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laboratory and computational network science
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Summary

Background The sarbecovirus subgenus of betacoronaviruses is widely distributed throughout bats and other mam-
mals globally and includes human pathogens, SARS-CoV and SARS-CoV-2. The most studied sarbecoviruses use
the host protein, ACE2, to infect cells. Curiously, the majority of sarbecoviruses identified to date do not use ACE2
and cannot readily acquire ACE2 binding through point mutations. We previously screened a broad panel of sarbeco-
virus spikes for cell entry and observed bat-derived viruses that could infect human cells, independent of ACE2. Here
we further investigate the sequence determinants of cell entry for ACE2-independent bat sarbecoviruses.

Methods We employed a network science-based approach to visualize sequence and entry phenotype similarities
across the diversity of sarbecovirus spike protein sequences. We then verified these computational results and
mapped determinants of viral entry into human cells using recombinant chimeric spike proteins within an estab-
lished viral pseudotype assay.

Findings We show ACE2-independent viruses that can infect human and bat cells in culture have a similar putative
receptor binding motif, which can impart human cell entry into other bat sarbecovirus spikes that cannot otherwise
infect human cells. These sequence determinants of human cell entry map to a surface-exposed protrusion from the
predicted bat sarbecovirus spike receptor binding domain structure.

Interpretation Our findings provide further evidence of a group of bat-derived sarbecoviruses with zoonotic poten-
tial and demonstrate the utility in applying network science to phenotypic mapping and prediction.
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Introduction
Over the past 20 years, cross-species transmission of
betacoronaviruses from animals to humans has resulted
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in three novel, pathogenic human viruses: SARS-CoV,
MERS-CoV, and SARS-CoV-2. Virus discovery efforts
have revealed a trove of closely related coronaviruses,
largely in bats. Merbecoviruses (formerly lineage C beta-
coronaviruses) include MERS-CoV and thousands of
related animal viruses, while sarbecoviruses (formerly
lineage B betacoronaviruses) include SARS-CoV, SARS-
CoV-2, and at least several hundred related animal
viruses. Unfortunately, most of these animal-derived
viruses have never been isolated and only exist as
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Research in context

Evidence before this study

Cross-species transmission of coronaviruses poses a
serious threat to global health. While numerous corona-
virus have been discovered in wildlife, our ability to pre-
dict which pose the greatest threat to humans remains
limited. In a previous study, we developed tools to study
novel coronavirus entry and characterized the majority
of sarbecoviruses for their ability to infect human cells.

Added value of this study

Here, we take a mathematical modelling approach
based on viral sequences to better understand what dis-
tinguishes animal viruses that can infect human cells
from those that cannot. Viruses that infect human cells
using a pathway distinct from other common human
coronaviruses varied within a region of the viral
genome responsible for binding host cell receptors.
Importantly, these results were verified through experi-
mental laboratory approaches using both human and
bat cells, providing further evidence for viral-host
compatibility.

Implications of all the available evidence

Our findings provide additional evidence that a group
of bat coronaviruses possess the ability to infect human
and bat cells, independent of known coronavirus recep-
tors. Our sequence-based modelling approach accu-
rately distinguished this group of viruses, which may
serve as a foundation for databases that integrate viral
sequences with functional laboratory data.

sequences, severely hindering our understanding of
their zoonotic risk.

Host cell entry is the first step in the viral life cycle
and a critical species barrier for coronaviruses.> © Entry
occurs following a physical interaction between the
receptor binding domain (RBD) of the viral spike pro-
tein and a host cell receptor. We and others have previ-
ously defined distinct “clades” of sarbecovirus RBDs
based on the presence or absence of conserved deletions
in regions that presumably engage with the host recep-
tor. Clade 1 sarbecovirus RBDs utilize host Angiotensin-
converting enzyme 2 (ACE2) to infect cells and contain
no deletions, clade 2 RBDs contain two deletions and do
not bind to ACE2, and clade 3 RBDs contain one dele-
tion and also lack ACE2 binding capacity for any species
tested to date.*”"*

To better understand the zoonotic risk posed by
novel coronaviruses, we recently developed a laboratory
platform to functionally characterize cell tropism for the
sarbecoviruses.” In this BSL2-based, viral pseudotype
approach, we replaced the RBD of the SARS-CoV spike
gene with the RBD from other animal-derived sarbeco-
viruses, resulting in functional, chimeric spike proteins

possessing the receptor tropism of the animal sarbecovi-
rus. We generated and screened a large panel of chime-
ric spike proteins, representing the majority of the
natural variation published for sarbecoviruses. While
most animal viruses exhibited little to no tropism for
human cells, we observed a subgroup of clade 2 RBD
viruses that can infect human cells independent of
known coronavirus receptors, including ACE2. Similar
to some animal coronaviruses related to MERS-CoV,
clade 2 RBD sarbecovirus cell entry was only observed
when exogenous trypsin was added during the infection
suggesting that protease processing may be a species
barrier for these particular viruses rather than host-
receptor incompatibility.”?

