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de médecine, Université de Montréal, Montréal, QC, Canada, 3 Division of Cardiovascular and Metabolic Diseases, Institut de
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Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis
transmembrane conductance regulator gene (CFTR). Cystic fibrosis-related diabetes
(CFRD) is the most common comorbidity, affecting more than 50% of adult CF
patients. Despite this high prevalence, the etiology of CFRD remains incompletely
understood. Studies in young CF children show pancreatic islet disorganization,
abnormal glucose tolerance, and delayed first-phase insulin secretion suggesting that
islet dysfunction is an early feature of CF. Since insulin-producing pancreatic b-cells
express very low levels of CFTR, CFRD likely results from b-cell extrinsic factors. In the
vicinity of b-cells, CFTR is expressed in both the exocrine pancreas and the immune
system. In the exocrine pancreas, CFTR mutations lead to the obstruction of the
pancreatic ductal canal, inflammation, and immune cell infiltration, ultimately causing the
destruction of the exocrine pancreas and remodeling of islets. Both inflammation and
ductal cells have a direct effect on insulin secretion and could participate in CFRD
development. CFTR mutations are also associated with inflammatory responses and
excessive cytokine production by various immune cells, which infiltrate the pancreas and
exert a negative impact on insulin secretion, causing dysregulation of glucose
homeostasis in CF adults. In addition, the function of macrophages in shaping
pancreatic islet development may be impaired by CFTR mutations, further contributing
to the pancreatic islet structural defects as well as impaired first-phase insulin secretion
observed in very young children. This review discusses the different factors that may
contribute to CFRD.

Keywords: diabetes, cystic fibrosis, risk factors, immune function, CFTR
INTRODUCTION

Cystic fibrosis (CF; OMIM 219700) is the most frequent autosomal recessive disease in individuals
of European ancestry with approximately 1 in 3000 births (1). This disease, for which there is no
cure, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)
gene, a cAMP-regulated anion channel responsible for chloride and bicarbonate transport (1–3).
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To date, more than 2000 CFTR variants have been identified with
more than 300 variants known to directly cause CF (https://cftr2.
org/mutations_history). CFTR mutations are grouped into six
different classes; mutations in class I-III are considered severe
while those in classes IV-VI are mild, in line with the severity of
the pathology resulting from these mutations (1, 3, 4).

Mutations in CFTR cause dysregulation of ion and water
transport across cellular membranes, which leads to the
accumulation of dehydrated mucus and thickened secretions in
organs such as the lungs and the exocrine pancreas (3, 4).
Consequently, CF patients show a deterioration in pulmonary
function associated with recurrent pulmonary infections, a major
cause of morbidity and mortality. In the pancreas, a similar
phenomenon leads to pancreatic exocrine insufficiency in the
vast majority of patients, resulting in nutritional deficiency
characterized by poor growth or weight gain in spite normal or
increased food intake. To mitigate this nutritional deficiency, CF
patients must frequently take pancreatic enzymes and vitamins.
In addition to the lungs and pancreas, CFTR mutations can affect
other tissues leading, for example, to male infertility.

With the advent of new treatments, the life-expectancy of CF
patients has increased considerably from 10 years of age to now
more than 50 years in some countries (5, 6). The prolonged life
expectancy has led to the emergence of additional complications
such as CF-related diabetes (CFRD). CFRD is the most common
comorbidity of CF and its development has been associated with
a decrease in lung function and survival (7, 8). This review will
discuss the etiology of CFRD and highlight the emerging
potential role of inflammation in the progression to CFRD.
COMPARISON OF CFRD TO OTHER
FORMS OF DIABETES

Diabetes is a general term encompassing metabolic diseases
characterized by dysregulation of blood glucose levels. The
pancreas is the primary organ responsible for regulating glucose
homeostasis. It is composed of exocrine and endocrine tissues.
While the exocrine pancreas produces proteolytic enzymes to
facilitate digestion, the endocrine tissue, named islets of
Langerhans, is dispersed as cell clusters throughout the exocrine
tissue (9). Each islet contains a cluster of a, b, d, and PP cells,
producing various hormones involved in glucose homeostasis
(9, 10).

