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ABSTRACT

The contribution of different mechanisms to the
regulation of gene expression varies for different
tissues and tumors. Complementation of predicted
mRNA-miRNA and gene—transcription factor (TF) re-
lationships with the results of expression correla-
tion analyses derived for specific tumor types out-
lines the interactions with functional impact in the
current biomaterial. We developed CrossHub soft-
ware, which enables two-way identification of most
possible TF—gene interactions: on the basis of EN-
CODE ChlIP-Seq binding evidence or Jaspar predic-
tion and co-expression according to the data of The
Cancer Genome Atlas (TCGA) project, the largest
cancer omics resource. Similarly, CrossHub iden-
tifies mRNA-miRNA pairs with predicted or vali-
dated binding sites (TargetScan, mirSVR, PicTar, DI-
ANA microT, miRTarBase) and strong negative ex-
pression correlations. We observed partial consis-
tency between ChIP-Seq or miRNA target predic-
tions and gene-TF/miRNA co-expression, demon-
strating a link between these indicators. Additionally,
CrossHub expression-methylation correlation anal-
ysis can be used to identify hypermethylated CpG
sites or regions with the greatest potential impact
on gene expression. Thus, CrossHub is capable
of outlining molecular portraits of a specific gene
and determining the three most common sources
of expression regulation: promoter/enhancer methy-
lation, miRNA interference and TF-mediated activa-
tion or repression. CrossHub generates formatted

Excel workbooks with the detailed results. CrossHub
is freely available at https://sourceforge.net/projects/
crosshub/.

INTRODUCTION

The Cancer Genome Atlas (TCGA) project is one of the
largest available resources that accumulates genomic, tran-
scriptomic and methylomic data for several types of cancer.
During the first three years of the pilot phase (2006-2009),
TCGA focused on large-scale studies of glioblastoma multi-
forme, lung and ovarian cancers (1). Today, TCGA includes
omics data for more than 20 cancer types. For each of the
most common cancers (lung, breast, prostate and others),
TCGA collected genomic, methylomic and transcriptomic
portraits of more than 300-500 samples. This makes TCGA
a useful source of information for gene expression alteration
(2), tumor molecular subtype classification (3,4), discovery
of driver aberrations (5), identification of prognostic mark-
ers (6,7) and other applications.

Complementation of multidimensional omics projects
with other resources can significantly increase the value of
the results and highlight the most prominent associations.
Integration of microRNA (miRNA) target prediction algo-
rithms with the results of miIRNA-mRNA expression corre-
lation analysis can be used to identify the largest number of
possible miRNA targets. This approach is implemented us-
ing the MiRGator resource (8). Additionally, complemen-
tation of ChIP-Seq data with the results of gene expression
correlation studies increases the efficacy of identifying in-
teractions between transcription factors (TFs) and target
genes.

The ENCyclopedia of DNA Elements (ENCODE) is an-
other large international project aiming to identify func-
tional elements in the human genome and reveal relation-
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Figure 1. CrossHub workflow. Complementation of ENCODE ChIP-Seq
data and Jaspar predictions with TCGA expression correlation analysis
allows the user to outline interactions with potential functional impacts
to a specific cancer subtype. Similarly, combining miRNA target predic-
tions with gene-miRNA expression correlation profiling (based on TCGA
expression data) highlights gene-miRNA interactions, which likely take
place for a particular tumor type. Expression-methylation correlation anal-
ysis allow identification of hypermethylated CpG sites or regions within
promoters or enhancers (annotated with ENCODE) having the greatest
potential impact on gene expression. In addition, CrossHub enables con-
ventional differential expression (DE) and methylation analysis.

