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Apolipoprotein E (apoE), a 34 kDa glycoprotein,mediates hepatic and extrahepatic uptake of plasma lipoproteins
and cholesterol efflux from lipid-laden macrophages. In humans, three structural different apoE isoforms occur,
with subsequent functional changes and pathological consequences. Here, we review data supporting the in-
volvement of apoE structural domains and isoforms in normal and altered lipid metabolism, cardiovascular
and neurodegenerative diseases, as well as stress-related pathological states. Studies using truncated apoE
forms provided valuable information regarding the regions and residues responsible for its properties. ApoE3
renders protection against cardiovascular diseases by maintaining lipid homeostasis, while apoE2 is associated
with dysbetalipoproteinemia. ApoE4 is a recognized risk factor for Alzheimer's disease, although the exactmech-
anism of the disease initiation and progression is not entirely elucidated. ApoE is also implicated in infections
with herpes simplex type-1, hepatitis C and human immunodeficiency viruses. Interacting with both viral and
hostmolecules, apoE isoformsdifferently interferewith the viral life cycle. ApoE exerts anti-inflammatory effects,
switching macrophage phenotype from the proinflammatory M1 to the anti-inflammatory M2, suppressing
CD4+ and CD8+ lymphocytes, and reducing IL-2 production. The anti-oxidative properties of apoE
are isoform-dependent, modulating the levels of various molecules (Nrf2 target genes, metallothioneins,
paraoxonase). Mimetic peptides were designed to exploit apoE beneficial properties. The “structure correctors”
which convert apoE4 into apoE3-like molecules have pharmacological potential. Despite no successful strategy
is yet available for apoE-related disorders, several promising candidates deserve further improvement and
exploitation.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Apolipoprotein E (apoE), a glycoprotein containing 299 amino acids,
is associated in plasma with almost all lipoprotein particles. The major-
ity of apoE in plasma is derived from hepatocytes, but there are some
other peripheral sources among which macrophages, astrocytes and
adipocytes are the most important. ApoE is mainly involved in the
lipid metabolism, however so far it was revealed to be important
for other processes such as neuroprotection, anti-microbial defense,
oxidative stress and inflammation. Through its interaction with the
LDL-receptor family members, apoE participates in the cholesterol
transport [1]. In plasma, apoE mediates the clearance of lipoprotein
remnants, while in the vascular wall apoE secreted by themacrophages
participates in the cellular cholesterol efflux from the atheroma [2].
Macrophage-specific expression of apoE is atheroprotective even if it
has no effect on the plasma lipid levels [3,4]. Under inflammatory stress,
macrophage-derived apoE is decreased [5] and hence its local beneficial
effect is diminished (abolished). In the brain, the astrocytes represent
the main supplier of apoE, the most abundant apolipoprotein in the ce-
rebrospinal fluid [6]. ApoE is also expressed by adipocytes and apoE car-
ried on lipoproteins plays an indispensable role in adipogenesis, as
reviewed in [7].

ApoE has two structural and functional domains [8], the N-terminal
domain (amino acids 1–191) and the C-terminal domain (~206–299),
joined by a protease-sensitive loop, as schematically represented in
Fig. 1. The N-terminal domain consisting of a four antiparallel helix
bundle, contains the receptor-binding region (~136–150 and Arg172)
and the heparan sulfate proteoglycans (HSPGs) binding region, with a
weak lipid-binding capability [9]. The C-terminal domain comprises
amphipathic α-helices, the high-affinity lipid-binding region in the
region ~244–272 and the region 267–299 responsible for apoE self-
association [10]. It was determined that highly conserved regions ap-
pear to be linked to the primary apoE functions, such as ligand binding,
and less conservation of amino acids was found at the ends of the pro-
tein [11].

