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Abstract 

Background Recent studies found associations between non‑alcoholic fatty liver disease (NAFLD) and polycystic 
ovary syndrome (PCOS), but the causal nature of this association is still uncertain.

Methods We performed a bidirectional two‑sample Mendelian randomization (MR) analysis to test for the causal 
association between NAFLD and PCOS using data from a large‑scale biopsy‑confirmed NAFLD genome‑wide associa‑
tion study (GWAS) (1483 cases and 17,781 controls) and PCOS GWAS (10,074 cases and 103,164 controls) in Euro‑
pean ancestries. Data from glycemic‑related traits GWAS (in up to 200,622 individuals) and sex hormones GWAS (in 
189,473 women) in the UK Biobank (UKB) were used in the MR mediation analysis to assess potential mediating roles 
of these molecules in the causal pathway between NAFLD and PCOS. Replication analysis was conducted using two 
independent datasets from NAFLD and PCOS GWASs in the UKB and a meta‑analysis of data from FinnGen and the 
Estonian Biobank, respectively. A linkage disequilibrium score regression was conducted to assess genetic correlations 
between NAFLD, PCOS, glycemic‑related traits, and sex hormones using full summary statistics.

Results Individuals with higher genetic liability to NAFLD were more likely to develop PCOS (OR per one‑unit log 
odds increase in NAFLD: 1.10, 95% CI: 1.02–1.18; P = 0.013). Indirect causal effects of NAFLD on PCOS via fasting 
insulin only (OR: 1.02, 95% CI: 1.01–1.03; P = 0.004) and further a suggestive indirect causal effect via fasting insulin in 
concert with androgen levels were revealed in MR mediation analyses. However, the conditional F statistics of NAFLD 
and fasting insulin were less than 10, suggesting likely weak instrument bias in the MVMR and MR mediation analyses.

Conclusions Our study suggests that genetically predicted NAFLD was associated with a higher risk of developing 
PCOS but less evidence for vice versa. Fasting insulin and sex hormones might mediate the link between NAFLD and 
PCOS.
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Background
Polycystic ovary syndrome (PCOS) is the most com-
mon cause of anovulatory infertility affecting up to 
nearly 10% of reproductive-age women [1, 2], and it 
was recently reported that there are up to ~1.55 mil-
lion incident cases of women with PCOS globally [3]. In 
addition, women with PCOS are also at increased risk 
of developing long-term endocrine complications and 
cardiometabolic diseases [4]. Linkages between PCOS 
and non-alcoholic fatty liver disease (NAFLD), which 
is characterized by excessive hepatic fat accumulation 
(steatosis) in the absence of significant alcohol con-
sumption [5], have been consistently reported [6, 7], 
and recent large-scale cohort and meta-analysis studies 
observed that women with PCOS were associated with 
a higher risk of NAFLD and its more progressive form, 
non-alcoholic steatohepatitis [8, 9]. The global preva-
lence of NAFLD has now reached 32.4%, and its inci-
dence among women has been estimated to be nearly 
30 cases per 1000 person-years [10]. The annual burden 
of PCOS and the direct medical costs of NAFLD and 
related complications were nearly $8 billion and over 
$137 billion, respectively, in the USA and Europe [11, 
12]. However, to date, there are no effective preventions 
or therapeutic interventions for the two common and 
burdensome diseases.

In view of the close connection between these two dis-
eases, recently, a novel hepato-ovarian axis was hypoth-
esized [13]. Moreover, growing evidence showed that 
insulin resistance and sex hormones (especially increased 
serum androgen levels) may play essential roles in the 
pathophysiology of both NAFLD and PCOS [14, 15]. To 
date, however, the causal relationship between NAFLD 
and PCOS, and whether there exist potential mediat-
ing roles of serum androgen levels and insulin resistance 
between these two conditions have been insufficiently 
addressed, because conventional observational analyses 
are susceptible to residual confounding or reverse causa-
tion bias [16].

Mendelian randomization (MR) is a statistical 
approach that could minimize the risk of bias due to 
residual confounding or reverse causation as it basically 
uses germline genetic variants as instrumental variables 
(IVs) to estimate possible causal effects between modifi-
able exposures and outcome measures [17].

Thus, in the present study, we investigated the causal 
relationship between NAFLD and PCOS using a bidi-
rectional two-sample MR analysis. A linkage disequilib-
rium score regression (LDSR) was then used to assess the 
genetic correlation between these two diseases. Further-
more, we performed stepwise multivariable MR (MVMR) 
analyses to test for the mediating roles of glycemic-
related traits and serum androgens.