ships between these elements (9). ENCODE provides vari-
ous types of data related to gene expression regulation: hi-
stone modification profiles (revealed by CHIP-Seq), open
chromatin patterns (DNasel assays and FAIRE-Seq), TF
binding sites (TFBS) (ChIP-Seq), chromatin interactions
(5C and ChIA-PET), DNA methylation (reduced represen-
tation of bisulfite sequencing and Illumina methyl-sensitive
microarrays) and other features (10). ENCODE includes
ChIP-Seq data for 160 TFs across 3-6 cell lines used as a
core set. However, the binding of some TFs (CTCF, Pol I1,
RELA) has been profiled for more than 20 cell lines (11).
Based on histone modification profiles and TFBSs, EN-
CODE offers annotation of genome segments (promoter,
enhancer, insulator) for six cell lines using two different ma-
chine learning techniques (ChromHMM and Segway) (12).
Increasing the availability of large-scale data necessitates
the creation of scalable platforms for multi-way analysis of
these results. In the present work, we present CrossHub,
a novel software tool that integrates multi-resource omics
data. CrossHub was designed to analyze TCGA transcrip-
tomic and epigenomic data in the context of ENCODE, Jas-
par and various miRNA target prediction algorithms. This
approach is intended to reveal gene expression regulation
mechanisms such as methylation, TF-mediated transcrip-
tion repression/activation and microRNA interference.

MATERIALS AND METHODS

CrossHub is a standalone Python-based application pro-
viding multiple methods for analyzing TCGA data (Fig-
ure 1). Users should download RNA-Seq, miRNA-Seq and
methylation profiles (Illumina BeadChip) data from the
TCGA Data Portal or other resources. CrossHub is released
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with dumps of ENCODE ChIP-Seq and Chromatin seg-
mentation data, Jaspar matrix profiles and predictions, and
five miRNA target databases (up to date as of November
2015). Otherwise, users can download source database files
to parse them with CrossHub.

Differential expression (DE) analysis of genes and mi-
croRNA

CrossHub analyzes TCGA RNA-Seq data obtained us-
ing Illumina HiSeq, GA or other platforms. Two com-
mon approaches are used: expression analysis across pools
of normal and tumor samples and across paired (tumor-
normal) samples. The latter is considered to be the most
reliable. To assess DE, CrossHub uses z-tests for dependent
(paired) and independent (pooled) samples, taking into ac-
count the Poisson distribution of reads when evaluating dis-
persion and expression fold-change logarithms (LogFC).
Next, Benjamini-Hochberg correction is introduced to es-
timate the false-discovery rate (FDR). Finally, all data are
summarized in formatted Microsoft Excel workbooks. Se-
lection of the genes of interest can be performed using Gene
Ontology keywords.

Refining TF-gene functional associations with expression
correlation analysis

The second feature provided by CrossHub is gene co-
expression analysis complemented with ENCODE TF
ChIP-seq data and Jaspar TFBS predictions. Jaspar is a
database of nucleotide profiles describing the binding pref-
erences of transcription factors. Jaspar includes 205 TFBS
profiles in vertebrates (13). For each gene-TF association,
CrossHub calculates an ENCODE score based on ChIP-
Seq read count and the quantity of such observations. Next,
CrossHub adjusts the score according to the distance from
the transcription start site (T'SS); the greatest score multipli-
ers are assigned to the TSS-proximal regions (—500. .. +300
bp). Additionally, CrossHub provides TFBS site annotation
according to ENCODE genome segments annotation by
ChromHMM and Segway (promoter/insulator/enhancer
etc.). When possible, gene-TF associations are annotated
with Jaspar predictions. Here, TFBS score is calculated
based on the matrix-based Jaspar profile score, TFBS dis-
tance from TSS, and genome segments annotation. A corre-
lation heatmap with a detailed description of the predicted
TFBS is generated, and top gene-TF associations with the
greatest ENCODE/Jaspar scores and highest/lowest corre-
lation coefficients (r;) are reported.

Refining microRNA target predictions with mRNA-miRNA
expression correlation analysis

This analysis implements a similar two-way approach for
identifying mRNA-miRNA regulation interactions. The
results of expression correlation analysis are supplemented
with miRNA target prediction databases (TargetScan, DI-
ANA microT, mirSVR, PicTar) and experimental evidence
of mMRNA-miRNA interactions (miRTarBase) (14-18). For
each gene-miRNA pair, a cumulative score is determined
basing on the normalized scores of individual databases and
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relative reliability of the database. To determine the nor-
malized DB score, CrossHub first ranks the pool of pre-
dicted miRNA binding sites with the internal DB score
and determines which percentile Pg matches to a current
miRNA binding site. Next, CrossHub calculates a score for
this pair Spairpp according to the current database. If sev-
eral miRNA binding sites are predicted for any gene or sev-
eral mRNA isoforms are present, CrossHub merges this
multi-hit as: Spirpp = 25 - (X gies (1.25 — Prite/100)%)7173.
Thus, if there is one binding site with the highest inter-
nal database score (100th percentile), Spairpg = 100 for
this gene-miRNA pair. The 75th percentile matches only
to Spairp = 50. Next, CrossHub combines Sairqn across
several databases and calculates an overall score Spairmain:

Spair.main = (D aipp (Spair,DB WDB)1'5)1/1'5~ Here, Wpg is the
weight of a database reflecting its reliability. As described
below, miRTarBase (strong experimental evidences only),
PicTar and TargetScan (conservative miRNA binding sites
only) and DIANA microT databases have the best con-
sistency with the gene-miRNA co-expression analysis re-
sults. Basing on this criterion, we assigned the highest Wpg
(3.0) to miRTarBase (strong experimental evidences), nor-
mal Wpg (0.8-1.2) to PicTar and TargetScan (conservative
sites) and low Wpg (0.1-0.4) to mirSVR and databases of
non-conservative sites. A coefficient of 1.5 is selected in or-
der to optimize the balance between the significance of in-
dividual prediction scores and the predictions count.

The correlation table, database scores and top associa-
tions (with the highest scores and lowest correlation coeffi-
cients) are reported in CrossHub.

Methylation profiling

CrossHub performs differential CpG methylation analysis
based on the data from Illumina Infinium HumanMethy-
lation450 BeadChips (TCGA) corresponding to the 485
000 CpG sites in the human genome (~17 CpG sites per
gene). The distributions of B-values (ratio of methylated al-
leles) between pools of tumor and normal samples are com-
pared, taking into account the heterogeneity of methyla-
tion patterns across the samples. A combined hyper/hypo-
methylation score for pooled samples is calculated based
on the Mann—Whitney U test P-value and comparison of
the 10, 25, 50, 75 and 90th B-value percentiles between nor-
mal and tumor pools. CrossHub evaluates the hyper/hypo-
methylation score for paired samples according to: (i) the
mean AB-value between matched normal and tumor tis-
sues; (i) the frequency of cases with IABI > 0.4; and (iii) the
P-value for Wilcoxon signed ranked test. The last method
is more reliable and accurate; however, the quantity of
microarray-analyzed paired samples is low for some can-
cers (e.g. rectum) and therefore is not suitable for rigor-
ous statistical analysis. Finally, an overall gene hyper/hypo-
methylation score is calculated based on individual CpG
scores and the number of these CpG sites. The selection of
promoter and enhancer CpG dinucleotides is performed us-
ing ChromHMM and Segway data (ENCODE). For each
CpG site, correlation coefficients are calculated between (1)
the B-value and normalized gene expression in pools of nor-
mal and tumor samples and (ii) the expression LogFC and
AB-value between matched normal and tumor tissues (for
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paired samples only). The second method is considered to
be more reliable.

Differential expression (DE) and methylation analysis re-
sults as well as top gene-TF and gene-miRNA associations
are summarized into one formatted Excel worksheet, repre-
senting a ‘portrait’ for each gene. This analysis is applicable
to more than 15 cancer types represented in the TCGA.

RESULTS
Associations between methylation and downregulation

In the present work, we present CrossHub, an integrative
tool aimed at analyzing multi-dimensional TCGA data in
the context of ENCODE, Jaspar and other resources. First,
CrossHub attempts to link gene expression and the methy-
lation of CpG sites annotated as promoters or enhancers
according to the ENCODE data. We tested the associa-
tions between promoter hypermethylation and gene expres-
sion for three cancer types: colon adenocarcinoma, lung
squamous cell carcinoma and prostate adenocarcinoma. To
shorten the gene list, we limited the analysis to genes en-
coding cytoplasmic proteins (selected with Gene Ontology
keywords, total of 4489 genes). To discard low-coverage
genes, we introduced a threshold: a gene should have at least
100 reads/sample for 30% of the total samples count. This
threshold is adjustable (See Manual). Scatterplots illustrat-
ing promoter hypermethylation scores (HMS) and gene ex-
pression levels of LogFC are shown in Figure 2.