In contrast to other mammals, humans present three isoforms of
apoE, named apoE2, apoE3, and apoE4, which are the products of the
ε2, ε3 and ε4 alleles [12]. The ε3 allele is the most common occurring
Fig. 1. Schematic representation of apoE3 structural and functional regions. ApoE
protein has two main domains joined by the hinge region (pink). The N-terminal
domain (yellow) contains four α-helices (green) and includes the receptor binding
region (136–150), HSPG binding region (142–147), and the amino acids 112 and 158
that vary between apoE isoforms. The C-terminal domain (blue) comprises the lipid
binding domain (244–272) and apoE self-association region (267–299). Amino acids
Arg61 and Glu255 are responsible for apoE domain interaction. The location of p-tau
binding sequence (245–260) is also represented. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
in ~77% of the general population, while the ε2 allele accounts for ~8%
and the ε4 allele for ~15%, as reviewed by [13]. The three isoforms differ
in the amino acids at positions 112 and 158. ApoE3 isoform, the most
prevalent isoform in normolipidemic population, has Cys112 and
Arg158. Maintaining the homeostatic levels of lipids, apoE3 plays a
protective role in cardiovascular diseases. ApoE2 has two cysteines
(Cys112 and Cys158) and is associated with dysbetalipoproteinemia (hy-
perlipidemia). ApoE4 has two arginine residues (Arg112 and Arg158) and
represents a risk factor for Alzheimer's disease (AD). In apoE4, Arg61

from the second α-helix and Glu255 from the C-terminal region are re-
sponsible for the “domain interaction” [14]. However, other species
present Thr instead of the human Arg61. Interestingly, when the
Arg61–Glu255 interaction is disruptedwith small molecules, apoE4 bind-
ing preference shifts from VLDL to HDL particles, suggesting that the
“structure correctors” converting apoE4 to an apoE3-like molecule
may represent a valuable therapeutic approach [15].

In the current review, we discuss the correlation between apoE
structure and its involvement in various pathologies (hyperlipidemia,
cardiovascular and neurodegenerative diseases, infections and stress-
related dysfunctions), in a view of prospective apoE-based therapeutic
strategies.

2. Lipid Metabolism and Cardiovascular Disorders

The importance of apoE in lipidmetabolismhas been recognized de-
cades ago. In animal models, apoE deficiency is associated with athero-
sclerosis [16]. Due to its high-affinity for LDL-receptor family members,
apoE facilitates hepatic and extrahepatic uptake of plasma lipoproteins
[1]. High density lipoproteins (HDL) represent a heterogeneous group
of lipoproteins among which mature spherical particles are responsible
for the atheroprotective function, promoting the removal of cholesterol
from macrophages [17,18]. Lipidation of both apoE and apoA-I leads to
HDL de novo generation, but different lipids are recruited by the two
apolipoproteins leading to various HDL subfractions [19]. Moreover,
the binding of various proteins to HDL particles is dependent on apoE
content of HDL. For instance, apoE concentration on HDL particles is im-
portant for binding of complement factor H to HDL, regulating the alter-
native pathway of complement cascade activation [20]. In addition, it
was demonstrated that apoE genotype has high impact on apoCI con-
centration in plasma [21,22]. Considering that apoE gene belongs to
the cluster containing also apoCI, apoCIV and apoCII genes, and their
transcription regulation is a complex process involving interactions be-
tween proximal and distal regulatory regions, a correlation between
apoE and the other genes levels may be observed. Cell-specific en-
hancers such as HCR.1 and HCR.2 in hepatocytes [23–25], ME.1 and
ME.2 in macrophages, adipocytes and astrocytes [26–29] regulate the
genes of the cluster through the binding of various transcription factors.

Despite the known association between apoE genotype and cardio-
vascular disease (CVD), in a recent large study no correlation between
circulating apoE concentration and CVD events was found, suggesting
that CVD risk linked to apoE genotype may be explained considering
the specific functions of apoE isoforms rather than the apoE concentra-
tion in the blood [30]. A linear relationship between apoE genotypes
(ε2/ε2 N ε2/ε3 N ε2/ε4 N ε3/ε3 N ε3/ε4 N ε4/ε4) and both LDL-
cholesterol levels and coronary artery diseases was found [31].