Methods
Data sources
A schematic overview of the data sources, genetic instru-
ment selection, and statistical analysis in this study is pre-
sented in Fig. 1 (panel a). Summary data on NAFLD were 
obtained from a large genome-wide association study 
(GWAS) conducted by Anstee et al., which included 1483 
cases and 17,781 controls [22]. All NAFLD cases were 
diagnosed using strict criteria (i.e., liver biopsy). Due to 
the lack of sex-specific GWAS of NAFLD, we used data 
from the NAFLD GWAS in the general population and 
assumed there were no sex-specific genetic effects for 
NAFLD, as supported by previous studies [23]. Data on 
PCOS were obtained from a large-scale meta-analysis of 
PCOS GWAS conducted by Day et al., including 10,074 
cases and 103,164 controls of European ancestry, where 
participants were diagnosed with PCOS according to 
National Institutes of Health (NIH) criteria, Rotterdam 
criteria, or self-reported diagnoses [24].

Summary data on glycemic-related traits, including 
fasting glucose and insulin levels (i.e., a proxy of insulin 
resistance), were obtained from a GWAS conducted by 
Chen et al. that involved 200,622 individuals of European 
ancestry without known diabetes [25]. Summary data on 
sex hormones were extracted from a GWAS of serum 
sex hormone-binding globulin (SHBG) and bioavailable 
testosterone levels (i.e., bioavailable testosterone is cal-
culated using an equation that includes serum total tes-
tosterone, SHBG, and albumin concentrations) in up to 
189,473 women of European ancestry in the UK Biobank 
(UKB) [18].

For replication analysis, we used two independent 
GWASs, a GWAS of NAFLD in the UKB (5921 cases 
and 366,616 controls) [26] and a GWAS meta-analysis of 
data on PCOS women (3609 cases and 229,788 controls) 
in the FinnGen and Estonian Biobank (EstBB), respec-
tively [27]. Information on International Classification 
of Diseases (ICD) codes that were used to define cases of 
NAFLD in the UKB and cases of PCOS in the FinnGen 
and EstBB is presented in Table 1. Detailed information 
of each GWAS summary statistic in our study can be 
found in Additional file 1: Table S1.

Genetic instrument selection
In the primary MR analysis, ten genome-wide significant 
(P < 5 ×  10−8) single nucleotide polymorphisms (SNPs) 
were identified in the biopsy-based NAFLD GWAS [22]. 
After linkage disequilibrium (LD) clumping (a window of 
10Mb and r2 < 0.001) using the clump-data function in 
the TwoSampleMR R package [28], 4 bi-allelic SNPs with 
minor allele frequency (MAF) > 0.01 were retained as 
genetic instruments (Table 2). Of 14 genome-wide signif-
icant SNPs identified in the PCOS GWAS conducted by 
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Day et al. [24], 13 SNPs were selected as genetic instru-
ments for PCOS after excluding rs853854 (MAF close to 
0.5) and LD clumping with the same threshold as above.

Proxy variant selection and data harmonization
For genetic instruments that were not available in the out-
come GWAS summary data, a proxy variant was looked 
up (a window of 1 Mb and r2 ≥ 0.8) in the European 1000 

Genomes dataset using the LDlink (https:// ldlink. nci. nih. 
gov/? tab= ldpro xy). In the data harmonization procedure, 
we coded the effect allele and the reference allele in the 
same strand for both exposure and outcome.

Following the same procedure of LD clumping, proxy 
variant selection, and data harmonization as above, eli-
gible genetic instruments for glycemic-related traits and 
serum sex hormone levels are detailed in Additional 
file 1: Tables S2-S3. In the replication MR analysis, 6 SNPs 

Fig. 1 Schematic overview of the study. a The solid orange, green, yellow, and blue lines with arrows represent the genetic instrument selection 
procedure. b The dashed black lines with arrows represent bidirectional MR analysis between NAFLD and PCOS. c The solid orange, yellow, and 
blue lines with arrows represent respectively the causal effects of NAFLD on fasting insulin, fasting insulin on sex hormones, and sex hormones on 
PCOS, which were reported in previous MR studies [18–20]. The dashed yellow and blue lines with arrows represent the causal effects between 
phenotypes being tested for in this study. The dashed black line with arrows represents the direct causal effect of NAFLD on PCOS. The solid gray 
lines with arrows represent the causal effects of confounders on NAFLD, PCOS, and mediators [19–21]. a: The full summary statistics of PCOS GWAS 
by Day et al. included 4890 cases and 20,405 controls (excluding participants in the 23andMe study). θ1: direct causal effect of NAFLD on PCOS; θ2: 
direct causal effect of fasting insulin levels on PCOS; θ3: direct causal effect of serum bioavailable testosterone (BT) on PCOS; θ4: direct causal effect 
of SHBG levels on serum BT; θ5: direct causal effect of fasting insulin levels on serum SHBG; θ6: causal effect of NAFLD on fasting insulin; θ2×θ6: 
indirect causal effect of NAFLD on PCOS via fasting insulin levels only; θ3×θ4×θ5×θ6: indirect causal effect of NAFLD on PCOS via fasting insulin 
and sex hormone levels. Abbreviations: EstBB, Estonian Biobank; GWAS, genome‑wide association study; IVW, inverse‑variance weighted; LD, linkage 
disequilibrium; MR, Mendelian randomization; MVMR, multivariable Mendelian randomization; NAFLD, non‑alcoholic fatty liver disease; PCOS, 
polycystic ovary syndrome; SHBG, sex hormone‑binding globulin; SNPs, single nucleotide polymorphisms; UKB, UK Biobank