Diabetes is characterized by hyperglycemia. Chronic
hyperglycemia contributes directly to an increased risk of
vascular diseases, renal failure, blindness, amputation, and
neuropathy as well as decreased life expectancy while severe
hyperglycemia can lead to coma and death (11). While the most
common forms of diabetes are type 1 (T1D) and type 2 diabetes
(T2D), diabetes of the exocrine pancreas (DEP) is also getting
recognition as an important cause of diabetes [reviewed in (12,
13)]. In T1D, representing less than 10% of overall cases, the
immune system attacks and destroys insulin-producing
pancreatic b-cells (14); patients living with T1D are dependent
on exogenous insulin injections to regulate glucose levels (14).
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T2D, representing close to 90% of overall cases, is characterized
by insulin resistance, whereby tissues such as the liver, muscle,
and brain do not respond efficiently to insulin resulting in
impaired glucose homeostasis. In addition, T2D patients
exhibit quantitative and qualitative defects in insulin
production. The combined effects of insulin resistance and
abnormal insulin secretion together with other important
mechanisms such as dysregulated secretion and/or action of
incretin hormones and kidney glucose reabsorption lead to
increased blood glucose levels (15, 16). Early treatment of T2D
targets three different pathways, alone or in combination by:
1) improving insulin sensitivity via either changes in lifestyle or
pharmacologic approaches; 2) increasing insulin secretion; and
3) reducing kidney glucose reabsorption (17). Over time, the
ability of pancreatic b-cells to produce insulin is reduced in most
T2D patients and exogenous insulin may be required to maintain
appropriate glucose levels (18). A major complication of insulin
therapy is hypoglycemia, which is associated with physical (e.g.
falls) and/or psychological complications (e.g. fear) and, in its
most severe form, can lead to coma or death (19). DEP, also
named type 3c diabetes or pancreatogenic diabetes, refers to
patients that develop diabetes secondary to exocrine pancreatic
diseases such as acute and chronic pancreatitis, pancreatic
cancer, alcohol-induced pancreatitis and CFRD. DEP is often
underdiagnosed and may represent between 1-9% of diabetes
cases (20, 21). Alcohol consumption is a leading cause of
DEP (22), and alcohol-induced pancreatitis is associated
with the accumulation of mucus in small ductal cells and
destruction of the exocrine pancreas (22, 23). Interestingly,
alcohol consumption is also associated with a reduction of the
expression and membrane localization of CFTR in human
pancreas (24, 25), and CFTR variants are important risk factors
for DEP (26, 27). These observations highlight the important role
of CFTR in the maintenance of pancreatic functions beyond CF.
Still, because of the heterogeneous nature of the underlying
mechanism driving the lesions in the exocrine pancreas
for DEP, these diseases tend to exhibit very different
pathophysiological features (18). One common feature of
various forms of DEP is the reduction of insulin secretion.
Consequently, DEP patients resort to the administration of
exogenous insulin to regulate their blood glucose levels.

CFRD is a heterogeneous disease that shares some
characteristics of T1D, T2D and alcohol-induced diabetes, such as
insulin insufficiency. Similar to other forms of DEP, CFRD is
associated with pancreatic inflammation, fibrosis and fatty
infiltration leading to a reduction of the number of islets and
impaired insulin secretion. The development of CFRD in CF
patients is not associated with b-cell autoimmunity or HLA
haplotypes that are linked to T1D susceptibility (28, 29). This
suggests that for a majority of CF patients, the development of
diabetes is not due to an autoimmune destruction of the b-cells.
Nevertheless, a small subset of CF patients present evidence of an
autoimmune response directed towards insulin-producing
pancreatic b-cells. Specifically, autoantibodies to b-cell antigens,
such as glutamic acid decarboxylase, insulin, or protein tyrosine
phosphatase, which can be present in T1D patients (30, 31), have
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beendetected in 0.8%-8.5%ofCFpatients (28, 29, 32). In this subset
of CF patients, diabetes onset occurs earlier and is associated with a
higher risk for acute complications, such as severe hypoglycemia
and ketoacidosis (32). Thus for these autoantibody-positive CF
patients, the autoimmune response to b-cell antigens is associated
with the progression and severity of CFRD. Whether HLA
haplotypes linked to T1D susceptibility or whether autoreactive T
cells are more prevalent in autoantibody-positive CF patients
relative to autoantibody-negative patients remains to be
determined. From a clinical standpoint, CFRD and T1D share
common features: onset ismostly in young patients, the diagnosis is
typically not associated with obesity and insulin therapy is very
frequently the therapeutic option. Of interest, a CFTR variant has
recently been linked to T1D susceptibility suggesting a further
association between CFRD and T1D pathologies (33).