The protein interface between both the SARS-CoV
and SARS-CoV-2 spikes and ACE2 encompasses more
than 15 contact points, and variation in many of these
residues can severely disrupt viral entry."*# Thus, it is
possible that the interaction between clade 2 RBDs and
“receptor X” also encompasses multiple contact points,
confounding our early efforts to modify the clade 2
entry phenotype through single point mutations.

We have previously employed network science for
comparative genomic approaches to explore complex
phenotypes underlying transmission of tick pathogens
and bacterial evolution.” 7 Here we used a similar
computational method to visualize sequence similari-
ties between groups of viral sequences.'® If the clade 2
sarbecoviruses are infecting human cells through a clas-
sical RBD-receptor interaction, we hypothesized we
may be able to distinguish these viruses from sequences
alone, even though the receptor and contact points are
completely unknown. Our analysis revealed sequence
similarities within a distinct sub-group of clade 2 RBDs
that were able to infect human cells in our previous
study.” We further confirmed the clade 2 subgroups
with viral pseudotypes using a series of chimeric and
full-length spike proteins. We found that exchanging a
short, surface-exposed stretch of amino acids identified
within the clade 2 RBD is sufficient to toggle human
cell entry. These findings provide additional evidence
that animal sarbecoviruses may be able to infect
humans through routes that are distinct from known
human sarbecoviruses, SARS-CoV and SARS-CoV-2,
and underscore the urgency of developing universal sar-
becovirus vaccines.

Methods

Network of receptor binding domains

We obtained receptor binding domain (RBD) sequences
from the publicly available NCBI database using Gen-
Pept. The RBD sequences were retrieved using a Biopy-
thon' package to parse the GenPept file. After removing
duplicate sequences, 165 unique RBD sequences
remained, including RBDs found in bat coronaviruses,
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SARS (SARS-like) coronaviruses, and Middle East respi-
ratory syndrome-related coronaviruses (MERS).

To create the sequence similarity network (SSN), we
first used the Enzyme Similarity Tool (EFI-EST).> The
EFI-EST performed an all-by-all BLAST search of the 165
RBD sequences uploaded as a single FASTA file to calcu-
late pairwise alignment scores for all sequences. The out-
put of the EFI-EST tool is in XGMML file format. The
XGMML, or eXtensible Graph Markup and Modeling
Language, is a file format used to describe structured
graphs and can be used directly as the input to Cyto-
scape.”’ Cytoscape is open-source software for integra-
tion, visualization, and analysis of biological networks.
Cytoscape 3.8.2 was used to convert the information pro-
vided in the XGMML file into two tables, one with align-
ment information for each pair of nodes (sequences),
including percent identification, alignment length, and
alignment score. The second table provided node descrip-
tions together with their amino acid sequences and was
used with the first table to generate the adjacency matrix
for the SSN. The adjacency matrix was fed into visone
2.18 software to create the RBD network.> We applied a
weight threshold to remove extraneous low-weight edges
in order to sparsify the network. Sparsification results in
a network with fewer edges and nodes for a clearer view
while maintaining meaningful structure. We applied
80% sparsification using the backbone layout of visone.
This layout greatly reduces the number of weak edges
while maintaining the connectedness of the network. We
note that the threshold for connecting two nodes by an
edge, an alignment score of 5, was deliberately chosen to
capture sequence similarity between any two protein
sequences. However, all edges with little similarity were
removed during sparsification.

Network of receptor binding motifs
We used two different receptor binding motif (RBM)
patterns to identify the amino acids in the 165 RBD
sequences corresponding to their RBMs. This resulted
in 144 unique RBMs. The two patterns used were:
TVPHNLTTITKPLKYSYINKCSRLLSDDRTEVPQLV-
NANQYSPCVSIVPSTVWE DGDYYRKQLSPLEGGG
WLVASGSTVAMTEQLQ and QIAPGQTGVIADY-
NYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYR-
YLRHGK LRPFERDISNVPFSPDGKPCTPPALNCYWP
LNDY GFYTTTGIGYQPYRVVVLS

The first of these is the RBM pattern for MERS-CoV,
and the second is the RBM pattern for SARS-CoV.
Using the 144 RBMs, we created an SSN for RBMs fol-
lowing the same approach as for the RBD SSN
described in the previous section.