https://ldlink.nci.nih.gov/?tab=ldproxy
https://ldlink.nci.nih.gov/?tab=ldproxy
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Table 2 SNPs with genome‑wide significance were namely used as instrumental variables for NAFLD and PCOS in European ancestry 
individuals

Genomic positions reported in the GWASs refer to human reference assembly (GRCh37/hg19)

Abbreviations: CHR chromosome, EA effect allele, EAF effect allele frequency, EstBB Estonian Biobank, NAFLD non-alcoholic fatty liver disease, OA other alleles 
(reference allele), PCOS polycystic ovary syndrome, SE standard error, SNP single nucleotide polymorphism
a rs2068834 and rs429358 were excluded from the sensitivity analysis due to their genome-wide significant association with obesity

Phenotype SNP CHR Position Gene EA OA EAF Beta SE P value F statistics

Primary analysis datasets

 NAFLD (Anstee et al. GWAS) rs2068834a 2 27839539 ZNF512 C T 0.275 0.264 0.041 8.5×10−11 42.1

rs13118664 4 88239609 HSD17B13 T A 0.251 −0.302 0.053 1.4×10−08 32.2

rs17216588 19 19664077 CILP2 T C 0.077 0.477 0.064 7.2×10−14 56.0

rs738409 22 44324727 PNPLA3 G C 0.224 0.603 0.041 1.5×10−49 219.1

 PCOS (Day et al. GWAS) rs7563201 2 43561780 THADA A G 0.450 −0.108 0.017 3.7×10−10 39.5

rs2178575 2 213391766 ERBB4 A G 0.150 0.166 0.022 3.3×10−14 57.7

rs13164856 5 131813204 IRF1/RAD50 T C 0.730 0.124 0.019 1.4×10−10 40.9

rs804279 8 11623889 GATA4/NEIL2 A T 0.260 0.128 0.018 3.8×10−12 48.1

rs10739076 9 5440589 PLGRKT A C 0.310 0.110 0.020 2.5×10−08 31.0

rs7864171 9 97723266 FANCC A G 0.430 −0.093 0.017 2.9×10−08 30.8

rs9696009 9 126619233 DENND1A A G 0.070 0.202 0.031 8.0×10−11 42.2

rs11031005 11 30226356 ARL14EP/FSHB T C 0.850 −0.159 0.022 8.7×10−13 51.0

rs11225154 11 102043240 YAP1 A G 0.090 0.179 0.027 5.4×10−11 43.2

rs1784692 11 113949232 ZBTB16 T C 0.820 0.144 0.023 1.9×10−10 40.5

rs2271194 12 56477694 ERBB3/RAB5B A T 0.420 0.097 0.017 4.6×10−09 34.2

rs1795379 12 75941042 KRR1 T C 0.240 −0.117 0.020 1.8×10−09 36.2

rs8043701 16 52375777 TOX3 A T 0.820 −0.127 0.021 9.6×10−10 37.5

Replication analysis datasets

 NAFLD (UKB GWAS) rs2807834 1 220970593 MARC1 T G 0.309 −0.132 0.021 1.1×10−10 41.7

rs1260326 2 27730940 GCKR T C 0.388 0.132 0.019 4.0×10−12 48.1

rs17321515 8 126486409 TRIB1 G A 0.473 −0.145 0.019 1.4×10−14 59.2

rs73001065 19 19460541 MAU2 C G 0.068 0.327 0.034 1.7×10−22 95.2

rs429358a 19 45411941 APOE C T 0.154 −0.202 0.027 5.3×10−14 56.6

rs3747207 22 44324855 PNPLA3 A G 0.215 0.340 0.022 3.5×10−56 249.4

 PCOS (GWAS meta‑analysis 
of data from FinnGen and EstBB)

rs7564590 2 213387900 ERBB4 T C 0.356 0.171 0.026 4.8×10−11 43.3

rs9312937 5 16836005 MYO10 T C 0.554 −0.148 0.026 1.8×10−08 31.8

rs3945628 9 126535553 DENND1A T C 0.930 −0.340 0.049 2.9×10−12 48.7

rs11031002 11 30215261 FSHB A T 0.122 0.217 0.038 9.3×10−09 32.9

rs1672716 11 113952497 ZBTB16 A G 0.855 0.206 0.036 9.8×10−09 32.8

rs17880096 22 29105202 CHEK2 C G 0.037 0.335 0.047 1.5×10−12 50.0

Table 1 The International Classification of Diseases (ICD) code was used to define cases of NAFLD in the UK Biobank and PCOS in the 
FinnGen and Estonian Biobank