CFRD also shares some features of T2D, such as insulin
resistance and pancreatic amyloid deposition (34–37). Though
some older studies failed to identify insulin resistance as a
component of dysglycemia in CF, most recent studies show
that CFRD patients exhibit both peripheral and hepatic insulin
resistance similar to T2D (37–41). The hepatic insulin resistance
coupled with a higher rate of gluconeogenesis result in a net
increase in hepatic glucose production, which contributes to the
hyperglycemia in CF patients (38, 39). Prospective observational
cohort studies show that in a context of significantly reduced
insulin secretion, variations of insulin sensitivity are associated
with variations of glucose tolerance in adult patients with CF
(41). Pancreatic amyloid deposition is also characteristic of
CFRD patients. It is observed in 69% of CFRD patients,
whereas it is absent in CF patients without diabetes (35).
Interestingly, amyloid deposits are also observed in diabetics
suffering from chronic pancreatitis and pancreatic cancer (42).
As for T2D, this amyloid deposition in CFRD is progressive; it is
generally not observed in children with CF (36, 43, 44). Because
these deposits are detected late in the disease process,
amyloidosis is probably a consequence rather than a cause of
diabetes. Moreover, a recent study has found elevated levels of
inflammatory markers in T2D and CFRD patients compared to
control subjects, and these markers were associated with diabetic
complications in both groups of patients (45). Of note, systemic
inflammation is usually associated with insulin resistance. From
a clinical standpoint, the onset of diabetes in both CFRD and
T2D is preceded by a long phase of glucose intolerance usually
characterized by postprandial glucose excursions (46).

A most interesting commonality between T2D and CFRD is
the view that lung function may contribute to glucose
dysregulation. In a T2D cross sectional study, lower forced
expiratory volume in one second (FEV1), a measure of lung
function, was associated with higher levels of plasma glucose in
both control and T2D subjects (47). Similarly, in CF children,
there is an inverse association between lower arterial oxygen
saturation at night and glucose excursion during the OGTT (48).
Prospective studies have also reported that reduced lung function
increases the risk of T2D (49, 50). It would be interesting to
examine whether reduced lung function in CF accelerates the
progression to CFRD.
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Altogether, results from these studies suggest that CFRD is a
heterogeneous disease and that progression to CFRD is regulated
by a multitude of factors. A key specific point of abnormal
glucose homeostasis in patients living with CF is an association
with an increased risk of accelerated weight loss, lung function
reduction, and accordingly, a marked increased risk of early
death (51, 52). Historically, it was reported that such risks start in
the pre-diabetic glucose intolerance phase (53). Recently
published data, however, indicate that improvement of overall
CF management could modify some of the previously reported
associations. For example, CFRD onset is no longer preceded by
a reduction in lung function and/or accelerated weight loss in the
majority of patients (53).
RISK FACTORS ASSOCIATED WITH THE
DEVELOPMENT OF CFRD

Age, genotype and the presence of exocrine pancreatic deficiency
are defined risk factors for CFRD. Notably, similar to insulin
resistance (7, 37, 53, 54), the prevalence of CFRD increases with
age; around 2% of children, 19% of adolescents, and up to 50% of
adult CF patients are diabetic (7). In addition, patients carrying
severe mutations such as class I and II mutations have a higher
risk of diabetes and pancreatic insufficiency compared to those
with milder CFTR mutations (54). Pancreatic insufficiency is
closely associated with dysglycemia as well as low body mass
index (BMI) and FEV1 (53). However, not all patients bearing
identical CFTR mutations will develop CFRD and variation in
diabetes onset as well as disease severity among CF patients with
the same mutation suggest that additional factors contribute to
CFRD. Genome wide association studies (GWAS) indicate that
while there is only weak genetic association between T1D and
CFRD (55), CFRD shares some genetic etiology with T2D,
including loci associated with b-cell function (55, 56). In fact, a
family history of T2D increases by 3-fold the risk of developing
CFRD (56). GWAS have also highlighted the contribution of
gene modifiers to CFRD. For example, variants of SLC26A9, a
chloride channel, are associated with CFRD onset (55, 56) and
patients that express higher levels of this transporter develop
diabetes later (57). While SLC26A9 variants are specific for
CFRD, other variants such as TCF7L2 are associated with both
CFRD and T2D (55).