Due to their structural variances, the three apoE isoforms have dif-
ferent receptor affinities and lipoprotein-binding preferences. Thus,
apoE3 and apoE4 isoforms bind LDL-receptors, whereas apoE2 is defec-
tive [32]. However, apoE2 is not defective in binding to all LDL-receptor
family members, especially LRP-1 [33]. ApoE2 and apoE3 isoforms
preferentially bind to small HDL particles, while apoE4 isoform
preferentially binds to large triglyceride-rich VLDL particles [34].
Nguyen et al. proposed a two-step mechanism of reversible binding of
apoE to lipoproteins, involving an initial interaction and then opening
of the N-terminal helix bundle domain of the apoE molecule [35].
Protein-protein interactions were found to be important for apoE
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binding to HDL3, while apoE-lipid interactions are important for
VLDL binding [35]. ApoE lipidation status is also important for its
interaction with other lipoprotein components. A recent study revealed
that lipid-free apoE3 has the highest potential for binding and activation
of PLTP, an important HDL modifying lipid transfer protein [36].
Interestingly, apoE lipidation abolished these differences in PLTP
binding potential [36].

Transgenic mice overexpressing human apoE3 developed hypertri-
glyceridemia, due to stimulated VLDL triglyceride production and
impaired VLDL lipolysis [37]. However, adenoviral gene transfer of
human apoE isoforms in apoE-deficient mice showed that overexpres-
sion of human apoE2 increased plasma triglycerides and cholesterol;
by contrast overexpression of human apoE3 or apoE4 caused neither
hypertriglyceridemia nor hypercholesterolemia [38].

Plasma apoE concentrationwas found to be lower in apoE4 homozy-
gotes as compared to apoE3 homozygotes [39]. Plasma lipid abnormal-
ities associatedwith apoE4 can be explained by the higher rate of apoE4
catabolism as compared to apoE3. This accelerated catabolism is based
on apoE4 features: a higher affinity for apoE receptor, the association
with VLDL and the ability to faster convert VLDL remnants to LDL [39].

Macrophage-secreted apoE mediates cholesterol efflux, preventing
cholesterol overload and the subsequent transformation into foam
cells [40]. Cullen et al. demonstrated that apoE isoforms differ in theme-
tabolism of cholesterol in human monocyte-derived macrophages in
the following order: E2/2 N E3/3 ≅ E4/4 [41]. The differential role of
apoE isoforms in mediating cholesterol efflux was correlated with the
dissimilar secretion rates of apoE isoforms (E3/3 N E4/4 N E2/2), but
also with the differences in their binding to cell surface proteoglycans
and reuptake of the cholesterol-rich particles [41].

The three apoE isoforms influence intestinal absorption of
cholesterol in a different manner, influencing plasma cholesterol level
as following: apoE4 homozygotes had a higher efficiency of cholesterol
absorption than apoE3 subjects, while the apoE2 homozygotes had the
lowest values [42].

ApoE2 homozygosity often results in type III hyperlipoproteinemia
(HLP), a rare inherited disorder characterized by increased levels of
total cholesterol and triglycerides as well as high risk for premature
atherosclerosis [43]. Interestingly, although overt hyperlipidemia re-
quires apoE2 homozygosity [44], only a small percentage of ε2/ε2 car-
riers (less than 5%) develop hyperlipidemia, and the rest are either
normolipidemic or even hypocholesterolemic [45]. Thus, apoE2 is nec-
essary but not sufficient to cause HLP; other co-factors were found to
predispose to the disease, such as diabetes, obesity, decreased LDL-
receptor activity, hypothyroidism, low oestrogen levels, impaired lipol-
ysis or hyperinsulinemia [46]. Besides apoE2, rare naturally occurring
mutations in the apoE gene have been associatedwith HLP, and thema-
jority of these mutations involve substitutions of arginine or lysine res-
idues located within the receptor-binding region [47].

Lipoprotein glomerulopathy (LPG) is a rare kidney disorder charac-
terized by an abnormal plasma lipoprotein profile resembling HLP, glo-
merular lipoprotein thrombi, proteinuria, progressive kidney failure,
and increased serum apoE concentration [48]. There are many muta-
tions in apoE gene causing LPG, but the most common mutations asso-
ciated with this disorder are located in the sequence encoding LDL-
receptor binding domain. Several excellent reviews covering HLP- and
LPG-associated apoE mutations have already been published [47,49].

