
Hindawi Publishing Corporation
Advances in Bioinformatics
Volume 2012, Article ID 534810, 9 pages
doi:10.1155/2012/534810

Research Article

Intervention in Biological Phenomena via Feedback Linearization

Mohamed Amine Fnaiech,1 Hazem Nounou,1 Mohamed Nounou,2 and Aniruddha Datta3

1 Electrical and Computer Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
2 Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
3 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

Correspondence should be addressed to Hazem Nounou, hazem.nounou@qatar.tamu.edu

Received 5 July 2012; Accepted 10 October 2012

Academic Editor: Erchin Serpedin

Copyright © 2012 Mohamed Amine Fnaiech et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past
few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a
more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience
the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture
the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and
mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the
complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed
to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback
linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system
model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented
demonstrate the effectiveness of the proposed technique.

1. Introduction

Biological systems are complex processes with nonlinear
dynamics. S-systems are proposed in [1, 2] as a canonical
nonlinear model to capture the dynamical behavior of a large
class of biological phenomena [3, 4]. They are characterized
by a good tradeoff between accuracy and mathematical
flexibility [5]. In this modeling approach, nonlinear systems
are approximated by products of power-law functions which
are derived from multivariate linearization in logarithmic
coordinates. It has been shown that this type of representa-
tion is a valid description of biological processes in a variety
of settings. S-systems have been proposed in the literature
to mathematically capture the behavior of genetic regulatory
networks [6–13]. Moreover, the problem of estimating the S-
system model parameters, the rate coefficients and the kinetic
orders, has been addressed by several researchers [12, 14–16].
In [17], the authors studied the controllability of S-systems
based on feedback linearization approach.

Recently, the authors in [18] developed two different
intervention strategies, namely, indirect and direct, for bio-
logical phenomena modeled by S-systems. The goal of these
intervention strategies is to transfer the target variables
from an initial steady-state level to a desired final one by
manipulating the control variables. The complexity of the
nonlinear biological models led researchers to focus on non-
linear control approaches, such as sliding mode control that
was introduced in [19].

A basic problem in control theory is how to use feedback
in order to modify the original internal dynamics of non-
linear systems to achieve some prescribed behavior [20]. In
particular, feedback linearization can be used for the purpose
of imposing, on the associated closed-loop system, a desired
behavior of some prescribed autonomous linear system.
When the system to be controlled is linear time-invariant
system, this is known as the problem of pole placement,
while in the more general case of nonlinear systems, this is
known as the problem of feedback linearization [21, 22].
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Significant advances have been made in the theory of non-
linear state feedback control, such as feedback linearization
and input-output decoupling techniques [21, 22]. The state
feedback linearization technique has been widely utilized in
many applications. For example, the authors in [23] have
used feedback linearization in cancer therapy, where full
knowledge of the state and parameter vectors is assumed to
transform a multiinput multioutput nonlinear system into a
linear and controllable one using nonlinear state feedback.
Then, linear control techniques can be applied for the
resulting system [22, 24].

Hence, in this paper we consider the problem designing a
nonlinear intervention strategy based on feedback lineariza-
tion for biological phenomena modeled by S-systems. In this
proposed algorithm, the control variables are designed such
that an integral action is added to the system. The main
advantage of the integral action is in improving the steady
state performance of the closed-loop system. As a case study,
the proposed intervention strategy is applied to a glycolytic-
glycogenolytic pathway model. The glycolytic-glycogenolytic
pathway model is selected as it plays an important role in
cellular energy generation when the level of glucose in the
blood is low (fasting state) and glycogen has to be broken
down to provide the substrate to run glycolysis. By con-
trolling the glycogenolytic reaction, one can exert control
over whether glycolysis will run or not under low-glucose
conditions.