In addition to age and genotype, gender also contributes to
CFRD susceptibility, but its role is more complex. Indeed, CFRD
is more prevalent in women with CF in spite of higher insulin
secretion compared to men with CF (58). One possible
explanation for this counterintuitive observation is the fact that
bacterial infections occur earlier and more frequently in women
than men with CF, often leading to a systemic inflammatory
response (59). Both acute and low grade systemic infections as
well as corticosteroid use are known to contribute to insulin
resistance and diabetes (60–63). Interestingly, Harding et al.
showed that TNF-a levels, a marker of systemic inflammation,
correlated with worse clinical status in CF subjects with impaired
glucose tolerance (64). Altogether, this suggests that heightened
July 2021 | Volume 12 | Article 702823
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systemic inflammation present in women relative to men with
CF exacerbates insulin resistance and contributes to
CFRD development.

CFTR mutations also affect the hepatobiliary system and liver
diseases are risk factors for CFRD (65). Of note, liver biopsies
from CF patients revealed fatty degeneration and liver fibrosis,
which can progress to liver cirrhosis (66). Studies have shown
that there is a strong association between liver steatosis and
insulin resistance [reviewed in (67)]. In addition, crude markers
of hepatic damage are associated with higher probability of
dysglycemia and surrogate markers of insulin resistance and
this effect was predominantly observed in men with CF (68). As
mentioned above, CF patients present with hepatic insulin
resistance and increased gluconeogenesis contributing to
hyperglycemia (38, 39). The mechanism leading to CF liver
diseases is not completely understood. Still, because CFTR is
expressed in bile ducts and not in hepatocytes, the prevalent
hypothesis is that, similar to exocrine pancreas, inspissated bile
will obstruct small ducts causing liver injury and inflammation,
resulting in liver fibrosis (69).

Overall, multiple factors are associated with increased risk or
accelerated progression to CFRD, such as age, gender, CFTR
genotype, genetic modifiers, the degree of pancreatic exocrine
deficiency, lung function, liver disease, inflammation, the
presence of b-cell specific autoantibodies, etc. Defining how
the combination of these factors drives the progression to
CFRD in each individual would increase our understanding of
the heterogeneity of disease severity and onset.
GLUCOSE HOMEOSTASIS IN CF
PATIENTS

In diabetic patients, hyperglycemia can be diagnosed by
quantifying fasting, post-glucose charge, or random plasma
glucose levels, as well as glycosylated hemoglobin (A1c), a
biomarker of mean plasma glucose over 3 months (70).
Diabetes is usually preceded by a phase of glucose intolerance,
which can affect fasting and/or postprandial glucose values. In
CF patients, abnormal glucose tolerance (AGT) is diagnosed in
more than 50% of adult CF patients.

Studies of CF children suggest that the incidence of AGT do not
follow a linear progression across age group. Notably, the
prevalence of AGT is higher in 2-4 year old children than in those
over 5 years of age, suggesting that glucose abnormalities occur very
early in life and that the severity of the dysregulation of glucose
homeostasis may be age-dependent. A transient increase in the
prevalence of AGT has also been observed in an animal model of
CF, namely, inCFTR-null ferrets (71). Indeed, in youngCFTR-null
ferrets pancreatic inflammation and hyperglycemia peak in two
month old kits and resolve thereafter (72, 73). These changes in
glucose homeostasis in CFTR-null ferrets correlate with the
destruction of the exocrine pancreas by proteolytic enzymes and
remodeling of the endocrine pancreatic tissue, including the
insulin-producing b-cells (73). Based on the observations in
CFTR-null ferrets, it is tempting to suggest that AGT in children
may result from deleterious exocrine and endocrine pancreatic
Frontiers in Endocrinology | www.frontiersin.org 4
tissue remodeling that increases the risk of developing CFRD later
in life.