Phenotype Inclusion criteria Data source(s)

NAFLD ICD‑10 code K76.0
“Fatty (change of ) liver, not elsewhere classified”

UK Biobank

PCOS ICD‑10 code E28.2
“Polycystic ovarian syndrome”

FinnGen; Estonian Biobank

ICD‑9 code 256.4
“Polycystic ovaries”

FinnGen

ICD‑8 code 256.90
“other and unspecified ovarian dysfunction”

FinnGen
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were selected as genetic instruments for NAFLD and 
for PCOS, respectively. After getting the eligible IVs, we 
compared the IV-specific causal effect estimate between 
the most significant variants used in our analysis (i.e., 
rs17216588, rs2068834, and rs73001065) and their high 
LD causal variants, which were previously reported in the 
literature (i.e., rs58542926 on TM6SF2 and rs1260326 on 
GCKR) (Additional file 2: Fig. S1).

Statistical analysis
Primary MR analysis
A bidirectional MR analysis was performed to deter-
mine the causal relationship between NAFLD and 
PCOS (Fig.  1, panel b). The random-effects inverse-
variance weighted (IVW) method or fixed-effects IVW 
method was used in the primary MR analysis using the 
TwoSampleMR R packages [28]. In particular, we used 
the fixed-effects IVW method when there were three 
or fewer genetic instruments available; otherwise, the 
random-effects IVW method was used [29]. To assess 
the strength of the selected genetic instruments in MR 
analysis, F statistics were calculated, which can be used 
to examine whether MR estimates are likely to be influ-
enced by weak instrument bias. F statistics greater than 
10 are generally considered strong [30]. In addition, 
Cochran’s Q test was conducted to assess the hetero-
geneity of causal effect estimates between NAFLD and 
PCOS [31].

MR mediation analysis
A stepwise MR analysis approach was used to exam-
ine whether there exist mediation effects of glycemic-
related traits and sex hormones (i.e., serum SHBG and 
bioavailable testosterone levels) between NAFLD and 
PCOS (Fig. 1, panel c) [32, 33]. To assess the direct causal 
effect between NAFLD, glycemic-related traits, sex hor-
mones, and PCOS in each step, we performed an MVMR 
analysis using the MVMR R package [34]. Conditional 
F statistics were calculated for assessing the strength of 
the genetic instruments in MVMR analysis (Additional 
file  1: Tables S4-S6) [35]. Furthermore, to minimize the 
risk of bias due to horizontal pleiotropy, the MR media-
tion analysis was conducted after excluding the obesity-
related genetic variants which were identified from the 
PhenoScanner V2 database [36] and the GWAS Catalog 
[37]. The product of the coefficients method [38] and the 
multivariate delta method [39] were used to calculate the 
indirect effects of NAFLD on PCOS via mediators. The 
detailed stepwise MR mediation analysis and obesity-
related SNPs selection procedures can be found in Addi-
tional file 1: Table S7 and Additional file 2: “Step-wise MR 
mediation analysis” and “Obesity-related genetic variants 
selection.”

Replication MR analysis
A replication bidirectional MR analysis between NAFLD 
and PCOS was performed using two independent 
NAFLD and PCOS GWAS datasets [26, 27]. To increase 
the statistical power and precision of our causal esti-
mates, a fixed-effects meta-analysis was conducted to 
combine the causal estimates derived from the primary 
MR analysis and the replication MR analysis using the 
meta R package [40]. We also replicated the findings of 
the mediation effects of glycemic traits and serum sex 
hormone levels using the replication analysis datasets.

MR sensitivity analysis
To examine the robustness of MR effect estimates to 
potential invalid genetic variants, we conducted MR-
Egger regression [41], weighted median [42], and the 
Mendelian randomization pleiotropy residual sum and 
outlier (MR-PRESSO) [43] tests as sensitivity analy-
ses. Unlike the IVW method that assumes all the SNPs 
are valid IVs [44] when the Instrument Strength must 
be Independent of the Direct Effect (InSIDE) assump-
tion holds, the MR-Egger regression test could generate 
a consistent estimate even if all the genetic instruments 
are invalid [41]. The weighted median model is a robust 
approach, which could provide consistent estimate 
results when more than half of the genetic instruments 
are valid [42]. We used MR-PRESSO to detect the pres-
ence of outliers (i.e., potentially pleiotropic SNPs) and 
estimate the causal effect after excluding outliers [43]. 
The leave-one-out (LOO) analysis was used to assess 
whether the causal effect was driven by an influential 
SNP via recalculating the MR estimates by leaving one 
instrument out at a time [45]. Moreover, we performed 
an IVW analysis after excluding obesity-related genetic 
variants.