This paper is organized as follows. In Section 2, the S-
system model is presented and the control problem is formu-
lated. In Section 3, some mathematical preliminaries as well
as the feedback linearizable control scheme are presented.
In Section 4, the glycolytic-glycogenolytic pathway model is
considered as a case study. Finally, concluding remarks and
possible future research directions are outlined in Section 5.

2. S-System Presentation and
Problem Formulation

Consider the following S-system model [25]:

ẋi = αi

N+m∏

j=1

x
θij
j − βi

N+m∏

j=1

x
μij
j , i = 1, 2, . . . ,N , (1)

where αi > 0 and βi > 0 are rate coefficients and θi j and
μi j are kinetic orders and there exist N + m variables (genes/
metabolites) where the first N variables are dependent and
the remaining m variables are independent variables. Assume
that p out of the N dependent variables are target (or output)
variables (i.e., genes/metabolites that need to be regulated to
some desired final values), where these output variables are
defined as

yj = xi, j = 1, . . . , p, (2)

and i ∈ Y ⊂ {1, . . . ,N}, where Y is the set of indices cor-
responding to the dependent variables that are selected as
output variables. The steady-state analysis of the S-system
model [1, 18] shows that when the number of dependent
variables with prespecified desired values is equal to the

number of independent variables (which means that we
have enough degrees of freedom), the above S-system model
equations will have a unique steady-state solution under
the nonsingularity assumption. Hence, in order to control
the expressions/concentrations of the target variables, we
consider an integral control approach where the following r
equations are added to the above S-system:

ẋi = uj , j = 1, . . . , p, (3)

where i ∈ U ⊂ {N + 1, . . . ,N + m}, where U is the set
of indices corresponding to the independent variables that
are used as control variables. This means that r out of the m
independent variables will be used as control variables, and
the overall system will have p inputs and p outputs. It should
be noted that the formulation above can be easily extended
to deal with systems having more inputs than outputs. Let
us denote by X = {1, . . . ,N} + U, where X corresponds to
the indices of all variables except the independent variables
that are not used as control variables. Here, it is assumed that
the values (expressions/concentrations) of the independent
variables that are not used as control variables are known
constants (i.e., xi = δi, i ∈ {N + 1, . . . ,N + m} −U, where δi
are known constants) [6].

Figure 1 shows the S-system (1) augmented by the inte-
gral control. The S-system with integral control (1)–(3) can
be written in the form

ẋ = f (x) + g(x)u,

y = h(x),
(4)

where x = [xi]
T ∈ RN+p, i ∈ X, u = [u1, . . . ,up]T ∈ Rp,

y = [y1, . . . , yp]T ∈ Rp and

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

N+m∏

j=1
x
θ1 j

j − β1

N+m∏

j=1
x
μ1 j

j

...

αN
N+m∏

j=1
x
θN j

j − βN
N+m∏

j=1
x
μN j

j

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭
p,

g(x) =
[

0N×p
Ip×p

]
, h(x) = [xi]

T , i ∈ Y,

(5)

which can be expressed as

ẋ = f (x) +
p∑

i=1

gi(x)ui, (6)

yi = hi(x), (7)

where gi(x) = [01, 02, . . . , 0N+i−1, 1N+i, 0N+i+1, . . . , 0N+p]T , for
i = 1, . . . , p.
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Figure 1: S-system with integral control architecture.

Problem Formulation. Suppose that the outputs of the S-
system (1) are initially at the steady-state condition y0 j ,
j = 1, . . . , p. Let us denote by ydj , j = 1, . . . , p, the desired
final steady state values of the output (target) variables.
Then, the main goal of the feedback linearizable controller
is to determinate the control inputs uj , j = 1, . . . , p, that
can guide the target variables from the initial steady-state
condition to the final one [18].

3. Feedback Linearizable Intervention

Here, we show how feedback linearization can be utilized to
design a nonlinear intervention strategy to control biological
phenomena modeled by S-systems. Feedback linearization
can be used to obtain a linear relationship between the
output vector y and a new input vector v, by making a right
choice of the linearizing law. Once the equivalent model
becomes linear, we may design a dynamic control law-based
classical linear control theory. Before starting the develop-
ment of this control technique, it is important to introduce
the following mathematical preliminaries [20–22].