To identify the regions of apoE responsible for generation of
functional HDL particles conferring atheroprotective properties and
the regions causing hypertriglyceridemia induced by systemic overex-
pression, a series of studies of full-length or truncated apoE expression
were performed. Adenovirus-mediated gene transfer studies inmice re-
vealed that apoE region 1–202 associated with lipoproteins efficient in
the clearance of lipoprotein remnants, while region 203–299 induced
hypertriglyceridemia [50]. To avoid this side effect, but still trying to
correct the abnormal lipid profile, a truncated apoE lacking the C-
terminal region (203–299) was generated. This truncated protein
ameliorated hyperlipidemia in a human apoE2 transgenic mouse
model [51]. The role of various hydrophobic residues located in region
261–283 of apoE was analyzed by Zannis and co-workers [52]. Thus,
the adenoviral expression of a multiple mutant apoE4 carrying the
L261A, W264A, F265A, L268A, and V269A substitutions in apoE-
deficient mice was able to correct the abnormal plasma cholesterol
levels without causing hypertriglyceridemia, while a mutant apoE4
bearing the W276A, L279A, V280A, and V283A substitutions failed to
correct hypercholesterolemia and caused mild hypertriglyceridemia
[52]. Interestingly, the first apoE4 mutant promoted the formation of
spherical HDL particles, while the second apoE4 mutant, as well as the
wild-type apoE4, displaced apoA-I from HDL, inducing the formation
of discoidal HDL [52]. Afterwards, the group of Kypreos demonstrated
that the clearance of atherogenic lipoproteins mediated by the apoE4
mutant (L261A, W264A, F265A, L268A, and V269A) was dependent on
the expression of a functional LDL-receptor [53]. Interestingly, the
reduction of plasma cholesterol levels in apoE-deficient mice was also
obtained after bolus administration of proteoliposomes containing the
recombinant mutant (L261A, W264A, F265A, L268A, and V269A)
apoE4 protein [53]. Further studies showed that the triple substitution
with alanine of Leu261, Trp264, and Phe265 residues in apoE2 or apoE4
promoted the formation of spherical HDL particles and prevented the
hypertriglyceridemia in apoE- and apoAI-deficient mice [54]. The
study of Georgiadou et al. determined the structural and thermodynam-
ic properties of the abovementioned apoEmutants and revealed the po-
tential use of mutated apoE forms for therapeutic applications in order
to correct the remnant removal disorders [55].

Other studies demonstrated that the domain 1–185 of human apoE
is sufficient for the formation of apoE-containing HDL particles in
apoA-I deficient mice, but the longer truncated variants are more effi-
cient in both raising HDL levels and decreasing the triglyceride-rich li-
poproteins concentration [56]. Using apoE4 truncated variants,
Vezeridis et al. found that apoE4-185 and apoE4-202 generated only
discoidal HDL particles, while apoE4-229, apoE4-259 and full-length
apoE4 generated discoidal and spherical HDL particles [57]. In addition,
they found that all apoE4 truncated formswere able to promote ABCA1-
dependent cholesterol efflux in vitro, although less efficiently that full-
length apoE4. Using truncated forms of apoE4, Dafnis et al. determined
the domain required for PLTP binding and activation to be located with-
in the amino terminal 1–185 region [36].

To exploit the beneficial properties of apoE, efforts to create
synthetic peptides containing certain regions of apoE were made. The
effects of a dual-domain apoE peptide (Ac-hE18A-NH2, the fragment
141–150 containing the putative receptor-binding region of human
apoE, covalently linked to a class A amphipathic helix, 18A) on the re-
duction of plasma cholesterol inmice and rabbits aswell as their poten-
tial use as a drug in humans have been previously reviewed [58].
Another apoE peptide (EpK) containing the 141–150N-terminal region,
a six-lysine linker and the region 234–254, was generated [59], and it
was found that it preferentially bound to HDL, improving its functions
regarding the cholesterol efflux and the inhibition of LPS-induced pro-
inflammatory cytokine expression in macrophages. Recently, Xu et al.
produced another human apoE peptide (hEp), containing almost the
entire helix four of the N-terminal region and the major C-terminal
lipid-binding region of apoE, which improved its receptor-binding and
lipid-binding abilities [60]. They reported that lentivirus-mediated hEp
expression reduced the lipid accumulation and the formation of athero-
sclerotic lesions in aged apoE-deficient mice [60]. Thus, these findings
encourage the therapeutic use of recombinant apoE proteins to correct
cardio-metabolic disorders.