Genetic correlation analysis
We estimated the genetic correlation between NAFLD, 
PCOS, glycemic-related traits, and sex hormones via 
LDSR using the primary and replication GWAS sum-
mary datasets, respectively [46].

Non‑collapsibility of the odds ratio
Non-collapsibility of the odds ratio is a challenge in the 
mediation analysis when the outcome is binary, such as 
NAFLD [47]. To assess whether binary outcomes used 
in MR analysis would impact the estimates and conclu-
sions of our study, a magnetic resonance imaging-derived 
proton density fat fraction (PDFF) GWAS in the UKB, 
which was conducted using a linear model [26], was used 
to replicate the causal associations between NAFLD and 
PCOS (Additional file  2: “Non-collapsibility of the odds 
ratio” and Fig. S2).
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All statistical analyses were undertaken with R version 
4.0.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Given that up to five risk factors (NAFLD, two 
glycemic-related traits, and two sex hormone traits) 
were investigated in MVMR analysis, an estimate with a 
P value, after applying a multiple testing Bonferroni cor-
rection, less than 0.01 (P = 0.05/5 traits) was considered 
as strong evidence for causal effects, whereas a P value 
between 0.01 and 0.05 indicated a suggestive causal 
effect.

Results
Causal effect between NAFLD and PCOS
In the primary MR analysis, we found that geneti-
cally predicted NAFLD increased the risk of PCOS by 
10% (odds ratio [OR] per one-unit log odds increase in 
NAFLD: 1.10, 95% confidence interval [CI]: 1.02–1.18; 
P = 0.013) (Fig.  2, panel a). Additionally, a total effect 
equated to an OR for PCOS of 1.12 (95% CI: 1.02–1.24; 
P = 0.019) was estimated in the two-sample MR analysis 
after excluding an obesity-related SNP (i.e., rs2068834). 
A similar causal effect (OR: 1.08, 95% CI: 1.01–1.15; P 
= 0.029) was observed in the replication analysis after 
excluding one obesity-related SNP (i.e., rs429358). Fur-
thermore, the fixed-effects meta-analysis of the IVW 
causal estimates derived from the primary and replica-
tion MR IVW analysis results generated a pooled positive 

causal effect equated to an OR for PCOS of 1.08 (95% CI: 
1.02–1.14; P = 0.009) per one-unit log odds increase in 
NAFLD. In contrast, there was little evidence for a causal 
effect of genetically predicted PCOS on NAFLD risk, 
which was consistent with the results of replication anal-
ysis and sensitivity analyses (Fig. 2, panel b).
F statistics for their respective genetic instruments 

ranged from 30.8 to 249.4 (Table 2). It suggested that MR 
analysis results were unlikely to be influenced by weak 
instrument bias. For the causal effect of NAFLD on the 
risk of PCOS, Cochran’s Q statistics was 1.99 (P = 0.575), 
whereas for the reverse causal effect of POCS on NAFLD 
risk, Cochran’s Q statistics was 29.94 (P = 0.003), thereby 
suggesting a potential heterogeneity across SNP-specific 
causal effect estimates. The results of the LOO analysis 
suggested that there was no potentially influential SNP 
in the primary and replication MR analyses (Additional 
file  2: Fig. S3). The MR-Egger intercept test results did 
not show any directional pleiotropy. An outlier-corrected 
MR-PRESSO test was performed after removing strong 
outliers among the IVs. Detailed MR-Egger intercept test 
results and MR-PRESSO global test results can be found 
in Additional file 1: Tables S8-S9.

Notably, a positive genetic correlation (rg = 0.73, stand-
ard error [SE] = 0.27; P = 0.007) between NAFLD and 
PCOS was observed using the primary GWAS summary 
statistics via LDSR (Additional file 1: Table S10). Although 