3.1. Mathematical Preliminaries. Let the vector function f :
�n → �n be a vector field in �n. The vector function f (x)
is called a smooth vector function if it has continuous partial
derivatives of any required order [26]. Given a scalar function
h(x) and a vector field f (x), we define a new scalar function
L f h, called the Lie derivative of hwith respect to f , as follows.

Definition 1 (see [26]). Let h : �n → � be a smooth scalar
function, and f : �n → �n be a smooth vector field on �n,
then the Lie derivative of h with respect to f is a scalar
function defined by L f h = ∇h f .

Thus, the Lie derivative L f h is simply the directional
derivative of h along the direction of the vector f . Repeated
Lie derivatives can be defined recursively as follows:

L(0)
f h = h,

L(i)
f h = L f

(
L(i−1)
f h

)
= ∇

(
L(i−1)
f h

)
f , for i = 1, 2, . . . .

(8)

Similarly, if g is another vector field, then the scalar function
LgL f h(x) can be described as

LgL f h = ∇
(
L f h

)
g. (9)

Definition 2 (see [26]). Let f and g be two vector fields on
�n. The Lie bracket of f and g is a third vector field defined
by

[
f , g

] = ∇g f −∇ f g, (10)

where the Lie bracket [ f , g] is commonly written as ad f g
(where ad stands for “adjoint”).

Repeated Lie brackets can then be defined recursively by

ad(0)
f g = g, . . . , ad(i)

f g = [ f , ad(i−1)
f g].

3.2. Feedback Linearizable Controller. Consider the S-system
model (6). Differentiating the jth output yj of this system
with respect to time, we get

ẏ j = L f hj(x) +
p∑

i=1

(
Lgihj(x)

)
ui, (11)

for j = 1, 2, 3, . . . p. Note in (7) that if each of the Lgihj(x) =
0, then the inputs do not appear in the equation. Define γj
to be the smallest integer such that at least one of the inputs

appears in y
(γj )
j , that is

y
(γj )
i = L

(γj )
f h j(x) +

p∑

i=1

Lgi
(
L

(γj−1)
f h j(x)

)
ui, (12)

with at least one of the Lgi(L
(γj−1)
f h j) /= 0, for some x. Let the

p × p matrix D(x) be defined as

D(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lg1L
(γ1−1)
f h1 Lg2L

(γ1−1)
f h1 · · · LgpL

(γ1−1)
f h1

Lg1L
(γ2−1)
f h2 Lg2L

(γ2−1)
f h2 · · · LgpL

(γ2−1)
f h2

...
...

...

Lg1L
(γp−1)
f hp Lg2L

(γp−1)
f hp · · · LgpL

(γp−1)
f hp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

Based on the above definitions, the relative degree for multi-
input multioutput (MIMO) systems is defined next.

Definition 3 (see [27]). The system (6)-(7) is said to have

vector relative degree γ1, γ2, . . . , γp at x0 if LgiL
(k)
f hi(x) ≡ 0,

0 ≤ k ≤ γi − 2, for i = 1, . . . , p and the matrix D(x0) is non-
singular.

If a system has well-defined vector relative degree, then
(12) can be expressed as

[
y

(γ1)
1 , y

(γ2)
2 , . . . , y

(γp)
p

]T
= ξ(x) + D(x)u, (14)

where

ξ(x) =
[
L

(γ1)
f h1(x),L

(γ2)
f h2(x), . . . ,L

(γp)
f hp(x)

]T
. (15)

Since D(x0) is nonsingular, it follows that D(x) ∈ �p×p is
bounded away from nonsingularity for x ∈ U , a neighbor-
hood U of x0. Then, the state feedback control law

u = D(x)−1(−ξ(x) + v) (16)
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yields the linear closed-loop system

y
(γj )
i = vi. (17)

The block diagram of the linearized system is shown in
Figure 2.