Plasmids
Full-length Rs4081 (GenBank KY417143) and Rf1 (Gen-
Bank DQg412042) spike sequences were codon
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optimized, flag tagged, and engineered with silent
restriction sites flanking the RBD as previously
described.” Each spike was synthesized in two frag-
ments of roughly equivalent length with a 15-nucleotide
overlap in the middle as well as overlap with the
pcDNA3.1+ cloning vector to facilitate one-step cloning
with the Infusion system following the manufacturer’s
instructions (Takara Biosciences). Artibeus jamaicensis
ACE2 (GenBank XM_o037157556.1) was codon opti-
mized, synthesized and cloned into pcDNA3.1+.

Pseudotype cell entry assay

293T cells (RRID CVCL_oo4;), BHK cells (RRID
CVCL_1914 ), or AJi cells (RRID CVCL_YZo5) were main-
tained in Dulbeccos Modified Eagles Medium (DMEM),
supplemented with fetal bovine serum (FBS), penicillin,
streptomycin, and l-glutamine. Cell line were confirmed
as mycoplasma-negative and origin species was verified by
cytochrome B sequencing.” Vesicular stomatitis virus
(VSV)-based pseudotyped particles bearing spike glycopro-
teins were produced as described previously.”

Briefly, 293T were seeded in 6-well plates and trans-
fected with plasmids encoding a FLAG-tagged sarbeco-
virus spike protein. Twenty-four hours post-
transfection, cells were infected with VSV-glycoprotein-
pseudotyped VSV particles for one hour at 37°C, washed
three times with culture media, and incubated for 48 h
in DMEM supplemented with 2% FBS. Supernatants
were collected, briefly clarified by centrifugation, ali-
quoted, and stored at —80°C.

Sarbecovirus spike pseudotype entry assays were per-
formed as described previously.” Particles were incubated
with trypsin diluted in HBSS and phenol red or HBSS
with phenol red, only, as a negative control, at 37 °C for
10 min. BHK cells were transfected with ACE2 expres-
sion plasmids, 24 h before infection, as previously
described.” Target cells were infected with trypsin-treated
or untreated particles at 1200 RFC for 1 h at 4° and then
incubated for approximately 24 h at 37 °C. Luciferase
was measured with the Bright-Glo reagent following the
manufacturer’s instructions (Promega Corporation).

Statistics

The pseudotype entry assay was analyzed in Microsoft
Excel, and graphing and statistics were performed in
PRISM Graph Pad (version 9). For experiments where
protease was or was not added, ordinary two-way ANOVA
was performed, comparing all values from both condi-
tions, and Tukey’s multiple comparisons test was
applied.

Sequence analysis and structural modeling

Web-logo plots were generated from clade 2 sequences
using WebLogo (Berkeley).”>*4 The structure for SARS-
CoV/Urbani RBD bound to ACE2 (PDB: 2AJF) was


pdb:2AJF
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used to predict the structure of Rs4081 using SwissMo-
del.” Structures were visualized using PyMol.

Ethics statement
No human samples or animals were used in this study.

Role of funding source

WSU and the Paul Allen School for Global Health pro-
vided funding for this research through equipment and
laboratory space. The funding institution was not
involved in this study in its design, data collection, anal-
ysis, interpretation, or reporting.

Results

Network analysis of betacoronavirus RBD and RBM
sequences

To broadly visualize similarities between coronavirus
spike sequences, we employed sequence similarity net-
works (SSN), which display the interrelationships
between proteins using pairwise alignments between
sequences, similar to phylogenetic trees.”® Because the
entry phenotype we observed in our previous study was
with chimeric spike proteins containing the RBD from
animal-derived sarbecoviruses, we first generated an
SSN using the RBD region corresponding to SARS-CoV
amino acids 323-501 (Figure 1a). Each network node cor-
responds to one viral RBD. In this network, SARS-CoV
clustered with related, ACE2-utilizing bat sarbecovi-
ruses, WIVI and SHCo14, while SARS-CoV-2 formed a
separate cluster along with pangolin-derived relatives
and the recently identified Japanese ACE2-utilizing sar-
becovirus Rco319.%° Although this RBD-based SSN
depicted two clusters for merbecoviruses (blue) and sar-
becoviruses (red), several animal-derived viruses from
both betacoronavirus lineages formed a separate, bridg-
ing cluster (fuchsia), and we did not observe any sub-
clustering by receptor usage (Figure 1a).