Prominent bias toward expression downregulation for
genes with high hypermethylation scores is typically ob-
served. However, some genes with high promoter hyper-
methylation scores are upregulated. A significant number
of these have uncertain DE reliability score which is pro-
portional to the absolute values of LogFC and logarithm
of FDR (green, yellow circle colors, Figure 2); additionally,
some have multiple promoters.

We split the analyzed genes into two groups (low HMS
and high HMS) and then evaluated LogFC bias between
them using Mann-Whitney U-test. Several HMS thresh-
olds (Tyus) were used for splitting (Figure 2). For each
threshold, LogFC distribution bias was statistically signif-
icant (P-varied from <107'6 to 107%). We also observed
mean LogFC decrease with increasing 7'yys. Thus, as ex-
pected, CpG hypermethylation found by CrossHub using
TCGA data is associated with gene expression downregu-
lation.

Combining gene-TF expression correlation analysis and TF
target prediction with ChIP-Seq

Next, we tested the agreement between two predictors of
gene—TF functional relationships: whether gene-TF bind-
ing revealed by ChIP-Seq is associated with expression cor-
relation bias. We chose two TF strongly upregulated in
colon cancer, according to TCGA RNA-Seq data: Myc (c-
Myc) and CBX3. Myc is well-known oncogenic protein re-
sponsible for the transduction of growth promoting signal
(19). Myc activates transcription of many genes participat-
ing in cell cycle regulation and metabolism reprogramming,
hypoxic adaptation, DNA replication and other processes
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Figure 2. Associations between the promoter hypermethylation score (HM.S) and the logarithm of gene expression level changes in tumors (LogFC). Circle
colors indicate gene DE reliability score, which is proportional to the absolute values of LogFC and logarithm of false-discovery rate (FDR). Circle size
is proportional to square root of total read count for a gene. For all three cancers, a significant increase in the ratio of downregulated genes was observed
for genes with positive promoter hypermethylation scores. We selected several HMS thresholds (7xass) to prove the statistical significance of differences
between distribution of LogFC for genes with HMS > Tyys and HMS < Tyys. Vertical dashed lines indicate mean LogFC for these groups. Average
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(19-21). Myc is one of the most extensively studied TF
within the ENCODE ChIP-Seq project.

The second TF, CBX3 (Chromobox homolog 3) binds
lamin B receptor, an integral membrane protein found in the
inner nuclear membrane, and may be responsible either for
transcription activation or suppression via maintenance of
heterochromatin (22). Studies with CBX3-knockdown as-
says revealed that depletion of CBX3 resulted in downreg-
ulation of a subset of genes co-localized with CBX3; loss
of CBX3 leads to a dramatic accumulation of unspliced
nascent transcripts (22). CBX3 is crucial for reprogram-
ming of somatic cells into induced pluripotent stem cells
(23) and can act as a marker of tumor stem cells (24).
CBX3 gene fusions and overexpression were found in can-
cer (25-27). We tested associations between ChIP-Seq score
for these TFs and co-expression with the potential target
genes using two samplings. One of Myc metabolic targets is
the activation of glycolysis (20,21,28), and the first sampling
includes glucose metabolism-related genes (430 genes). The
second sampling includes genes encoding extracellular pro-
teins (3600 genes).

Figure 3 illustrates the distribution of genes based on two
parameters: adjusted ENCODE ChIP-Seq score (S) and
the Spearman correlation coefficient (ry) between expres-
sion levels of a gene and Myc or CBX3 for colon adenocar-
cinoma TCGA RNA-Seq dataset. As for the previous anal-
ysis, we used several score thresholds (7's) to split genes into
low-score and high-score groups (Figure 3). We found that
the bias of distribution of r; between the groups was statis-
tically significant for each threshold (P varied from <10~'°
to 0.01), and mean r, for high-score group increased with
increasing Ts. This clearly illustrates a linkage between the
ChIP-Seq score S and Spearman r¢ and the informativeness

of both these predictors. Their use in combination will im-
prove the accuracy of identification of potential TF—gene
functional relationships.