AGTincreases the riskofdevelopingdiabetes inCFpatients, and
the detection of AGT in children aged 6-10 years old is associated
with early onset CFRD (74). Inversely, cross-sectional analysis of
adult CF subjects showing normal glucose tolerance [i.e. with peak
blood glucose levels below 8 mmol/L during an oral glucose
tolerance test (OGTT)] did not develop diabetes over the next
decade (75). However, it should be noted that the number of CF
patients with defects in glucose homeostasis is likely to be
dramatically underestimated. Studies using continuous glucose
monitoring show that 75% of young children (2-6 years old) and
most adults with CF exhibit some glucose abnormality, despite
showing normal variations in glucose levels when subjected to an
OGTT (76–78). Still, questions persist about which parameters and
glucose thresholds derived from continuous glucose monitoring
should be used to diagnose CFRD and also to predict the risk of
adverse clinical outcome especially rapidBMI and/or FEV1decline.

The widespread glucose abnormalities observed in CF subjects
are primarily due to altered insulin secretion, especially a reduction
in first-phase insulin secretion (79–81). AGT is detectable in very
young infants, in line with the fact that CF patients exhibit early
endocrine pancreatic abnormalities, such as b-cell dysfunction and/
or reduced b-cell mass. Indeed, while there are no significant
changes in pancreatic islet size and distribution, histopathological
analysis of pancreas from neonates and young children reveal a
reduced number of insulin-positive b-cells per islets. Among
insulin-positive b-cells, there is also a decrease in b-cell
proliferation and neogenesis (36). Pancreatic b-cells are thus
considerably reduced in young CF patients and are not being
replaced. These changes correlate with the reported abnormalities
in insulin secretion in both pancreatic sufficient and insufficient CF
children (82, 83). Still, the decrease in insulin production in CF
patients is not reliably predictive of CFRD onset. Interestingly, the
decrease in b-cells is concomitant with an increase in the proportion
of glucagon- and somatostatin- positive a- and d-cells, respectively
(36). Furthermore, secretion of glucagon, somatostatin and
pancreatic polypeptide is dysregulated in CF patients and may
participate in abnormal glucose regulation of CFRD patients (84–
86). Altogether, these results suggest that, in CF patients, the
endocrine dysfunctions are not limited to b-cells; rather the
function of the whole endocrine pancreas is severely affected.
INDIRECT EFFECTS OF CFTR MUTATION
ON b-CELL FUNCTION

Earlier studies of CF were mostly from histological sections of
pancreas autopsies from both CF and control subjects. They were
very detailed and generated extensive descriptions of pancreatic
injury. However, because they were mostly from autopsies, they
tended to represent later stages of the disease or more severe
mutations. More recent immunochemistry studies provide a
detailed description of islet cellular composition, as well as
markers of cell proliferation and b-cell neogenesis. In addition,
isolation of human pancreatic islets from CF patients has allowed
for more dynamic studies such as cellular electrophysiology as
July 2021 | Volume 12 | Article 702823
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well as insulin secretion furthering our comprehension of CFRD.
To determine whether these observations are generalizable to all
CFRD patients, these studies would benefit from gaining access
to larger patient cohorts, allowing, for instance, to establish the
impact of mutation class, age, gender and other variables.
Regardless, these studies have revealed important aspects of
CFRD pathology, and we discuss them in greater detail.

In the human pancreas, the CFTR protein is detected in
endocrine a-cells as well as in the exocrine pancreas (Figure 1).
However, its presence in b-cells remains controversial, with most
studies reporting very low levels of CFTR expression in human
b-cells (87–91). In human fetal tissues, CFTR mRNA expression
is found in the ducts of exocrine pancreas but not directly in the
pancreatic islets (89, 92). More recently, in situ analysis showed
that CFTR mRNA is detectable in only 0.45% of insulin-positive
b-cells, in accordance with other studies which detected low
levels of CFTR mRNA in islets (88, 90). However, CFTR protein
and activity are not detected in human b-cells (90). Together,
these findings suggest that only a small fraction of human b-cells
potentially express CFTR. As such, the global alteration in b-cell
insulin secretion in CF patients is most likely due to the impact of
CFTR mutations in non b-cells.