Within the MERS-CoV, SARS-CoV and SARS-CoV-2
RBDs, residues that interact with the host receptor are
located within a short, continuous, and surface-exposed
region known as the receptor binding motif (RBM; Sup-
plementary Figure. 1a). Because the sarbecovirus RBDs
are fairly conserved in their N-terminal region but have
highly diverse RBMs, we wondered if localized disparity
in sequence similarities was confounding our SSN anal-
ysis. To assess the relationships using the RBM, we gen-
erated a second SSN using just the short stretch of
amino acids corresponding to the SARS-CoV RBM
(Figure 1b). The resulting network is divided into two
separate groups: merbecoviruses (Figure 1b; cluster on
the lower left) and sarbecoviruses (Figure 1b; upper
right). Within the sarbecoviruses, ACE2-utilizing
viruses (clade 1 RBD) formed central clusters (green
and fuchsia), with distantly-related bat sarbecoviruses

forming distinct branching clusters to the right and left
of clade 1, respectively (Figure 1b). Networks generated
using full genomes showed clustering by phylogeneti-
cally-accepted genera and sub-genera, but we did not
observe similar groups within the sarbecoviruses (Sup-
plementary Figure. 1b,c). Interestingly, in the RBM
SSN, the clade 2 bat coronaviruses were further divided
into two sub-clusters (Figure 1b; upper right).

Host cell entry phenotypes form clusters in RBM
similarity network

For better visualization, we collapsed the repetitive and
human patient-derived viral sequences across the nodes
within the sarbecovirus SSN and colored the nodes by
RBD clades (Figure 1a vs Figure 2a). Within the clade 2
RBDs, the viruses whose RBDs can infect human cells
formed a cluster (cluster 2a; in grey) which is distinct
from other clade 2 viruses that do not infect human
cells (cluster 2b; in purple).

To test the clade 2 subclusters, we generated VSV
(Vesicular Stomatitis Virus) reporter pseudotypes bearing
chimeric SARS-CoV spike proteins with the RBD of each
of the clade 2 viruses shown in the network and subse-
quently infected 293T cells in the presence or absence of
trypsin as previously described” (Figure 2b). None of the
sarbecovirus pseudotypes exhibited strong entry into
293T cells in the absence of external protease, which was
expected as these cells express only very low levels of
ACE2, and no cells to date have been permissive for clade
2b RBDs without trypsin (Figure 2b, top panel).”*” How-
ever, as previously reported, addition of trypsin activated
the wildtype SARS-CoV spike as well as chimeric sarbe-
covirus spikes bearing clade 2 RBDs from the
“compatible” 2a cluster assigned in our RBM SSN”
(Figure 2b). Clade 2b sarbecoviruses formed a cluster dis-
tinct from the “compatible” 2a cluster of our network and
did not exhibit cell entry following protease treatment.
These data suggest that observed ACE2-independent
entry phenotypes in our viral entry assay can be mapped
to sequence determinants within the putative RBM.

Clade 2b sarbecoviruses infect bat cells independent of
bat ACE2

We and others have previously shown that clade 2
viruses are not capable of using ACE2 from human,
mouse, civet, pangolin, or from the natural hosts, Rhino-
lophus -affinis or -sinicus bats.”>** To further assess the
ACE2-independence of clade 2 viruses, we tested our
panel with an Artibeus jamaicensis cell line (AJi) that is
selectively permissive to clade 2 entry following trypsin
treatment, but not to the ACE2-dependent clade 1
viruses.” We included the SARS-CoV-2 RBD in these
assays, which has been recently suggested to use alter-
native, ACE2-independent pathways®® (Figure 2c). As
reported before, ACE2-dependent viruses were not able
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Figure. 1. Sequence similarity network (SSN) for sarbecovirus and merbecovirus spike domains. (a) Amino acid SSN of the receptor
binding domain (RBD), encompassing spike residues 323—501, from merbeco- (blue) and sarbeco- (red) viruses. Betacoronaviruses
that belong to both groups are indicated in fuchsia. (b) Amino acid SSN of the receptor binding motif (RBM), encompassing spike
residues 405—481, from merbeco- (blue) and sarbeco-viruses. Sarbecoviruses are further divided into SARS-CoV viruses in green,
SARS-CoV-2 in fuchsia, and bat sarbecoviruses in red. Numbering in the spike diagrams corresponds to the SARS-CoV/Urbani amino
acid sequence.
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Figure. 2. Validation of phenotypes from the receptor binding motif (RBM) sequence similarity network (SSN). (a) Simplified RBM
SSN with sarbecovirus receptor binding domain (RBD) clades 1, 2, and 3 indicated in red, gray/purple, and blue, respectively.
Sequences from human outbreaks of SARS-CoV and SARS-CoV-2 have each been condensed into single points. Viruses that were
functionally tested for cell entry are shown as indicated. (b—d) Luciferase-reporter particles pseudotyped with SARS-CoV chimeric
spike protein containing the RBD from the indicated sarbecoviruses were used to infect 293T cells (b), Artibeus jamaicensis kidney
cells (c), or BHK cells transfected with Artbieus jamaicensis ACE2 (d), in the presence or absence of trypsin. Shown are experimental
triplicates (b) or quadruplicates (c, d) from one experiment representative of at least three biological replicates. Asterisks indicate
statistical significance from no spike control (**=p-value < 0.001; *=p-value < 0.05; n.s. = not significant; values are not significant