Feedback linearization transforms the system into a
linear system where linear control approaches can be applied.
Here, v represents the new input vector of the linearized sys-
tem.

In the case the system has vector relative degree, where
γ1 +· · ·+γp = n, the nonlinear system can be converted into
a controllable linear system, where the feedback control law is
defined in (16) and the coordinate transformation is ξ(x) =
[L

( j)
f hi(x)]

T
, 0 ≤ j ≤ γi − 1, 0 ≤ i ≤ p. Let the following

distributions be defined as [27]

G0(x) = span
{
g1(x), . . . , gp(x)

}
,

G1(x) = span
{
g1(x), . . . , gp(x), ad f g1, . . . , ad f gp(x)

}
,

...

Gi(x) = span
{

ad(k)
f gi(x) : 0 ≤ k ≤ i, 0 ≤ j ≤ p

}
,

(18)

for i = 1, . . . ,n− 1, then we have the following result.

Proposition 4 (see [27]). Suppose that the matrix g(x0) has
rank p. Then, there exist p functions λ1, . . . , λp, such that the
system

ẋ = f (x) + g(x)u,

y = λ(x),
(19)

has vector relative degree (γ1, . . . , γp) with γ1+γ2+· · ·+γp = n
if

(i) for each 0 ≤ i ≤ n− 1 the distribution Gi has constant
dimension in the neighborhood U of x0;

(ii) the dimension Gn−1 has dimension n;

(iii) for each 0 ≤ i ≤ n− 2 the dimension Gi is involutive.

The proof of this proposition can be found in [27].
The new control vector v = [v1, . . . , vp]T is designed

based on the desired closed-loop response, which can be
written as

vj = y
(γj )
dj

+ kγj−1

(
y

(γj−1)
dj

− y
(γj−1)
j

)
+ · · · + k1

(
ydj − yj

)

(20)

for j = 1, . . . , p, where {ydj , y
(1)
dj

, . . . , y
(γj−1)
dj

, y
(γj )
dj
} denotes

the desired reference trajectories for the outputs. The propor-
tional gains are chosen such that the following polynomial is
a Hurwitz polynomial [28]:

sγj + kγj−1s
γj−1 + · · · + k2s + k1 = 0. (21)

The block diagram of the closed-loop system in the feedback
linearizable form is shown in Figure 3.

v1

v2

· · ·
vp

D(x)−1(−ζ(x) + v)

u1

u2

· · ·
up

ẋ = f (x) +
p

i=1

gi(x)ui

y j = hj(x)

y1

y2

·· ·
yp

[x1 x2 . . . xn]T



Figure 2: Diagram block of the linearizable system.

4. Case Study

In this section, we demonstrate the efficacy of the feedback
linearizable intervention approach described in this paper
by applying it to a well-studied biological pathway model
representing the glycolytic-glycogenolytic pathway shown
in Figure 4 [17, 29]. Glycolysis is the process of breaking
up a six-carbon glucose molecule into two molecules of a
three-carbon compound, and glycogenolysis is the process by
which the stored glycogen in the body is broken up to meet
the needs for glucose. In glycogenolysis, the phosphorylase
enzyme acts on the polysaccharide glycogen to reduce its
length by one glucose unit. The glucose unit is released as a
glucose-1 phosphate. The glycolytic-glycogenolytic pathway
can be mathematically represented by the following S-system
model:

ẋ1 = α1x
θ14
4 xθ16

6 − β1x
μ11

1 x
μ12

2 x
μ17

7 ,

ẋ2 = α2x
θ21
1 xθ22

2 xθ25
5 xθ27

7 xθ210
10 − β2x

μ22

2 x
μ23

3 x
μ28

8 ,

ẋ3 = α3x
θ32
2 xθ33

3 xθ38
8 − β3x

μ33

3 x
μ39

9 .