Fig. 2 Results of bidirectional MR analysis between NAFLD and PCOS. a Causal effect of genetically predicted NAFLD on the risk of PCOS. 
MR‑PRESSO analysis was not applicable to estimate the causal effect of NAFLD on fasting glucose due to the small number of genetic instruments 
used in the UKB GWAS. b Causal effect of genetically predicted PCOS on the risk of NAFLD. The primary MR analysis used data from NAFLD GWAS by 
Anstee et al. and PCOS GWAS by Day et al. The replication MR analysis used data from the UKB NAFLD GWAS and PCOS GWAS meta‑analysis of data 
from FinnGen and EstBB. A fixed‑effects meta‑analysis was conducted to combine causal effect estimates derived from the primary and replication 
MR IVW analysis. a: A secondary IVW analysis was conducted after excluding rs2068834 due to its genome‑wide significant association with obesity. 
b: A secondary IVW analysis was conducted after excluding rs429358 due to its genome‑wide significant association with obesity. c: Outlying 
genetic instruments were excluded in the corrected MR‑PRESSO analysis. Abbreviations: CI, confidence interval; EstBB, Estonian Biobank; GWAS, 
genome‑wide association study; IVs, instrumental variables; IVW, inverse‑variance weighted; NAFLD, non‑alcoholic fatty liver disease; OR, odds ratio; 
PCOS, polycystic ovary syndrome; UKB, UK Biobank
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the replication LDSR analysis generated a weaker genetic 
correlation (rg = 0.27, SE = 0.19; P = 0.150), the direction 
was consistent with that observed in the primary analysis. 
We further tested pair-wise genetic correlations between 
all traits in the primary and replication analyses, respec-
tively. Detailed information can be found in Additional 
file 1: Table S10 and Additional file 2: Fig. S4.

Causal effects of NAFLD, glycemic‑related traits, sex 
hormones, and PCOS via stepwise MR mediation analysis
After excluding obesity-related SNPs, MVMR analysis 
revealed direct causal effects of NAFLD (OR: 1.11, 95% 

CI: 1.05–1.17; P < 0.001), fasting insulin (OR per increase 
in natural log-transformed pmol/L fasting insulin: 3.11, 
95% CI: 1.68–5.76; P < 0.001), and serum bioavailable 
testosterone levels (OR per increase in natural log-trans-
formed nmol/L bioavailable testosterone: 1.90, 95% CI: 
1.27–2.85; P = 0.002) on the risk of developing PCOS, 
respectively (Fig. 3, panel a; Additional file 1: Table S4). By 
contrast, no causal effect was observed for fasting glucose 
(OR: 0.89, 95% CI: 0.61–1.31; P = 0.564) and SHBG levels 
(OR: 1.21, 95% CI: 0.72–2.04; P = 0.461) on PCOS risk.

In the following steps of the MR mediation analysis, 
we found strong evidence for a causal effect of serum 

Fig. 3 Results of stepwise MR mediation analysis between NAFLD, glycemic‑related traits, sex hormones, and PCOS. a Direct causal effects of 
NAFLD, glycemic‑related traits, and sex hormones on PCOS. b Direct causal effects of NAFLD, glycemic‑related traits, and SHBG on serum BT levels. 
c Direct causal effects of NAFLD and glycemic‑related traits on serum SHBG levels. d Causal effects of NAFLD on glycemic‑related traits. MR‑PRESSO 
analysis was not applicable to estimate the causal effect of NAFLD on fasting glucose levels due to the small number of genetic instruments 
used. θ1: direct causal effect of NAFLD on PCOS; θ2: direct causal effect of fasting insulin levels on PCOS; θ3: direct causal effect of serum BT levels 
on PCOS; θ4: direct causal effect of SHBG on serum BT levels; θ5: direct causal effect of fasting insulin levels on SHBG; θ6: causal effect of NAFLD 
on fasting insulin; θ2×θ6 indirect causal effect of NAFLD on PCOS via fasting insulin levels only; θ3×θ4×θ5×θ6: indirect causal effect of NAFLD on 
PCOS via fasting insulin and sex hormone levels. a: A secondary IVW analysis was conducted after excluding rs2068834 due to its genome‑wide 
significant association with obesity. b: Outlying genetic instruments were excluded in the corrected MR‑PRESSO analysis. Abbreviations: BT, 
bioavailable testosterone; CI, confidence interval; FG, fasting glucose; FI, fasting insulin; IVs, instrumental variables; MVMR, multivariable Mendelian 
randomization; NAFLD, non‑alcoholic fatty liver disease; PCOS, polycystic ovary syndrome; SHBG, sex hormone‑binding globulin
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SHBG levels (beta: −0.929, 95% CI: −0.969 to −0.888; P 
< 0.001) on serum bioavailable testosterone levels (Fig. 3, 
panel b; Additional file  1: Table  S5). Furthermore, an 
inverse causal association (beta: −0.280, 95% CI: −0.424 
to −0.135; P < 0.001) between fasting insulin and SHBG 
levels, whereas a null causal association between either 
NAFLD (beta: −0.006, 95% CI: −0.023–0.010; P = 0.468) 
or fasting glucose (beta: −0.060, 95% CI: −0.141–0.020; P 
= 0.144) and SHBG levels, was observed (Fig. 3, panel c; 
Additional file 1: Table S6).