unless otherwise indicated).

to infect the AJi cells, while clade 2 viruses could infect
following trypsin treatment (Figure 2c). We next tested
if these viruses could use A. jamaicensis ACE2 in baby
hamster kidney (BHK) cells that are non-permissive to
sarbecoviruses (Figure 2d). While both SARS-CoV and
SARS-CoV-2 could use A. jamaicensis ACE2, none of the
clade 2 RBDs could infect cells expressing this receptor.
Taken together, these data show that some clade 2
viruses are not capable of using A. jamaicensis ACE2 but
can robustly infect A. jamaicensis cells.

Chimeric and full-length sarbecovirus spike proteins
exhibit similar entry

While we have previously observed ACE2-independent
entry with both chimeric and full-length spike proteins,

most of the sarbecovirus spikes have not been experi-
mentally characterized as full-length proteins. In our
earlier study, we only assessed the full-length spike of
human-compatible, clade 2 virus As6526. To expand on
these previous findings, we synthesized full-length,
FLAG-tagged spike genes from the clade 2 viruses,
Rs4081 and Rf1, as representative examples of human
compatible 2a and incompatible 2b viruses, respectively
(Figures. 2 and 3). We generated luciferase-GFP dual
reporter pseudotypes bearing either a chimeric SARS-
CoV spike with clade 2 RBDs or full-length clade 1, 2, or
3 spikes and infected human embryonic kidney 293T
cells (Figure 3). In agreement with our previous study,
the full-length and chimeric As6526 spikes exhibited
moderate human cell entry.” As observed for the chime-
ric spike proteins, the full-length Rs4081 spike
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sion and incorporation of the spike protein.

exhibited notably stronger entry into human cells fol-
lowing protease treatment, while the Rft spike was
completely incapable of entry (Figure 3a,b). Although
pseudotype incorporation of some of the spike proteins
seemed to vary slightly, these differences did not track
with the observed entry phenotypes (Figure 3c). For
example, the WIVr spike appeared to incorporate into
pseudotypes less efficiently than the SARS-CoV spike
but infected 293T cells with slightly better efficiency.
These findings show that chimeric spikes recapitulate
full-length spike phenotypes (Figure 3).

A putative receptor binding motif region in the spike
protein mediates ACE2-independent, bat sarbecovirus
cell entry

Our network analysis suggested that only the clade 2 RBM
(spike residues 405—481) were associated with the human
cell entry phenotype (Figures. 1 and 4a). To test whether
this region can modulate the entry phenotype, we gener-
ated pseudotyped reporter particles with chimeric spike
RBDs in which just the RBM was exchanged between
Rs4081 (human-compatible) and Rft (Figure 4a—c). All
chimeric spikes expressed and incorporated into viral par-
ticles similarly (Figure 4b). Pseudotypes bearing the wild-
type Rs4081 RBD or the Rs4081 RBM were capable of
infecting human cells in the presence of trypsin. In con-
trast, and in support of our previous results, spikes with
Rft RBDs or RBMs were incapable of infecting human
cells under any conditions (Figure 4c).
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Web-logo analysis of consensus sequences for
human-compatible and incompatible clade 2 RBMs
revealed numerous amino acid variations between the
groups (Figure 4d), with 12 differences between Rs4081
and Rft (Figure 4e). Mapping these variations to the
predicted structure of the Rs4081 RBD showed that
these residues are surface-exposed and cluster together
analogous to the ACE2 contact residues on the SARS-
CoV spikes (Figure 4f). These findings demonstrate
that a subgroup of sarbecovirus clade 2 RBDs are com-
patible with human cells and that, while distinct from
SARS-1 and -2, this human compatibility likely exhibits
some similarities to other coronavirus spike entry mech-
anisms (Figure 4).