In contrast to ENCODE, Jaspar revealed only slightly
noticeable differences in the Spearman ry distribution be-
tween low-score and high-score genes (data not shown).
Thus, ENCODE ChIP-Seq data have greater predictive
value of TF—gene interactions than Jaspar.

Integration of miRNA target prediction with gene-miRNA
expression correlation analysis

Finally, we tested the association between the prediction of
microRNA target genes and Spearman correlation coeffi-
cients for the gene-miRNA expression levels. For this anal-
ysis, we selected genes encoding extracellular proteins (3600
genes) and top overexpressed miRNAs, according to the
results of TCGA colon cancer miRNA-Seq dataset anal-
ysis. We have excluded few miRNAs with extremely high
abundance in both tumor and normal tissues (>2 billion
reads). Firstly, we tested the dependency of mean r; on
miRNA target prediction score threshold (7;,s) for indi-
vidual databases (Figure 4A—E). The 2D-histogram illus-
trates the distribution density of paired gene-miRNA re-
lationships depending on their expression correlation coef-
ficients (horizontal axis, colon cancer TCGA dataset) and
target prediction scores (SpairpB, vertical axis). Mean r; is
expected to decrease with increasing T),s, and this crite-
rion permits to assess the confidence of miRNA target pre-
diction databases. This trend was the most prominent for
TargetScan conservative sites, DIANA microT (Figure 4B
and C) and PicTar (data not shown). Mean r; difference ()
between zero-score gene-miRNA pairs (e.g. not predicted)
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and pairs that have passed 7, filter was relatively high for
TargetScan (any 7),s; d = 0.028-0.045, Mann—Whitney U-
test P < 107'11077) and DIANA microT (medium and
high T;,s; d=0.026-0.043, P < 10~'°). TargetScan database
of non-conservative sites and mirSVR database demon-
strated very modest ry bias (¢ = 0.01) with no trend of its
increasing with elevating 75,s. A significant r¢ bias (d = 0.05,
P =0.003 for pairs with score >0) was observed for several
datasets of PicTar: conservative in vertebrates, in mammals
and birds, or in mammals only (data not shown). Finally,
miRTarBase demonstrated a significant rg bias (d = 0.091,
P = 7-107°) for associations with strong experimental evi-
dence (Figure 4D and E). Basing on these findings, we se-
lected database weights Wpg for calculating overall target
prediction score (see ‘Materials and Methods’ section).

Figure 4F illustrates distribution density of gene—
miRNA pairs on Spearman correlation coefficient r, and
overall target prediction score Spairmain- It can be seen that
ry bias increases with increasing 7,,s. Score range 100 <
Spairmain < 225 is characterized with the greatest r, bias (d
= 0.109, P = 1077). This range should contain the maxi-
mum number of true relationships with functional impact;
miRNA-gene relationships that are predicted with several
algorithms are included in this score range. mirTarBase tar-
gets (weak evidence) are located in a separate group with
higher scores but have lesser r, bias (d > 0.027). However,
miRNA-gene relationships with strong experimental evi-
dence (or with weak evidence but also predicted by one the
algorithms) are characterized with strong r, bias (d = 0.052,
top of the 2D-histogram). Notably, CrossHub reports all
miRNA-gene scores for each database in the output files.

Thus, both ChIP-Seq data on transcription factors bind-
ing sites and miRNA target prediction data demonstrate
particular consistency with the correlation analysis results.
Although each of these predictors is weak, their combina-
tion into one prediction algorithm is expected to signifi-
cantly increase the accuracy of mRNA-miRNA or gene—
TF functional relationship discovery (8). In the present
study, we demonstrated that the relationships with conser-
vative miRNA binding sites identified simultaneously by
several algorithms showed the greatest concordance with
co-expression.