During further estimating causal effects on glycemic-
related traits, the MR analysis results did not support any 
causal effect of genetically predicted NAFLD on fasting 
insulin levels; nevertheless, a significantly positive causal 
effect was observed (beta: 0.0152, 95% CI: 0.0087–0.0216; 
P < 0.001) after excluding the pleiotropic obesity-related 
SNP (Fig.  3, panel d). Meanwhile, little evidence was 
found to support a causal effect of NAFLD on fasting glu-
cose levels, which was consistent with the results of sen-
sitivity analyses.

Taken together, we found the following two poten-
tial mediation pathways between NAFLD and PCOS: 
(1) an indirect causal effect of NAFLD on PCOS risk 
via fasting insulin levels only (θ2×θ6) (OR: 1.02, 95% CI: 
1.01–1.03; P = 0.004) and (2) a suggestive indirect causal 
effect of NAFLD on PCOS risk via circulating levels of 
fasting insulin, SHBG, and bioavailable testosterone 
(θ3×θ4×θ5×θ6) (OR: 1.0025, 95% CI: 1.0002–1.0049; P 
= 0.0323) (Additional file 1: Table S11). These two path-
ways mediated 14.9% and 2.2% of the total causal effect 
of NAFLD on PCOS risk, respectively. Detailed estimates 
of direct and indirect causal effects using the replication 
datasets can be found in both Additional file  1: Tables 
S4-S6 and Additional file  2: Fig. S5. The conditional F 
statistics can be found in Fig. 3 (panel a to panel c) and 
Additional file  1: Table  S4-S6, which suggested weak 
instrument bias may occur in the MVMR analysis for 
NAFLD and fasting insulin.

Discussion
In bidirectional MR analyses, we found that genetically 
predicted NAFLD was causally associated with a higher 
risk of developing PCOS, whereas there was little evi-
dence for a causal effect of genetically predicted PCOS on 
the risk of developing NAFLD. In addition, our MR medi-
ation analyses confirmed a direct causal effect of NAFLD 
on the risk of developing PCOS along with significant 
indirect causal effects via circulating levels of insulin and 
sex hormones (namely serum SHBG and bioavailable tes-
tosterone levels). Therefore, these findings suggest that 
fasting insulin and serum androgen levels might play 
mediating roles in the putative causal pathway, which 
might be the recently proposed hepato-ovarian axis [13].

Our MR analysis further indicated a causal effect of 
increased fasting insulin levels (a proxy of insulin resist-
ance) on the risk of PCOS, which was supported by a 
suggestive causal effect of insulin resistance on PCOS 
reported in a previous MR study [21]. In the ovarian 
theca cells, insulin may exert a co-gonadotropin effect on 
upregulating luteinizing hormone (LH)-induced andro-
gen production [48]. Furthermore, increased serum LH 
levels and insulin resistance could impair follicle matu-
ration and even cause anovulatory cycles [49]. Previous 
studies suggested that disruption of insulin receptor sign-
aling in the central nervous system may also contribute 
to the development of PCOS via the hypothalamic-pitui-
tary-gonadal axis [48–50].

Accumulating evidence supported an association 
between higher serum androgen levels and PCOS [51]. 
Moreover, a causal association between increased serum 
androgen levels and PCOS was confirmed in a recent MR 
study [18], which was further replicated in the present 
study. In particular, we found that higher serum bioavail-
able testosterone levels were causally associated with a 
higher risk of PCOS, but little evidence was found for a 
direct causal effect of serum SHBG levels on PCOS risk 
when adjusting for circulating bioavailable testosterone 
levels.

A previous MR study reported causal associations 
between increased fasting insulin and decreased SHBG 
levels and higher bioavailable testosterone levels, respec-
tively [19]. Our present MR analysis results supported 
the existence of inverse causal effects of fasting insulin on 
SHBG levels and SHBG on serum bioavailable testoster-
one levels; however, there was little evidence for a direct 
causal effect of fasting insulin levels on serum bioavail-
able testosterone after adjusting for SBHG levels. Taken 
together, our findings suggested that higher fasting insu-
lin levels might affect serum bioavailable testosterone 
levels mainly through serum SHBG reduction.