(22)

In this case, N = 3, m = 7 and the parameter are defined
as α1 = 0.077884314, θ14 = 0.66, θ16 = 1, β1 = 1.06270825,
μ11 = 1.53, μ12 = −0.59, μ17 = 1, α2 = 0.585012402, θ21 =
0.95, θ22 = −0.41, θ25 = 0.32, θ27 = 0.62, θ210 = 0.38,
β2 = α3 = 0.0007934561, μ22 = θ32 = 3.97, μ23 = θ33 =
−3.06, μ28 = θ38 = 1, β3 = 1.05880847, μ33 = 0.3, and
μ39 = 1. Here, the model variables are defined as follows: x1

is glucose-1-P, x2 is glucose-6-P, x3 is fructose-6-P, x4 is
inorganic phosphate ion, x5 is glucose, x6 is phosphorylase a,
x7 is phosphoglucomutase, x8 is phosphoglucose isomerase,
x9 is phosphofructokinase, and x10 is glucokinase.

For this model, the metabolites x4 through x10 are defined
as independent variables, which are the variables that are not
affected by other variables, and the metabolites x1 through x3

are defined as the dependent variables, which are the primary
variables of interest that we wish to control. Here, we choose
the independent variables x4, x5, and x8 as manipulated or
control variables, as shown in Figure 4, as they can affect the
production of the dependent variables x1, x2, and x3. Also,
we choose to keep the independent variables x6, x7, x9, and
x10 fixed ignoring their effect on the controlled variables,
and assuming that the controller only uses the independent
variables x4, x5, and x8 to control the dependent variables
x1, x2, and x3. The independent variables have the following
values x4 = 10, x5 = 5, x6 = 3, x7 = 40, x8 = 136,
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ydi

yd2

· · ·
ydp

+

−

v1

v2

· · ·
vp

u1

u2

· · ·
up

y1

y2

· · ·
yp

ki D(x)−1(−ζ(x) + v)
ẋ = f (x) +

p

i=1
gi(x)ui

y j = hj(x)



[x1 x2 . . . xn]T

Figure 3: Closed loop of the linearizable system.

Glycogen
x6: Phosphorylase a

x4: Pi

x1: Glucose-1-P

x2: Glucose-6-Px5: Glucose
x10: Glucokinase

x9: Phosphofructokinase x3: Fructose-6-P

x7: Phosphoglucomutase

x8: Phosphoglucose

isomerase

Figure 4: Glycolytic-glycogenolytic pathway [29].

x9 = 2.86, and x10 = 4. Here, we try to control x1, x2, and
x3 by manipulating x4, x5, and x8, so we have

y1 = x1,

y2 = x2,

y3 = x3,

ẋ4 = u1,

ẋ5 = u2,

ẋ8 = u3,

(23)

and all other x′i s for i = 6, 7, 9, and 10 are kept fixed. The
initial values of the outputs y1, y2, and y3 are selected as
0.067, 0.465, and 0.150, respectively, and the desired refer-
ence outputs are selected as yd1 = 0.2, yd2 = 0.5, and yd3 =
0.4.

Hence, the overall system can be expressed in the form of
(6), where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1x
θ14
4 − b1x

μ11

1 x
μ12

2

a2x
θ21
1 xθ22

2 xθ25
5 − b2x

μ22

2 x
μ23

3 x
μ28

8

a3x
θ32
2 xθ33

3 xθ38
8 − b3x

μ33

3

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0 5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

Time (minutes)

O
u

tp
u

ts

y1

y2

y3

Figure 5: Closed-loop outputs for constant reference signals.

g(x) = [
g1(x), g2(x), g3(x)

]