DISCUSSION

Cancer is a complex disease manifesting in transcriptomic,
proteomic and epigenomic aberrations. The linkage of mul-
tidimensional genomic data helps to elucidate molecu-
lar mechanisms inherent in various tumor types (29-32).
TCGA has been one of the starting points for dozens of
studies, including validation of cancer susceptibility allele
variants (33) and prognostic signatures (6), cancer molecu-
lar characteristics (34), studies of cancer angiogenesis (35),
and cancer proteogenomic studies, one of the most recent
fields of research (36-38). In this article, we present a novel
tool for linking TCGA data and other resources in the con-
text of gene expression regulation mechanisms: CpG methy-
lation, transcription factors and microRNA.

Currently, nearly 20 different microRNA target predic-
tion algorithms have been developed (39,40). However,
none provide reliable results. No prediction method is con-
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sistently superior to the others (41). Different algorithms
use different criteria sets, with most using seed match, site
conservation, free energy and site accessibility (39). Three
tools, DIANA-microT, mirSVR (miRanda) and TargetScan
are considered to be the most suitable and are the most pop-
ular because of their wide range of capabilities, reliance on
relatively updated versions of miRBase and ease of use (39).

CrossHub integrates data from four bioinformatics-
based target prediction algorithms, including TargetScan,
DIANA-microT, mirSVR and PicTar. This is implemented
in the miRNA body-map and miRWalk databases (42,43).
miRWalk database includes both mRNA-miRNA interac-
tions predicted using miRWalk’s algorithm and information
from other resources, such as TargetScan, RNA22 and Pic-
Tar (43,44). The next milestone is to combine bioinformat-
ics miRNA target prediction algorithms with gene-miRNA
expression correlation results obtained from ever-growing
deep sequencing databases (45). Here, TCGA was the opti-
mal resource, as it integrates both RNA-Seq and miRNA-
Seq data from several dozen cancer types. This approach is
implemented in miRGator (8,46), SigTerms (47) and Top-
KCEMC (48). Although the accuracy of each of the pre-
diction methods is rather weak, their combination signif-
icantly increased the overall prediction efficacy (8). Gener-
ally, miRNA target prediction based on sequence analysis is
not tissue- or cancer-specific. Each tumor type can harbor
very different patterns of mRNA-miRNA relationships;
moreover, different microRNAs may show opposite prop-
erties, such as being either pro- or anti-oncogenic in various
tumors (49,50). Here, gene-miRNA expression correlation
analysis can make a prediction more sample-specific to ex-
tract interactions in the analyzed tissue or tumor type. How-
ever, only conservative sites predicted with three or more al-
gorithms were consistent with the expression correlation re-
sults. No tendency of median bias or over-representation of
mRNA-miRNA associations with significant negative ex-
pression correlation was observed for non-conservative sites
(Figure 4). This enabled us to highlight site conservation
and its identification with several algorithms as the major
criteria for mMRNA-miRNA interaction prediction.

Recent studies have increased the amount of data describ-
ing mRNA-microRNA interactions. One of the first ap-
proaches of experimental miRNA target identification as-
sumed immunoprecipitation of miRNA-ribonucleoprotein
complexes, isolation and microarray analysis of associated
mRNAs (40,51,52). Next-generation of miRNA target dis-
covery approaches are mainly represented with CLIP-seq
(or HITS-CLIP) and PAR-CLIP, which assume ultraviolet
crosslinking of RNA—protein complexes, immunoprecipita-
tion and sequencing (53,54). These approaches allow scien-
tists to identify various miRNA targets and exact miRNA
binding sites in the mRNAs (40). The most recent develop-
ment is CLASH (crosslinking, ligation and sequencing of
hybrids), enabling direct mapping of miRNA-mRNA bind-
ing sites without precursory target prediction (55). Using
CLASH, frequent (up to 60%) non-canonical seed inter-
actions containing bulged or mismatched nucleotides were
found, creating additional challenges for their prediction
in silico (56). In its current state, CrossHub includes data
from miRTarBase covering 21 high-throughput CLIP-seq
and one CLASH human datasets (14), representing a valu-



e62 Nucleic Acids Research, 2016, Vol. 44, No. 7

able addition to bioinformatics-based miRNA target pre-
diction algorithms.