The islets, which represent only 1-2%of the pancreaticmass, are
surrounded by the exocrine pancreas. Within the exocrine
pancreas, CFTR has not been detected in the acini cells and is
expressed at low levels in the interlobular duct, but at high levels in
the epithelial cells of the intercalated duct canal (Figure 1).Notably,
CFTR expression in the ductal system is detected early during
embryonic development, starting at week 12 of gestation (92–94).
AppropriateCFTR function is necessary for the development of the
exocrine pancreas, as mutations in CFTR result in profound
structural abnormalities in this tissue (95). With disease
progression, the pancreatic ductal system of CF subjects shows
high levels of protein concentration, such as trypsin, leading
to protein precipitation and calcification. All these changes
favor tubule dilation eventually provoking acini disruption
and the release of pancreatic proteolytic enzymes within the
Frontiers in Endocrinology | www.frontiersin.org 5
pancreas (96, 97). This process, which starts in utero, continues
postnatally (98). Notably, pancreatic structural abnormalities are
detected at birth in CF infants (97, 99). In most CF subjects, the
release of proteolytic enzymes will cause the destruction of the
exocrine pancreas, followed by the activation of tissue repair
mechanisms, fibrosis and the eventual replacement of the
exocrine pancreas tissue by fat (Figure 2). This process leads to
remodeling of the pancreas with islets often found clustering
together (100). The destruction of the exocrine pancreas results in
pancreatic insufficiency in 85% of CF patients while up to 20% of
pancreatic sufficient CF patients will develop pancreatitis.

There is a close physical connection between the ductal system
andpancreatic islets, aswell as a strongassociationbetweenmarkers
of exocrine pancreatic damage, such as circulating immunoreactive
trypsinogen, and the risk of developing CFRD (101). Recently, this
association has been strengthened by the identification of genetic
variants, including PRSS1 and SLC26A9, coding for cationic
trypsinogen and a chloride channel, respectively, as predictors of
CFRD (102). This suggests that the destruction of the exocrine
pancreas and the resulting inflammation and fibrosis may
contribute to disorganization, dysfunction, and destruction of the
endocrine tissue (Figure 2). Accordingly, early histological
examinations of CF pancreas by Andersen and others, described
the presence offibrosis as well as of cysts in infant pancreatic tissues
at autopsy (96, 99). However, a recent study by Bogdani et al. show
some fibrosis but very little fatty infiltration in the pancreas of
children under 4 years of age (36) while CF adults show islet
sclerosis and reduced b-cell areas (36, 100). It should be noted
that results from older CF patients with severe pancreatic disease
seem to separate into two broad phenotypes, a more fibrotic
phenotype or one with a lipoatrophic pattern i.e. fat tissue
enveloping pancreatic islets (36, 100). At present, it is unclear
whether CFTR genotype, modifier genes or other factors play a
role in the generation of these different patterns but they seem to be
independent ofCFRD(36, 100). It is also possible that, similar to the
CFTR-null ferret, fibrosis will ultimately be followed by fatty
infiltration (73). Altogether, these observations suggest that
FIGURE 1 | CFTR expression in the pancreas. The image represents the relative level of CFTR expression in pancreatic endocrine and exocrine tissues as well as in
immune cells. Specific cell types are listed.
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mutations in CFTR lead to alterations in the exocrine pancreas
resulting in inflammation and tissue repair, which consequently
modulate the pancreatic islet structure.

The sumof these correlative studies isnot sufficient todetermine if
defective CFTR function in pancreatic ductal cells can directly
influence insulin secretion by pancreatic b-cells. To address this,
ShikMunet al. designed a two-chamber in vitro system,wherein they
cultured pancreatic ductal epithelial cells and islets in two
interconnected chambers. Interestingly, chemical inhibition of
CFTR function had no direct effect on isolated islet cells. However,
it specifically affected the function of ductal cells, which resulted in a
50% decrease in insulin secretion by pancreatic islet cells (103). This
study demonstrates that inhibition of CFTR function in ductal cells
impedes insulin secretion likely through soluble mediators.

Findings from the latter study exploiting a two-chamber in
vitro system suggest that improving CFTR function in ductal cells
may ameliorate glucose homeostasis in CF patients (103). This has
been addressed somewhat clinically through the administration of
novel drugs, namely lumacaftor, a corrector that binds to and
improves CFTR folding and expression and ivacaftor, a
potentiator, which enhances CFTR function by facilitating
channel opening. Early studies with ivacaftor alone suggested
that this treatment may have a beneficial effect on glucose
tolerance and the development of CFRD (104, 105). However, in
more recent studies, CF patients treated with both lumacaftor and
ivacaftor did not improve glucose tolerance or insulin secretion
(106–108). It could be that administration of the drugs occurred
too late in the disease process since most of the pancreatic CF
manifestations are already present at birth. Future studies should
investigate the effect of lumacaftor/ivacaftor in very young
children and/or over a longer time-period.