=

⎡
⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎦

T

,

h(x) =

⎡
⎢⎢⎢⎣

h1(x)

h2(x)

h3(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤
⎥⎥⎥⎦,

(24)

where a1 = α1x
θ16
6 , a2 = α2x

θ27
7 xθ210

10 , a3 = α3, b1 = β1x
μ17

7 ,
b2 = β2, and b3 = β3x

μ39

9 .
Based on the S-system model describing the glycolytic-

glycogenolytic pathway, it can be verified that the outputs
need to be differentiated twice with respect to time so that
the input variables (u1, u2, or u3) appear in the expressions
of differentiated outputs, as follows:
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Figure 6: Control signals for constant reference signals.

y(2)
1 = L(2)

f h1(x) + Lg1

(
L f h1(x)

)
u1,

y(2)
2 = L(2)

f h2(x) + Lg2

(
L f h2(x)

)
u2 + Lg3

(
L f h2(x)

)
u3,

y(2)
3 = L(2)

f h3(x) + Lg3

(
L f h3(x)

)
u3,

(25)

where

L(2)
f h1(x) = b2

1μ11x
2μ11−1
1 x

2μ12

2

− b1a1μ11x
μ11−1
1 x

μ12

2 xθ14
4

+ b1b2μ12x
μ12+μ22−1
2 x

μ11

1 x
μ23

3 x
μ28

8

− b1a2μ12x
μ12+θ21−1
2 x

μ11+θ21

1 xθ25
5 ,

L(2)
f μ2(x) = a1a2θ21x

θ21−1
1 xθ22

2 xθ14
4 xθ25

5

− a2b1x
θ21+μ11−1
1 x

θ22+μ12

2 xθ25
5

+ a2
2θ22x

2θ22−1
2 x2θ21

1 xθ25
5

− a2b2x
θ22+μ22−1
2 xθ21

1 x
μ23

3 xθ25
5 x

μ28

8

− b2a2μ22x
θ12
1 x

μ22+θ22−1
2 x

μ23

3 xθ25
5 x

μ28

8

+ b2
2μ22x

2μ22−1
2 x

2μ23

3 x
2μ28

8

− b2a3μ23x
μ22+θ32

2 x
μ23+θ33−1
3 x

μ28+θ38

8

+ b2b3μ23x
μ22

2 x
μ23+μ33−1
3 x

μ28

8 ,

L(2)
f μ3(x) = a3a2θ32x

θ21
1 xθ32+θ22−1

2 xθ33
3 xθ25

5 xθ38
8

− a3b2θ32x
θ32+μ22−1
2 x

θ33+μ23

3 x
θ38+μ28

8

+ a2
3θ33x

2θ32
2 x2θ33−1

3 x2θ38
8

− a3b3θ33x
θ32
2 x

θ33+μ33−1
3 xθ38

8

− b3a3μ33x
θ32
2 x

μ33+θ33−1
3 xθ38

8

+ b2
3μ33x

2μ33−1
3 ,

Lg1

(
L f h1(x)

)
= a1x

θ14−1
4 ,

Lg2

(
L f h2(x)

)
= a2θ25x

θ21
1 xθ22

2 xθ25−1
5 ,

Lg3

(
L f h2(x)

)
= − b2μ28x

μ22

2 x
μ23

3 x
μ28−1
8 ,

Lg3

(
L f h3(x)

)
= a3θ38x

θ32
2 xθ33

3 xθ38−1
8 .

(26)

Hence, in this case the system has vector relative degree γ =
[γ1, γ2, γ3]T = [2, 2, 2]T , and hence we have γ1 + γ2 + γ3 = 6.

The matrix form of the system of differential equations
presented in (25) can be written in the form of (14), where

ξ(x) =
[
L(2)
f h1(x),L(2)

f h2(x),L(2)
f h3(x)

]T
,

D(x) =

⎛
⎜⎜⎜⎜⎝

Lg1

(
L f h1(x)

)
0 0

0 Lg2

(
L f h2(x)

)
Lg3

(
L f h2(x)

)

0 0 Lg3

(
L f h3(x)

)

⎞
⎟⎟⎟⎟⎠
.