In general, knowledge of microRNA targets allows pre-
diction of their potential functional impacts. In contrast to
conventional protein-coding genes, which typically exhibit
only a limited set of functions, microR NA effects show large
variety and context dependency. Having up to several hun-
dred potential targets, microRNA plays dramatically oppo-
site roles in different cells, tissues and tumors, as described
above (49,50,57,58). However, several methods to elucidate
the functional impact of microRNAs and highlight the
most likely affected signal pathways have been developed.
This approach is implemented in the DIANA-miR Path and
miRNA body-map resources (42,59). DIANA-miRPath is
based on data from DIANA-TarBase, another database of
mRNA-miRNA interactions supported with experimental
evidence (60). DIANA-miRPath enables Gene Ontology
and KEGG pathways-centric evaluation of the functional
impact of microRNAs. These tools can facilitate analysis to
outline a set of potentially affected pathways.

CrossHub integrates ENCODE ChIP-Seq data, and Jas-
par TFBS predictions with TCGA gene expression data
(RNA-Seq). This approach, which is very similar to the
miRNA target screening analysis implemented, may rep-
resent a good method for refining potential TF targets.
Similarly to microRNA, TF-mediated expression regula-
tion demonstrates pronounced context dependency, even
when a TF targets the same genes. Additionally, most TF
are involved in the regulation of several pathways, including
many transcription factors, which have up to several thou-
sand potential targets in the human genome (61-64). How-
ever, additional analysis is required to highlight gene-TF
relationships, which take place in the tissue and have func-
tional impacts resulting in gene expression alteration.

A standard procedure for evaluating TF effects on gene
expression and cellular states assumes TF knockdown or
TF transfection assays with subsequent gene DE profiling
(65-67). Supporting the results of gene DE profiling with
ChIP-Seq data significantly improves this approach, allow-
ing us to refine TF target lists predicted only from gene
DE profiling after TF knockdown/activation (68). Expres-
sion correlation analysis also represents an option, with ei-
ther gene-TF (69,70) or correlation of expression of multi-
ple genes regulated by a common TF (71,72).

Approximately 2000 potential transcription factors, co-
activators, co-repressors and chromatin remodeling com-
plexes are known (73). In the current state, the ENCODE
project offers nearly comprehensive ChIP-Seq data for 160
major transcription factors for 3-6 cell lines obtained from
normal tissues (HUVEC, GM12878, HI-hESC), cancer
(HeLa-S3, HepG2) and leukemia (K562). Gene-TF binding
and expression regulation mechanisms are highly context-
specific, and ChIP-Seq results cannot be simply extrapo-
lated for any tumor type. While ChIP-Seq data with wide
tissue/cell coverage provided information regarding the
global presence of TFBS in the genome, the gene expres-
sion profiling or correlation analysis performed for the cur-
rent biological material revealed gene-TF associations with
functional impacts prevailing for a particular type of tissue,
tumor or cell type (68). However, correlation analysis can
provide reliable results only for a large sample; here, TCGA
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represents an ideal source of expression data, as it contains
hundreds of tumor samples for more than 15 cancer types.

ENCODE and Jaspar describe different sets of transcrip-
tion factors with only partial overlap. Jaspar, as opposed
to ENCODE, showed no significant differences in Spear-
man rg distribution between low-score and high-score genes.
Thus, ENCODE ChIP-Seq data may have more predictive
power for TF—gene interactions compared to Jaspar.

Multidimensional genomic approaches outperform one-
dimensional approaches in multiple aspects (74,75). High
quality, coverage and accessibility of TCGA data has in-
spired the creation of several integrative tools aimed at an-
alyzing pan-cancer data in the pathway-centric, functional
and clinical contexts. Zodiac represents an outstanding tool
that enables the prediction of interactions and relation-
ships in cancer. Zodiac uses a global map of known pos-
sible genes or protein interactions and refines this data ac-
cording to likelihood models derived from TCGA data.
As a result, Zodiac outlines interactions that likely take
place in a particular cancer subtype (76). Like Zodiac, two
other well-known pathway-centric approaches SPTA (77)
and PARADIGM (78) allow inferring pathway alteration
specific for a patient or a tissue basing on the gene ex-
pression data. Analysis of perturbed interaction graphs and
comparing to the experimental evidences allows uncover-
ing pathways affected by DNA mutations. Such approach is
implemented in PINE algorithm (79). Pathway-centric ap-
proaches are perfect for the identification of activated inter-
action subnetworks or interaction graph alterations. In con-
trast to these tools, CrossHub implements gene-centric ap-
proach that is useful to identify unknown regulatory mech-
anisms of a specific gene set with no need for these genes to
be a part of known interaction network.