3. Neurodegenerative Disorders

Due to its function in lipid transport, apoE plays a significant role in
the brain homeostasis, regulating the lipid and glucose metabolism,
neuronal signaling, being effective in neuronal cells preservation and
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remodeling [61–63]. In the brain, the astrocytes provide apoE which is
assembled in lipoproteins and then transported to neurons where is
taken up via LDL-receptor superfamily members localized on the sur-
face of the neurons [64].

Neuropathology studies revealed that apoE4 isoform is a risk factor
for Alzheimer's disease (AD), a gradual neurodegenerative disorder
that includes cognitive decline leading to dementia [65]. Wishart et al.
determined the differences in brain activation during working memory
in ε4/ε3 healthy individuals as compared to ε3/ε3 carriers [66]. Informa-
tion obtained by positron emission tomography may represent a
valuable method for early diagnosis of asymptomatic AD patients. The
main features of AD are the presence of the amyloid plaque in the extra-
cellular space and of the intracellular neurofibrillary tangles, as a conse-
quence of tau protein hyperphosphorylation [67]. The reasons of apoE4
association with AD have not been elucidated. However, data from the
literature highlight some possible mechanisms though which apoE4 is
involved in AD initiation and progression. Thus, it was revealed that
apoE4 has a lower affinity for amyloid β than apoE3 [68]. Consequently,
an impaired clearance of amyloidβ accelerates its aggregation and accu-
mulation. The affinity of apoE isoforms for amyloid β is affected by the
lipidation status [69]. The features of the interaction between apoE
and amyloid β are reviewed in [70]. Huang et al. showed that apoE4
fragments similar to those found in the brains of AD patients affected
various AD-related pathological processes [67]. Because of its conforma-
tion and reactivity, apoE4 is more susceptible to proteolysis than apoE3
[67], and the cleavage products are injurious to neuronal repair, cause
neurotoxicity [65] and promote AD-like neurodegeneration [71].

Numerous epidemiological studies revealed that ε4 female carriers
present a higher risk of AD (approx. twofold higher) as compared to
ε4 male carriers, as reviewed in [72]. The role of sex differences in
apoE4 effects on AD was confirmed in animal models. In a quadruple
transgenicmicemodel for AD (mice bearing apoE4 aswell as transgenes
for APPSwe, PS1M146V and tauP301L) significant memory impairment
and higher levels of amyloid β species, β-site APP cleavage enzyme
(BACE-1) and one BACE-1 inducer -transcription factor Sp1 were re-
vealed in the hippocampal tissue of female mice as compared to their
male counterparts [73].

Recently, Lane-Donovan and Herz revealed that diet influences hip-
pocampal apoE protein levels in an isoform-dependent manner sug-
gesting that apoE genotype and dietary intervention play role in the
prevention strategy for AD [74]. Hippocampal apoE levels were reduced
by a high-fat diet when mice expressed human apoE3 isoform, but not
when mice expressed murine apoE or apoE4 isoform or when the
mice received a ketogenic diet (high-fat, low-carbohydrate); in con-
trast, a high-fat diet increased plasma apoE levels in all genotypes,
while a ketogenic diet augmented plasma apoE levels only in apoE4
transgenic mice [74].

Although the presence of apoE2 isoform is protective in the context
of AD, apoE2 was suggested as a biomarker of susceptibility for post-
traumatic stress disorder (PTSD) since its presence increased the inci-
dence and the severity of this debilitating mental disorder in veterans
carrying apoE2 as well as in mice expressing human apoE2 [75]. Using
transgenic mice expressing human apoE4, apoE3 or apoE2 in the
presence or in the absence of LDLR, Johnson et al. showed that
anxiety-like behavior and cued memory are influenced by apoE iso-
forms (E4 N E3 N E2) and suggested that these processes occur via an
LDL-receptor independent mechanism [76].

