to be identical in the absence of any further data 
in this direction. Cost calculations were based on the German 
public and private dental fee catalogues, Bewertungsmaßstab 
(BEMA) and Gebührenordnung für Zahnärzte (GOZ), as 
described in the Appendix (where both units and quantities are 
fully displayed for each course of treatment). The costs of 
applying AI for analyzing a pair of bitewings are currently not 

Figure 1. Input data and model. The state diagram (central parts) shows the different health states (solid boxes). Transition or allocation probabilities 
determined the chance of passing between them, indicated by arrows. The data sources used to simulate individuals’ flow through the model are 
shown in dotted boxes at the left and right. Individuals started with teeth being either sound or showing E1/2/D1 and D2–D3 lesions. Sound surfaces 
could be detected as such, without any subsequent treatment, or false positively detected as initial (E2/D1) caries lesions depending on the detection 
method. False-positive detections on sound surfaces led to infiltration treatment, without any effectiveness gain, but money spent unnecessarily. Initial 
lesions (E2/D1) could again be detected (treated by resin infiltration) or not detected (and assumed to progress with some chance) and, depending 
on the efficacy of resin infiltration, be arrested or progress to D2 lesions. In a sensitivity analysis, we assumed all detected lesions to be treated 
restoratively instead. For advanced lesions (D2) not extending into the inner third of the dentin (D3), a two-surfaced restoration was assumed to 
be placed. This placement was not to be associated with pulpal risks, mainly as we assumed these lesions to be not deep (no proximity to the pulp). 
For lesions extending into the inner one-third of the dentin, the risk of pulp exposure was estimated at 0.3, and exposed pulps received direct pulp 
capping. The risk of restorative complications was derived from previous studies, and if restorations failed, they were assumed to be either renewed 
or repaired. If failing again, the placement of a full-metal crown (the standard crown therapy for most posterior teeth within statutory German health 
insurance) was assumed. Failed crowns were assumed to be replaced once, after which the tooth was extracted. Extracted teeth were assumed to be 
replaced using implant-supported single crowns; the proportion of replaced teeth was 0.8 in the base case and varied in sensitivity analyses.
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Table 1. Input Parameters.

Prevalence, Accuracy, Lesion Development, and Progression

Estimate Source (Reference)
Lesions into Inner Third  

of Enamel (E2)
Lesions into Outer Third 

 of Dentin (D1)
Lesions into Middle Third  

of Dentin (D2)

Prevalence
 Low risk Schwendicke, Paris, et al. 2015 0.14 0.025 0.005
 High risk Schwendicke, Paris, et al. 2015 2.14 × 0.14 1.66 × 0.025 1.66 × 0.005
Sensitivity and specificity
 Sensitivity visual-tactile Schwendicke, Paris, et al. 2015 0.00 0.00 0.311 (0.270–0.353)
 Specificity visual-tactile Schwendicke, Paris, et al. 2015 1.00 1.00 0.922 (0.892–0.945)
 Sensitivity radiography 

without AI (control)a
Schwendicke, Tzschoppe,  

et al. 2015
0.24 (0.21–0.26) 0.36 (0.24–0.49) 0.64 (0.59–0.70)

 Specificity radiography 
without AI (control)a

Schwendicke, Tzschoppe,  
et al. 2015

0.97 (0.95–0.98) 0.94 (0.89–0.97) 0.98 (0.97–0.98)

 Sensitivity radiography  
with AI (test)

Garcia Cantu et al. 2020 0.68 0.68 0.58

 Specificity radiography  
with AI (test)

Garcia Cantu et al. 2020 0.86 0.86 0.96

Probability of lesion 
development

Schwendicke, Paris, et al. 2015 P = 1.26 × 0.57252 ×  
2.7–0.1472 × 2α distribution: 
1.24–1.29

P = 1.26 × 0.0426 ×  
2.7–0.0521 × 2α distribution: 
1.24–1.29

P = 1.26 × 0.57 × 0.0426 × 
2.7–0.0521 × 2α distribution: 
1.24–1.29

Probability of lesion progression
 Progression to D1 lesion D2 lesion D3 lesion
 If untreated Schwendicke, Paris, et al. 2015 P = 2.63 (high risk) / 2.13 (low 

risk) × 3.0984 × (2α)–1.343 
(distribution: P × 0.87  
– P × 1.13)