Multifaceted TCGA data served as a basis for identi-
fying genomic and transcriptomic prognostic and cancer
risk signatures (75,80,81). TCGA allowed us to identify
potential prognostic markers of breast invasive carcinoma,
glioblastoma multiforme, acute myeloid leukemia and lung
squamous cell carcinoma. Interestingly, RNA-Seq gene ex-
pression profiling was found to have the highest prediction
power rather than epigenomic and miRNA expression data:
there were no substantial improvements in prediction when
adding an additional genomic measurement after gene ex-
pression and clinical covariates were included in the model
(75). In contrast, when evaluating the expression of individ-
ual genes or microRNA, miRNAs showed high prediction
values (81-83).

Methylation profiling in the context of gene expression
analysis enables identification of CpG sites with a maxi-
mal impact on gene expression regulation. It is known that
the effect of methylation of various CpG sites across the is-
land is not equal; specific CpG island regions or even single
CpG pairs are known to significantly impact gene activity
(84-87). Methylation of a single CpG dinucleotide, and to a
lesser extent its nearest neighbors, was found to play a cru-
cial role in the expression regulation of protein kinase gene
ZAP-70 involved in T-cell signaling and determining the
prognosis of chronic lymphocytic leukemia (88). Similarly,
methylation of a single intronic CpG was shown to dra-
matically affect the expression of peroxisomal membrane
protein PMP24. Methylation of this CpG disrupted DNA-
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protein interactions and suppressed gene expression (87). In
contrast, methylation of CpG island shore regions may con-
tribute to the upregulation of promoter activity and gene
expression (89,90). Based on TCGA RNA-Seq data, methy-
lation profiles and ENCODE genome segments annota-
tion, CrossHub enables researchers to outline promoter re-
gions and CpG sites demonstrating maximal contributions
to gene expression downregulation. CrossHub reports a di-
rect link to the UCSC genome browser to identify histone
methylation patterns and other regulation signatures, and
provides methylation-expression correlation and normal-
tumor differential methylation tracks that are uploadable
to the UCSC browser.

TCGA provides two types of methylation profiling data.
First, data derived with methyl-specific microarrays, Il-
lumina BeadChip 27K and much more representative
450K correspond to several distinct regions of CpG is-
lands and some intronic CpG sites. Second, the results of
whole genome bisulfite sequencing studies showed single-
nucleotide resolution. However, these data are available
only for a very limited number of samples covering several
cancer types. Although a number of techniques have been
developed to enrich DNA libraries with CpG-rich frag-
ments, both targeted CpG-island and whole genome bisul-
fite sequencing procedures remain laborious and expensive.

CONCLUSIONS

Here we present CrossHub, a tool aimed to outline molec-
ular portrait of a specific gene and elucidate the three most
important gene expression regulation axes: promoter or en-
hancer methylation, microRNA interference and impact
of transcription factors. CrossHub uses the combination
of gene-TF co-expression analysis with ENCODE ChIP-
Seq data to reveal most possible gene-TF interactions with
functional impact and the combination of gene-miRNA
co-expression analysis with several miRNA target predic-
tion algorithms to uncover most possible gene-miRNA re-
lationships. ENCODE ChIP-Seq data shows greater consis-
tency with expression correlation results compared to Jas-
par transcription factor binding site predictions. Similarly,
data for conservative miR NA binding sites predicted simul-
taneously with several algorithms are consistent with the co-
expression analysis. This indicates informativeness of these
fundamentally different predictors. Use of them in combi-
nation improves the accuracy of identification of functional
gene-TF or gene-miRNA relationships. CrossHub has a
scalable design intended to analyze more various cancer
types available in TCGA. This tool may be a starting point
for integrating the data of several major projects such as
TCGA and ENCODE. The software with databases dumps
is freely available at Sourceforge, http://sourceforge.net/p/
crosshub/.
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