Numerous studies using truncated forms of apoE4 were performed
in order to identify the region responsible for the detrimental effects
of apoE4 that contribute to AD pathology. Studies on human neuroblas-
toma cells revealed that the apoE4-165 fragment, in which residues
166–299 are removed, had deleterious effects on amyloid β clearance
and reactive oxygen species production [77]. Further work of the same
group demonstrated that longer or shorter deletion fragments did not
exhibit the same effects [78]. This finding was explained by the folding
of the apoE4–165 fragment that presents a more helical structure, as
determined by circular dichroism measurements and thermodynamic
analysis. The compact structure and thermodynamic properties of
region 1–165 of apoE4 represent distinctive features involved in neuro-
degeneration. A phenotype similar to that observed for apoE4-165 was
determined for the natural apoE4-L28Pmutant, highlighting the impor-
tant role of apoE4 in intraneuronal accumulation of Aβ [79]. This study
also suggests that the structural integrity of apoE4 is important for its
role in AD pathogenesis.

To determine the region of apoE responsible for the interaction with
phosphorylated tau protein, the group of Mahley [67] performed trans-
fection experiments on Neuro-2a cells with C-terminal truncated forms
(1–271) of apoE3 and apoE4. The results showed that both apoE3 and
apoE4 truncated forms interact with phosphorylated tau proteins, but
apoE4 is more potent in inducing the cytoskeletal alteration and
formation of the intracellular neurofibrillary tangles inclusions [67].
Furthermore, the apoE region which interacts with phosphorylated
tau protein and forms the intracellular neurofibrillary tangles inclusions
was identified. Transfection experiments in Neuro-2a cells using
N-terminal truncated apoE showed that residues 245–260 are responsi-
ble for this feature [67].

Dafnis et al. revealed the involvement of apoE4-truncated forms
in neuroinflammation [80]. Their results showed that in SK-N-SH neu-
roblastoma cells, the fragment 1–185 of apoE4 regulates the levels of
matrix metalloproteinase 9 (MMP9) and tissue inhibitor of metallopro-
teinase 1 (TIMP1) through the modulation of the level of inflammatory
molecules: increases IL-1β and decreases IL-10 expression [80]. Modifi-
cations in MMP9 level which contribute to Aβ clearance or TIMP1 ex-
pression, can be correlated with AD pathogenesis [81]. In human
astrocytoma SW-1783 cells, both full-length and truncated form of
apoE4 (1–185) contributed to TIMP1 enhancement, without any effect
on MMP9, through a suggested mechanism involving a decrease of
TNFα expression [80]. Thus, the fragment 1–185 of apoE4 increased
the levels of TIMP1 in the two cell lines (SK-N-SH and SW-1783) by a
differentmechanism.Overexpression of apoE4 fragment 1–272 induced
its binding to various components of mitochondrial complexes and pro-
moted mitochondrial dysfunction in Neuro-2a cells [82]. On the other
hand, apoE 133–149 peptide displayed neuroprotective functions, be-
sides its anti-inflammatory properties [83].

From studies using a humanized apoE transgenic mouse model
(Arg61 apoEmice), it has been concluded that due to the “domain inter-
action”, apoE4 is recognized asmisfolded, accumulates and activates the
endoplasmic reticulum stress response, thus inducing astrocyte dys-
function [84]. Noteworthy, the mutation of Arg61 to Thr in apoE4, as
well as the “structure correctors”which abolish the domain interaction,
rescued apoE impaired intracellular trafficking through the endoplas-
mic reticulum and the Golgi apparatus and decreased its storage in the
endoplasmic reticulum [85,86]. GIND25 (Azocarmine G), a disulfonate
that abolishes apoE4 domain interaction decreased amyloid β produc-
tion induced by apoE4 to levels very similar to those induced by
apoE3 [65]. PH002, a newly identified phthalazinone derivative was
found to be a more potent disruptor of apoE4 domain interaction than
GIND25 [86]. As it has been already stated, the “structure correctors”
could be used to convert apoE4 into an apoE3-like molecule,
representing promising candidates for the treatment of apoE4-related
disorders [87].