P = 2.63 (high risk) / 2.13 (low 
risk) × 161.52 × (2α)–2.078 
(distribution: P × 0.87  
– P × 1.13)

P = 1.32 × 161.52 × (2α)–2.078 
(distribution: P × 0.87  
– P × 1.13)

 If infiltrated Schwendicke, Paris, et al. 2015 P = 0.4289 × (2α)–1.391 
(distribution: P × 0.23  
– P × 5.15)

P = 68.869 × (2α)–2.078 
(distribution: P × 0.23  
– P × 4.17)

N/A

Transition Probabilities

Health State Source (Reference) Transition Probability per Cycle Transition to Allocation Probability

Compositeb Pallesen et al. 2013 0.016 Composite 0.45
 Crown 0.10
 Repair 0.10
 Root canal treatment 0.25
 Extraction 0.10
Direct cappingc Schwendicke et al. 2013 0.111 Root canal treatment 0.95
 Extraction 0.05
Crown on vital toothd Burke and Lucarotti 2009 0.036 Root canal treatment 0.25
 Recementation 0.15
 Repair 0.10
 Recrown 0.40
 Extraction 0.10
Root canal treatment Lumley et al. 2008 0.021 Nonsurgical retreatment 0.20
 Surgical retreatment 0.30
 Extraction 0.50
Crown on nonvital toothd Burke and Lucarotti 2009 0.029 Recementation 0.20
 Repair 0.10
 Recrownd 0.60
 Extraction 0.10
Nonsurgical root canal 

treatment 
Ng et al. 2008 0.085 (Ng et al. 2008) Surgical retreatment 0.25

Extraction 0.75
Surgical root canal treatment Torabinejad et al. 2009 0.061 Extraction 1.00
Implant and implant-supported 

crown 
Torabinejad et al. 2007 0.010 Recementation/refixing 0.60

Recrown 0.20
 Reimplant 0.20

Analyses were performed for populations with low and high caries prevalence and risks, respectively. Sensitivities and specificities of caries detection 
with and without AI assistance were derived from our primary study and a meta-analysis as described. The probabilities of lesion development and 
progression if untreated or infiltrated were calculated according to patient’s age (α) using hazard functions. If possible, we calculated mean values 
and 95% confidence intervals or ranges to estimate distributions (in parentheses) for random sampling during microsimulation. Other transition 
probabilities were extracted from large cohort studies or systematic reviews; allocation probabilities were similarly derived from cohort studies or 
claims data analyses, or they were informed by clinical experience, as described in the main text and elsewhere.
AI, artificial intelligence; N/A, not applicable.
aIn a sensitivity analysis, data from 7 independent dentists were used. Mean (minimum–maximum) sensitivities and specificities of these dentists were 
0.36 (0.19–0.65) and 0.91 (0.69–0.98).
bData from 15- to 19-y-olds. Risk of pulpal exposure during recomposite assumed to be 10%. Crowning assumed if rerestored before.
cNinety-five percent of exposed pulps were treated using direct capping, and 5% were assumed to receive immediate root canal treatment.
dFor nonvital crowned teeth, risk of endodontic complications was calculated separately (Ferrari et al. 2012).
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known and were set at 8 euro in the base case and varied in 
sensitivity analyses. All costs were estimated per simulated 
tooth; costs that occurred for more than 1 tooth (e.g., for radio-
graphs, for AI, for assessment and advice) were distributed 
among the relevant teeth. Detailed estimates on costs, includ-
ing an estimation of development and operational costs for 
such an AI application, can be found in the Appendix. Note that 
we did not reflect on the efficiency impact of using an AI appli-
cation (i.e., the possible time savings).

Costs and effectiveness were discounted at 3% per annum 
(Institute for Quality and Efficiency in Health Care [IQWiG] 
2009). Discounting accounts for time preference, with effec-
tiveness gains or costs being valued higher if they are realized 
now than later. Discount rates were varied to explore the 
impact of higher or lower discounting. Given our study’s per-
spective, opportunity costs were not accounted for.