In addition to their role in bicarbonate production and pH
maintenance, pancreatic ductal epithelial cells have the capacity to
Frontiers in Endocrinology | www.frontiersin.org 6
secrete various growth factors and cytokines/chemokines, which
may be affected by CFTR mutations (Figure 2). Ductal cells
constitutively express CD40, and in vitro activation of purified
pancreatic ductal epithelial cells withCD40L increases the secretion
of multiple inflammatory cytokines and chemokines, including
MIP-1b, IL-6, IL-8, TNF-a, IL-1b, IFN-g, and granulocyte-
macrophage colony-stimulating factor (GM-CSF). In addition,
similar to the morphological changes of the pancreas (fibrosis; fat
infiltration), the composition of the leukocytic infiltration was
found to change over time, being composed primarily of
macrophages and T lymphocytes in young patients, and of T
lymphocytes with very few, if any, macrophages in adult CF
patients at a time when the destruction of the exocrine pancreas is
almost complete and remodeling of the endocrine pancreas has
occurred (36, 43). This is consistent with the role of macrophages
and lymphocytes in inflammation, tissue remodeling and fibrosis
which is predominant in young children pancreas (109). These
observations suggest that the inflammatory response in CF patients
is a dynamic process that may contribute to the pathology.
POSSIBLE CONTRIBUTION OF IMMUNE
CELLS IN PROGRESSION TO CFRD IN
CF PATIENTS

Although CFTR is expressed at low levels in immune cells
(Figure 1), CFTR mutations are associated with alterations of
both innate and adaptive immune responses in CF subjects
(110–112). Thus, in addition to the inflammation generated by
the destruction/damage of the exocrine pancreas, dysregulation
of the immune system may contribute to impaired insulin
secretion and the development of CFRD (Figure 2).
FIGURE 2 | Possible mechanisms affecting insulin secretion in CF patients. 1- CFTR mutations eventually lead to ductal obstruction, which causes an increase in
proinflammatory cytokines. 2- The accrued immune infiltration in the pancreas of CF patients. 3- Changes in pancreatic tissue structure, such as amyloid deposition,
exocrine tissue destruction and b-cell loss. These three pathways impact insulin production by b-cells.
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Macrophages are one of the immune cell types that express
CFTR (113–115). Indeed, mutations in CFTR have an impact on
macrophage function, arguably promoting a proinflammatory
phenotype (112, 113, 116, 117). In healthy humans and in mice,
macrophages are detected early in the embryonic pancreas, and they
contribute to pancreatic growth as well as to the establishment of b-
cells in perinatal life (118, 119). Mice deficient in macrophages show
abnormal islet morphogenesis, smaller islets, and a reduction in
insulin mass (118, 120). Macrophages also play an important role in
angiogenesis and tissue repair mechanisms, and can increase b-cell
proliferation to maintain islet mass following pancreatic damage
(121, 122). As mentioned above, intra-islet infiltration of
monocytes/macrophages are increased in young CF patients, but
are absent in both adult CF patients and control subjects (36, 43).
This suggests that the presence of macrophages in the pancreatic
islet tissue is a transitory phenomenon in CF. Alterations in
macrophage function as a consequence of CFTR mutations in
young CF patients may impact pancreatic development and thus
contribute to enhanced susceptibility to CFRD. Of note,
inflammatory macrophages are also found in the pancreatic islets
of T1D and T2D patients, as well as in chronic pancreatitis
(123–125). In chronic pancreatitis, activated macrophages
participate in lymphocyte recruitment through the secretion of
chemokines as well as in the progression of fibrosis in concert
with pancreatic stellate cells (126, 127).

Macrophages also regulate insulin secretion, in part through
soluble mediators such as IL-1b (128). Immunoreactivity for IL-
1b was observed in pancreatic islets of CFRD patients as well as
in young children with CF (43). In contrast to T2D, CF islets do
not express the IL-1b antagonist, IL-1Ra, suggesting that the bio-
activity of IL-1b is even higher in CFRD than in T2D (43).
Macrophages may thus play a general role in all forms of diabetes
and pancreatic inflammatory conditions, including CFRD.
Additional studies are required to assess the phenotype and
function of macrophages within the pancreatic tissue of CF
patients, and to define whether altered macrophage function in
CF patients contributes to the development of CFRD.