4. Infectious Diseases

Many studies have shown that apoE is also implicated in viral
infections. ApoE4 isoform has been linked to certain infections caused
by herpes simplex virus type-1 (HSV-1), hepatitis C virus (HCV) and
human immunodeficiency virus (HIV) [88].

HSV-1 was found frequently in the brain of elderly normal subjects
and AD patients [89,90]. It was suggested that apoE4 isoform can be re-
sponsible for a facilitated entry of HSV-1 particles into the cell [88].
Moreover, it was demonstrated that apoE4 is able to promote the viral
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colonization of the brainwith higher efficiency than apoE3 [91]. Howev-
er, a variety of genes and proteins important for AD development are af-
fected by the HSV-1 infection, as reviewed by Piacentini et al. [92].

HCV needs apoE for its assembly/infection, and the host lipidmetab-
olism is involved in the viral infection, as reviewed in [93]. All the three
apoE isoforms modulated the assembly and infectivity of HCV in a sim-
ilarmanner in cell cultures [94]. Surprisingly, it was reported that apoE4
confers protection for HCV infection [95]. Mutagenesis studies showed
that production of HCV required the interaction between apoE and non-
structural protein 5A (NS5A), which plays a role in HCV replication,
through its C-terminal domain [93,96]. Studies using progressive dele-
tions revealed that amino acids 201–299 of apoE interact with NS5A,
while the apoE fragment containing only residues 211–299 failed to in-
teract with NS5A. It was found that the NS5A binding domain on apoE is
located between amino acids 205 and 280. Consequently, when this re-
gion was removed, apoE-NS5A interaction was disrupted, and HCV as-
sembly failed. Even if the N-terminal domain seems to be unnecessary
for the interaction of apoEwithNS5A, this domain is required for the en-
hancement of apoE activity in HCV production because it contains the
receptor binding region that mediates HCV infection [93].

HIV infectionwas correlatedwith apoE isoforms. It was demonstrat-
ed that apoE4 increased the rate of HIV cell entry as well as the disease
progression, as determined by the study of a large cohort of HIV-positive
subjects [97]. The authors speculated that the differences in the choles-
terol binding affinities of the apoE isoforms results in the contrasting be-
havior of apoE4 and apoE3 related to the HIV attachment and fusion,
since cholesterol is a main component of the viral envelope [97]. The
amphipathic helix domain of apoE3 binds to gp41 protein and inhibits
HIV infection, in a similar manner with T-20, a clinical inhibitor [98].

Besides the multiple functions of apoE, it has been stated that apoE
also has immunomodulatory functions and protective role in Gram-
negative sepsis [99].

Considering the role of apoE in various infections, antimicrobial pep-
tides derived from apoE with therapeutic potential were synthesized.
ApoE 133–150 peptide was found to be lethal for several Gram-
positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative
(Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae)
bacteria, but displayed no toxicity on several human cell cultures [83].
Furthermore, this peptide reduced the expression of pro-inflammatory
cytokines in LPS-treated THP-1 macrophages. A longer apoE peptide
(133–162) possessed an antimicrobial activity against E. coli,
P. aeruginosa, S. aureus, and Salmonella similar to Gentamicin and
LL-37, a neutrophil-derived antibiotic peptide [100]. It was shown that
apoEdp, a tandem repeated peptide 141–149, had antimicrobial effects
on viruses (HSV1, HIV and HCV), bacteria (S. aureus) [88] and parasites
(Plasmodium spp) [101]. Infection of hepatocytes Hepa 1–6 with Plas-
modium berghei indicated that apoE 141–149 inactivated the sporozo-
ites by lysis, while substitution Leu → Trp in the tandem peptide
blocked the microorganisms adherence by decreasing HSPGs availabili-
ty [101]. Another synthetic peptide, apoE23, generated by joining se-
quences 141–148 and 135–149, exhibited a higher microbiological
activity than apoEdp. ApoE23 includes a linker of five amino acids
(RLASH) between the repeated 141–148 apoE domains [83].

Taken together, these data demonstrate that apoE peptides possess
antimicrobial activities without adverse effects andmay have therapeu-
tic potential against pathogenic microorganisms.