Analytical Methods

To analyze the model, we performed Monte-Carlo microsimu-
lations, with 1,000 independent teeth being followed over the 
mean expected lifetime of each individual in annual cycles. A 
microsimulation model was chosen, as this allows to follow 
individual teeth over time and has been the standard in similar 
studies in the field. Incremental cost-effectiveness ratios 
(ICERs) were used to express cost differences per gained or 
lost effectiveness when comparing the 2 strategies. To intro-
duce parameter uncertainty, we randomly sampled transition 
probabilities from triangular or uniform distributions between 
calculated 95% confidence intervals (CIs) or the range of 
parameters (Briggs et al. 2002). Moreover, the probability that 
a strategy was acceptable to payers at different willingness-to-
pay ceiling thresholds was explored (see the Appendix). 
Univariate sensitivity analyses were additionally performed.

Results

Study Parameters

The input parameters for our study are shown in Table 1. The 
sensitivity of visual-tactile detection was 0 for early lesions 
and remained low for advanced ones, while specificity was 
high. Using AI-based diagnostics assistance was consistently 
more sensitive than radiographic assessment by dentists with-
out AI, while dentists showed a slightly superior specificity.

Base-Case Scenario

In the base-case scenario (low risk, AI costs of 8 euro per appli-
cation, dentists’ accuracy from meta-analysis), AI was more 
effective (tooth retention for a mean [2.5%–97.5%] 64 [61–65] 
y) and less costly (298 [244–367] euro) than conventional 
assessment by dentists (62 [59–64] y; 322 [257–394 euro]). 
The ICER was −13.9 euro/y (i.e., AI saved money at higher 
effectiveness). Figure 2 shows the cost-effectiveness plane 
(Fig. 2A), with AI being more effective and less costly in the 
majority of simulations. This was also reflected in the 

incremental cost-effectiveness plane (Fig. 2B), where most 
(>77%) cases found AI cost-effective (less costly, more effec-
tive). The cost-effectiveness increased even more for payers 
with a willingness-to-pay exceeding 0 euro/y (Fig. 2C).

Sensitivity Analyses

A range of sensitivity analyses was performed (Table 2). In 
high-risk populations, the cost-effectiveness advantage of AI 

Figure 2. Cost-effectiveness plane, incremental cost-effectiveness, and 
net-benefit analysis of the base case. (A) The costs and effectiveness 
of the 2 comparators are plotted for 1,000 sampled individuals in 
each group. (B) The incremental costs and effectiveness of artificial 
intelligence (AI) compared with no AI are plotted. Quadrants indicate 
comparative cost-effectiveness (e.g., upper right: higher costs at higher 
effectiveness; lower right: lower costs and higher effectiveness). Inserted 
cross-tabulation: Percentage of samples lying in different quadrants. (C) 
We plotted the probability of comparators being acceptable in terms of 
their cost-effectiveness depending on the willingness-to-pay threshold 
of a payer. The range of willingness to pay was expanded from 0 to 100 
euro and did not considerably change beyond this threshold.
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increased compared with the base case; this was also the case 
when using the reported dentists’ accuracy from the original 
diagnostic study in which AI and dentists were tested on the 
same imagery. If treating all detected lesions restoratively (also 
early ones), the cost-effectiveness was reversed; AI was more 
costly and less effective than no AI. If varying the costs for AI, 
the cost-effectiveness advantage of AI was only minimally 
affected. If not assuming to replace any lost teeth, the cost-
effectiveness difference decreased, but AI remained the more 
cost-effective choice. Assuming all lost teeth to be replaced or 
varying the discount rates had only a limited impact on 
cost-effectiveness.

Discussion
The number of studies using AI and, specifically, deep learning 
in dentistry and dental image analysis is rapidly increasing 
(Schwendicke, Golla, et al. 2019). So far, these studies largely 
have focused on evaluating the developed models for their 
accuracy, which, by itself, transports only limited value to 
patients, providers, and health care organizers. This value 
rather emanates from the subsequent decisions made, as these 
determine if, for example, a caries lesion is arrested or pro-
gressed and if a tooth is lost or retained long term, all of which 
come with associated costs (Baelum et al. 2012). The present 
study assessed the cost-effectiveness of an AI-based diagnostic 
assistance application for caries detection and found AI less 
costly and more effective over a lifetime horizon despite being 
more costly initially. We hence confirm our hypothesis.