In our study, obesity was an essential confounder 
between NAFLD and glycemic-related traits. Previ-
ous research reported that obesity could upregulate 
the pro-inflammatory gene expression, then increase 
pro-inflammatory cytokine production in the liver, and 
induce hepatic and systemic insulin resistance [52, 53]. 
We observed a causal effect of NAFLD on fasting insu-
lin levels, which was consistent with a previous MR study 
[20], but not fasting glucose levels using genetic instru-
ments for NAFLD excluding one obesity-related SNP 
(rs2068834). This finding was also supported by studies 
showing that hepatic steatosis could impair insulin action 
and then induce insulin resistance in the liver [54]. It is 
noteworthy that our study did not find any causal associ-
ations between genetically predicted NAFLD and serum 
SHBG or bioavailable testosterone levels after adjusting 
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for obesity and glycemic-related traits, which was incon-
sistent with observations from some previous studies 
suggesting that NAFLD patients were more likely to have 
lower serum SHBG levels [55, 56]. Previous studies found 
that circulating levels of SHBG could be upregulated by 
adiponectin, which was inversely associated with obesity 
[57, 58]. Thus, it is possible to hypothesize that the lower 
serum SHBG levels and higher bioavailable testosterone 
levels observed among patients with NAFLD in previous 
observational studies might be affected by obesity, inde-
pendent of NAFLD.

Our study has several strengths. First, we used the 
largest and most recent data from GWASs in Euro-
pean ancestry. Second, we comprehensively tested for 
the potential mediators in the causal pathway between 
NAFLD and PCOS. Third, we used independent data 
sources to validate our causal inference.

There are also some important limitations to this study. 
First, both the biopsy-based NAFLD GWAS by Anstee 
et al. [22] and NAFLD GWAS in UKB [26], which were 
used in the present MR study due to a lack of large-
scale sex-specific NAFLD GWAS, were conducted in 
a sex-combined population. Although previous stud-
ies found that NAFLD is a sexual dimorphism condi-
tion [59], no sex differences in genetic effects were found 
for SNPs in genes (or in high LD with genes) including 
PNPLA3, HSD17B13, TM6SF2, and GCKR [23], which 
were the selected genetic instruments for NAFLD in our 
MR analyses. Second, the disparity in results of media-
tion and LDSR analyses between different independent 
datasets might be, at least in part, attributed to varying 
definitions used for cases of NAFLD and PCOS. In the 
datasets for primary analysis, cases of NAFLD and PCOS 
were diagnosed using strict criteria (i.e., liver biopsy and 
NIH or Rotterdam criteria, respectively), whereas cases 
of both conditions were identified only by ICD codes in 
the datasets for replication analysis. PCOS was identi-
fied in the FinnGen study using electronic health records 
since 1968, which may not be as accurate as data using 
the recent diagnostic criteria. Third, due to lacking inde-
pendent large-scale glycemic-related traits and sex hor-
mones GWAS, sample overlap exists between fasting 
insulin and fasting glucose and between SHBG and bio-
available testosterone levels in the mediation analysis. 
However, we tried our best to search for all the available 
GWASs and selected independent NAFLD and PCOS 
GWASs in primary and replication analyses, respectively. 
Therefore, our main causal effect estimates between 
NAFLD and PCOS were unlikely to be affected by sam-
ple overlap. Fourth, although each exposure was strongly 
predicted by the genetic variants in the two-sample MR 
analysis, the MVMR analysis was still likely to be biased 
by the conditional weak instruments [34]. And the weak 

instrument bias cannot be ruled out in both primary 
and replication MR mediation analyses. The under-
lying mechanisms of the suggestive causal pathways 
between NAFLD and PCOS in our study need further 
investigation.

It is noteworthy that the primary MR analysis found 
a positive causal effect of NAFLD on PCOS risk using 
the NAFLD GWAS by Anstee et  al., which was con-
ducted within the population of South Europe [22], while 
NAFLD and PCOS GWASs used in the replication analy-
sis were conducted in West and North Europe (i.e., the 
UK and Finland/Estonia) [26, 27]. Although a statistically 
non-significant causal effect of NAFLD on PCOS risk 
was observed in our replication MR analysis, the causal 
effect magnitude and direction were consistent with the 
primary analysis results. Moreover, the statistically sig-
nificant pooled MR estimates of primary and replication 
analysis results supported a causal effect of NAFLD on 
PCOS risk. Thus, collectively, our results can largely be 
generalized to European populations.

Conclusions
Our study supported a causal association between 
genetically predicted NAFLD and higher risk of develop-
ing PCOS. Moreover, the underlying mechanisms from 
NAFLD to PCOS might be linked via higher circulating 
levels of fasting insulin (a proxy of insulin resistance) and 
sex hormones (mainly bioavailable testosterone levels). 
The findings of this study suggested the potential clini-
cal and public health significance of early diagnosis and 
management of NAFLD for future PCOS prevention. 
Given that the likelihood of our MVMR analysis results 
being potentially biased by conditional weak instruments 
cannot be ruled out, the mediating biomarkers inves-
tigated in this study should be cautiously considered as 
potential therapeutic targets and need to be validated in 
future larger genetic studies and intervention studies.
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