5. Stress-related Pathological States

Data showed that apoE prevents lipid oxidation, a property based,
at least in part, on apoE capacity to bindmetal cations [102]. The region
of apoE conferring protection against LDL oxidationwas identified to be
located between the residues 141–155, which overlaps with the
receptor-binding domain [103]. The anti-oxidative properties of apoE
are isoform-dependent in the following order: apoE2 N apoE3 N apoE4
[104]. Studies on post-mortem brains of AD patients showed that
apoE4 is correlated with elevated lipid peroxidation and hydroxyl radi-
cal levels in blood [104].

The levels of anti-oxidative and anti-inflammatorymetallothioneins
[105], as well as of serum paraoxonase [106] were lower in apoE4, as
compared to apoE3 transgenic mice. Moreover, the expression of Nrf2
and its target genes such as glutathione-S-transferase, NAD(P)H dehy-
drogenase and heme oxygenase-1 were lower in apoE4 mice than in
apoE3 mice [107].

In vitro studies showed that macrophages overexpressing apoE4,
stimulated with LPS and PMA, displayed significant membrane oxida-
tion and generated higher nitric oxide and superoxide anion radicals,
as compared with stimulated apoE3-secreting macrophages [108]. In-
terestingly, to counterbalance the oxidative stress, heme oxygenase-1,
an anti-inflammatory protein, was increased as a stress-response in
apoE4-expressing macrophages treated with LPS [109]. ApoE exerts
local anti-inflammatory effects by promoting the conversion of macro-
phages from the proinflammatory M1 to the anti-inflammatory M2
phenotype, as it has been already stated in [110]. Moreover, apoE is
able to reduce the production of IL-2, by suppression of CD4+ and
CD8+ lymphocytes [111].

The differential association of the apoE isoforms with mitochondrial
dysfunction and endoplasmic reticulum stress response was recently
reviewed [112]. It was suggested that in neurons apoE4 is prone to pro-
tease cleavage generating apoE4 fragment 1–272 that binds to several
components ofmitochondrial complexes and subsequently initiatesmi-
tochondrial dysfunction [82].

6. Conclusions

The structural differences between the apoE isoforms translate into
significant functional changes with implications in pathophysiological
conditions including dyslipidemia, cardiovascular diseases, neurode-
generative disorders, infections and inflammatory states.

Regarding apoE involvement in lipid metabolism, site-specific mu-
tated or truncated apoE gave valuable clues on various regions and res-
idues of apoE responsible for hypertriglyceridemia and athero-genesis/
protection. Based on isoform-dependent affinities for the receptors,
lipids and proteins, itwas revealed that the apoE isoforms are associated
with various lipoproteins and differentially contribute to cholesterol
efflux.

ApoE plays a pivotal role in maintaining the neuronal function, pro-
viding the brain with the necessary cholesterol. However, apoE4 is con-
sidered a risk factor for AD. The complete mechanism of apoE4
involvement in AD initiation and/or progression is not elucidated, de-
spite that a lower affinity of apoE4 for amyloid β was revealed, leading
to a less efficient clearance of amyloid β; in addition, apoE4 proteolysis
generates cleavage products that may aggravate the disease.

ApoE intersection with various viral intracellular pathways influ-
ences the disease evolution. The apoE isoforms were differently corre-
lated with viral infections, influencing the viral cell entry and infection
progression.

In stress-related pathological states and inflammation, apoE plays
important roles such as: prevention of lipid oxidation, and macrophage
polarization. The anti-oxidative properties of apoE are also isoform-
dependent.

Noteworthy, the beneficial properties of apoE were exploited using
mimetic apoE peptides. Recombinant or synthetic peptides derived
from apoE possess pharmacological potential, lowering plasma choles-
terol, exerting antimicrobial activity and immunomodulatory effects.
Some of these peptides were already introduced in clinical trials and
presented promising results.

Despite the intensive research and the innovative approaches that
targeted this intriguing protein, there is yet no strategy that could be en-
tirely recommended for apoE-related disorders, but there are several
promising candidates, such as apoE mimetic peptides or specific struc-
ture correctors that could be used in personalized medicine.
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