A number of aspects need to be discussed. First, and as 
shown in other instances in dental cost-effectiveness analyses 
before, we found the initially more costly comparator to be 
cost-effective long term (Schwendicke et al. 2016). This was 
because costs occurring over the lifetime of a patient, mainly 
for restorative, prosthetic, or further care, are rather high and 
accumulate in an escalating fashion. The relevance of costs for 
tooth replacement, for example, was confirmed in a sensitivity 
analysis of the present study. Our findings highlight the 

relevance of an appropriate study horizon to yield meaningful 
results; a short-term follow-up study would not have been able 
to reflect this comprehensively. Second, this cost-effectiveness 
was realized largely via AI having a higher sensitivity, facilitat-
ing effective arresting therapies. Notably, the difference in 
cost-effectiveness between AI and no AI was not as pronounced 
as the difference in sensitivities (AI was by large twice as sen-
sitive as the dentists) mainly due to reversed differences in 
specificity, in which the dentists showed a limited advantage. 
This demonstrates the effects false-positive diagnoses can have 
on cost-effectiveness and highlights the importance of the test 
specificity as a measure of accuracy. Our findings suggest the 
need of dentists doublechecking any AI suggestions. Third, 
and associated, the cost-effectiveness emanating from sensitiv-
ity and specificity stems from the deduced therapies; we have 
demonstrated in previous studies that combining a sensitive 
detection method is only cost-effective if “safe,” noninvasive, 
or microinvasive therapies are applied (Schwendicke, Paris, et 
al. 2015). Assigning invasive therapies to any (i.e., also early) 
detected lesion (as has been found the standard for many den-
tists worldwide) drastically changed the cost-effectiveness of 
AI: the assessment without AI showed nearly the same costs 
and effectiveness, mainly as the low sensitivity of dentists to 
detect early lesions allowed only very limited negative impacts 
of restoring these lesions. In contrast, AI was now by far more 
costly and less effective than assessment without AI. It seems 
recommendable that such sensitive AI applications provide 
information about not only the detected lesion but also its 
depth and recommended therapy options to mitigate the out-
lined detrimental effects of possibly harmful treatment deci-
sions stemming from early lesion detection. Fourth, we found 
this cost-effectiveness to be modified by the risk profile of the 
population. In high-risk populations, it was more relevant to be 
sensitive (using AI) than in low-risk populations. Future AI 
applications should aim to reflect such risk profiles, for exam-
ple, by cross-usage of meta-data of each practice (reflecting on 
prevalence) or risk profile data from each individual patient. 
Last, we found the cost-effectiveness ranking to hold true in a 

Table 2. Cost-effectiveness in the Base-Case and Sensitivity Analyses.

Dentists with AI Dentists without AI

Analysis Cost (Euro) Effectiveness (y) Cost (Euro) Effectiveness (y) ICER (Euro/y)

Base case 298 (244–367) 64 (61–65) 322 (257–394) 62 (59–64) –13.9
High risk 402 (323–478) 61 (58–63) 482 (390–570) 58 (55–61) –27.1
If treating only restoratively 468 (374–564) 56 (54–60) 321 (238–383) 62 (60–64) –27.8
Dentists’ accuracy from Garcia-Cantu et al. (2020) 298 (244–367) 64 (61–65) 329 (236–402) 62 (59–64) –15.5
Low costs for AI (4.00 euro/analysis) 296 (242–351) 64 (61–65) 322 (257–394) 62 (59–64) –12.8
High costs for AI (12.00 euro/analysis) 301 (246–370) 64 (61–65) 322 (257–394) 62 (59–64) –14.8
0% teeth replaced 246 (218–275) 64 (61–65) 249 (203–284) 62 (59–64) –1.5
100% teeth replaced 310 (252–378) 64 (61–65) 339 (262–406) 62 (59–64) –14.5
Discounting rate 1% 498 (394–627) 64 (61–65) 572 (407–701) 62 (60–64) –35.9
Discounting rate 5% 209 (175–244) 64 (60–65) 214 (164–255) 62 (60–64) –2.5

Mean and 2.5% to 97.5% percentiles are shown. The rationale behind modeling an upper/lower bound of AI costs of 4.00 and 8.00 euro is provided 
in more detail in the Appendix. The range of replaced teeth includes the minimum and maximum possible. The range of discounting rates follows 
recommendations for cost-effectiveness studies in our setting (IQWiG 2009).
AI, artificial intelligence; ICER, incremental cost-effectiveness ratio.