(27)

The matrix D(x) is invertible if the following condition is
satisfied:

Lg1

(
L f h1(x)

)
× Lg2

(
L f h2(x)

)
× Lg3

(
L f h3(x)

)
/= 0. (28)

Based on (25), it can be seen that the control variables u1 and
u2 appear only in the expressions of y(2)

1 and y(2)
2 , respectively.

However, u3 appears in the expressions of y(2)
2 and y(2)

3 .
Hence, u1 and u3 need to be used to control y1 and y3, respec-
tively, and both u2 and u3 are needed to control y2.

Hence, the control laws based on (16) can be expressed as

u1 =
(
−L(2)

f h1(x) + v1

)

Lg1

(
L f h1(x)

) ,

u2 =
(
−L(2)

f h2(x)− Lg3

(
L f h3(x)

)
u3 + v2

)

Lg2

(
L f h2(x)

) ,

u3 =
(
−L(2)

f h3(x) + v3

)

Lg3

(
L f h3(x)

) .

(29)

Substituting the expressions of the control variables (29) in
(25), we obtain the following decoupled linear system:

y(2)
1 = v1,

y(2)
2 = v2,

y(2)
3 = v3.

(30)

The new control variables vj , for j = 1, 2, 3, need to be
designed so that the target variables yj track some desired
reference trajectories, ydj .
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Figure 7: Output response for closed-loop tracking.

Using (20), the new control variables vj , for j = 1, 2, 3,
are found to be

v1 = ÿd1 + k1
(
ẏd1 − ẏ1

)
+ k11

(
yd1 − y1

)
,

v2 = ÿd2 + k2
(
ẏd2 − ẏ2

)
+ k21

(
yd2 − y2

)
,

v3 = ÿd3 + k3
(
ẏd3 − ẏ3

)
+ k31

(
yd3 − y3

)
.

(31)

The new control components, v1, v2, and v3, are defined in
(31), where the parameters are selected as k1 = 1, k11 = 5,
k2 = 10−3, k21 = 20, k3 = 3, and k31 = 5.

Figures 5 and 6 show the output response and the control
input signals when the feedback linearizable controller is
applied. It is clear from Figure 5 that the system outputs
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Figure 8: Control signals for closed-loop tracking.

converge to their desired values. Another simulation study
is implemented for a different reference trajectory, where
the value of the reference signal increases linearly before
saturating at the desired final value. The closed-loop output
response in this case is shown in Figure 7 and the control
signals are shown in Figure 8. It is clear from Figure 7 that the
feedback linearizable controller is driving the target variables
to track the desired reference trajectories.

To study the robustness properties of the feedback lin-
earizable controller, similar simulation studies have been
conducted when the parameters μ22 and β2 are varied within
10% of their nominal values. It has been found that the
closed-loop system is stable only for parameter variations
within 1% and with unacceptable performance. This agrees
with our earlier assumption that full system knowledge is
needed for proper operation of the feedback linearizable
controller.

5. Conclusion

In this paper, feedback linearizable control has been applied
for intervention of biological phenomena modeled in the
S-system framework. As a case study, the glycogenolytic-
glycolytic pathway model has been used to demonstrate the
efficacy of feedback linearization in controlling biological
phenomena modeled by S-system. One main drawback of
this approach is that it assumes full knowledge of the
biological system model. Usually, the S-system model does
not perfectly represent the actual dynamics of the biological
phenomena. Hence, one future research direction is to
develop an adaptive intervention strategy that is capable of
controlling the biological system even in the presence of
model uncertainties. Another future research direction is to
develop intervention techniques that take into account addi-
tional constraints due to the nature of the drug injection
process. Definitely, incorporating such knowledge from
medical practitioners would require imposing constraints on
the magnitude, duration, and possibly the rate of change of
the injected drug into the design of intervention technique.
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