In addition to macrophages, there is growing evidence that T
cell responses are altered in CF patients. T cells play an important
role in both T1D and T2D, suggesting that they may also
contribute to CFRD. Specifically, autoreactive T cells destroy
b-cells directly contributing to T1D pathology, whereas in T2D,
T cells contribute to systemic inflammation (129–131). T cells
are also recruited in the pancreas during acute and chronic
pancreatitis [reviewed in (132)]. T cell function in CF patients
has been studied primarily in the lungs, often in the context of
pulmonary infections. These studies revealed a reduction in
regulatory T cells, as well as an increase in cytokine and
chemokine production compatible with a bias towards a Th2
and/or a Th17 phenotype (133–137). T cell production of IL-17
is notably increased in CF patients (138). This is of interest to
CFRD as the abundance of Th17 cells, which produce IL-17, is
elevated in the blood of both T1D and T2D patients (131, 139).
The presence of Th17 cells in the blood may thus contribute to
diabetic pathologies. In addition to these systemic phenotypes,
CF patients have lymphocytic infiltrates in pancreatic islets (36, 90).
Frontiers in Endocrinology | www.frontiersin.org 7
The T cells infiltrating the pancreas in CF patients secrete
proinflammatory cytokines, known to inhibit insulin secretion
[reviewed in (140)] Proinflammatory T cells in CF may thus
contribute to CFRD by producing cytokines that increase the
level of systemic inflammation, by infiltrating islets, and by
destroying pancreatic b-cells, as well as by inhibiting insulin
production by producing cytokines in the vicinity of b-cells.

B lymphocytes also express CFTR, and are likely to contribute to
CFRD, at least in patients presenting with autoantibodies to islet
antigens. Indeed, as mentioned previously, b-cell autoantibody-
positive CF patients tend to develop CFRD earlier than
autoantibody-negative individuals (32). Studies in Cftr-/- mice
suggest that CFTR mutations directly affect B lymphocyte
function. Uninfected Cftr-/- mice have higher levels of the B cell
survival factor, B cell-activating factor (BAFF), a member of TNF
cytokine family, as well as an increased number of lung lymphoid
follicles compared to control mice (141). Increased levels of BAFF
and lymphoid follicles were also observed in CF patients (141).
Moreover, the pancreas of newborn CFTR-/- pigs present with a
higher proportion of activated B lymphocytes, likely producing
antibodies. These results suggest that CFTR alters B lymphocyte
homeostasis, promoting the accumulation of B cells, which may
contribute to CFRD. Interestingly, in addition to b-cell
autoantibodies, some CF patients also exhibit autoantibodies to
actin, and to double-stranded DNA (142). Overall, these data
suggest that autoimmunity is a relatively frequent occurrence in
CF patients. However, whether this effect is intrinsic to B
lymphocytes or a consequence of recurrent lung infections
remains to be demonstrated.
DISCUSSION

The etiology of CFRD is complex with reduced insulin secretion
playing a dominant role. However, despite numerous studies, the
causal factor(s) implicated in disease onset and progression remains
to be identified. Severe CFTR mutations cause alterations in the
exocrinepancreas,which attract immune cells to this tissue leading to
inflammation, islet disorganization, loss of b-cell mass, and reduced
insulin production. The onset of exocrine pancreatic destruction in
utero may explain, at least partially, why glucose abnormalities and
altered insulin secretion are detected in very young infants.However,
despite these changes, CFRD is rare in infants and not all CF patients
progress to CFRD in adulthood, suggesting that other mechanisms
contribute to disease onset. Immune pathways contribute to the
normal development of the pancreas, but also to the pathogenesis of
T1D and T2D and could play a similar role in CFRD. In particular,
macrophages are important for normal islet homeostasis and CFTR
mutations in macrophages may affect their function contributing to
islet dysfunction and impaired insulin secretion. CF patients also
show other alterations in immune function such as enhanced
cytokine secretion by T cells and a bias toward Th2 and Th17
responses in the lung, as well as accumulation of B cells and the
production of autoantibodies. These changes could contribute to the
development of CFRD either directly or through their crosstalk with
macrophages. Thus, despite intense research, numerous questions
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remain on the causes ofCFRDonset inCFpatients that should be the
focus of future studies.
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