Cost-effectiveness of Deep Learning Caries Detection 375

range of further sensitivity analyses. These reflected the uncer-
tainties in costs but also accuracies, discount rates, and clinical 
pathways (via replacement probabilities for lost teeth). For 
costs, it was relevant to show that even for relatively high costs 
per AI application, cost-effectiveness was given. Notably, 
these costs are only assumptions right now and reflect the 
potential direct medical costs to providers; they are, however, 
grounded in credible assumptions toward the costs for devel-
oping and operating such an AI application, as detailed in the 
Appendix. Nonmedical or indirect costs (e.g., those for imple-
mentation, educating staff) were not considered. From a soci-
etal perspective, further costs (e.g., indirect costs to patients) 
may be relevant. Regarding the accuracies, we used different 
accuracy data for dentists and found the model to be cost-effec-
tive in both analyses. Notably, both analyses also showcased the 
discussed variability in dentists’ accuracy, which introduces 
uncertainty in cost-effectiveness (e.g., Fig. 2A). Future studies 
should aim to reflect these uncertainties in more depth and may 
be wanting to put monetary values on reducing them (e.g., 
through value-of-information analyses).

This study has a number of strengths and limitations. First, and 
as a strength, this is the first study assessing the cost-effectiveness 
of any “AI” or, specifically, deep learning intervention in den-
tistry. Our study thus provides, for the first time, a different 
perspective on the potential impact of this disruptive technol-
ogy for dental care. It further can assist to inform decision 
makers in health care organizations but also research funding 
to prioritize (or not) further assessments of and investments 
into these technologies. Second, the used approach and the 
employed model have been validated before; they allow 
extrapolating short-term accuracy data into meaningful long-
term outcomes (tooth retention and costs). Third, and as a limi-
tation, the data informing our study were partially based on 1 
specific diagnostic accuracy study, testing 1 deep learning 
model against a limited and likely nonrepresentative number of 
dentists. Comparing different models against different dentists 
may yield different outcomes. Fourth, our evaluation was 
focused on German health care and is not fully generalizable. 
This relates to both costs but also the modeled treatment deci-
sions and further aspects such as assumptions toward tooth 
replacement or discounting. That said, cost estimation using 
fee items of the German fee item catalogues has been found to 
reflect the true treatment efforts to some degree and to yield 
estimates comparable with those from other health care set-
tings (Schwendicke, Graetz, et al. 2014; Schwendicke et al. 
2018). Moreover, they reflect the true direct medical costs to 
third party-payers and hence, indirectly, society and are rele-
vant for decision makers in Germany. Also, while costs may 
somewhat differ in other health care systems, it is unlikely that 
the obtained ranking of interventions will change, but rather 
the magnitude of the observed differences. Last, and as men-
tioned, this study only partially reflects all aspects relevant to 
decision making; it is a simplification, and our findings should 
be confirmed by prospective randomized studies reflecting on 
the real-world decisions and cost-effectiveness emanating 
from the application of AI for diagnostic assistance in 

dentistry. For example, it is conceivable that dentists may not 
accept all detections and deviate in their treatment decisions, 
possibly to the benefit or detriment of patients’ health. 
Moreover, as outlined, treatment decisions will admittedly 
consider a range of factors (perceived lesion activity, patients’ 
wishes, dentists’ expertise), all of which will determine cost-
effectiveness to some degree.

In conclusion, and within the limitations of this study, AI to 
support proximal caries detection on bitewings was cost- 
effective regardless of a payer’s willingness to pay. This cost-
effectiveness was grounded in a higher sensitivity to detect 
early caries lesions, allowing to arrest them and thereby avoid-
ing costly late retreatments. Notably, it only held true if 
detected early lesions were treated nonrestoratively. AI has the 
potential to improve care at lower health care costs.
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