Discussion

The NCBI (National Center for Biotechnology Informa-
tion) GenBank nucleotide database currently lists over
1.6 million entries for “sarbecovirus.” With the recent
emergence of SARS-CoV-2, there has been an increase
in global viral discovery efforts to identify additional
viral threats and new progenitor sources for the sarbeco-
viruses — expanding the public sequence repositories
even further. We have devised a scalable laboratory plat-
form to study the zoonotic potential of the sarbecovi-
ruses, but even with this approach it is not practical to
continue testing each newly discovered virus. Thus,
there is a need to synthesize trends and learn more
broadly from our expanding collection of functional
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cell-entry data for the sarbecoviruses.”*' Here, we used
sequence similarity networks that clustered viral
sequences by entry phenotype (Figs. 1 and 2). This
approach allowed us to distinguish viral spike sequen-
ces that exhibit human-cell compatibility from those
that cannot infect human cells, as determined by our
functional laboratory assays (Figure 2). Our network
maps provided a binary, “compatible” or “incompatible”
differentiation between clade 2 RBDs, but we did not
observe any further grading regarding “strength” of
entry. For example, human-compatible Rs4081 and
As6526 viruses are on opposite ends of the Clade 2a
subcluster despite having RBDs with similar levels of
entry (Figure 2). Additional point mutagenesis studies
are needed to determine residues within the putative
clade 2 RBM that contribute to the entry phenotype.
Such information could be taken into consideration to
build weighted network maps that allow visualizing the
“strength” of entry. As we learn more about sarbecovi-
rus entry mechanisms and the sequence determinants
underlying them, functionally-annotated network maps
may be used to help predict viral tropism for novel,
untested viral sequences.

Sequence similarity networks most accurately clus-
tered viruses by their entry phenotype when only a
region corresponding to the viral RBM was used and
not more-inclusive viral regions (Figure 1 and Supple-
mentary Figure. 1). The RBM region used for these anal-
yses was determined solely from ACE2-dependent clade
1 viruses and extrapolated for all sarbecoviruses.
Because this region also differentiated clade 2 viruses
by their compatibility with human cells (Figure 2), our
initial network analysis further underscores the impor-
tance of this region of amino acids for sarbecovirus
entry, in general. We have previously shown that clade 1
sarbecovirus RBMs can be substituted into clade 2
RBDs to impart ACE2-dependent entry.” In this current
study, we show that ACE2-independent entry can also
be toggled using similar chimeric RBD methods
(Figure 4). The results from our network analysis and
these chimeric RBD experiments suggest that sarbecovi-
rus spikes commonly use a similar region in the spike
to interact with their receptors.

While most vaccine design is currently centered
around preventing infection by ACE2-dependent sarbe-
coviruses, a few “universal” sarbecovirus vaccines are
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currently in development with the goal of providing
broader protection from animal-derived sarbecoviruses.
Unfortunately, these vaccines are using sequences from
HKU3, SC2018, and ZC45,>** which we have shown
both previously and in the present work, do not possess
human-cell compatibility, at least not at the same levels
as other clade 2 viruses (Figs. 2 and 3).” Thus, future
universal sarbecovirus vaccines should be designed for
sarbecoviruses that pose more immediate risk of zoo-
notic spillover.

Our previous work with the full-length As6526 spike
showed ACE2-independent human-cell compatibility but
notably less than the chimeric SARS-CoV spike with the
As6526 RBD.” We have now shown the Rs4081 spike is
capable of entering human kidney (293T; Figs. 2, and 3),
human liver (Huhy.5), African green monkey kidney
(VeroEG), and the AJi kidney cell line (AJi),” while ACE2
from these species clearly does not support clade 2 infec-
tion when provided in ACE2-defficient cells like BHKs
(Figure 2¢,d).” Studies by other groups have further dem-
onstrated that clade 2 RBDs are not capable of binding
ACE2 from humans, pangolins, civets, and the Rhinolo-
phus bat species that carry these viruses®®** [preprint].
Taken together with our previous evidence showing that
individual point mutations cannot impart ACE2 binding
to clade 2 viruses, it is apparent that at least some clade 2
sarbecoviruses are capable of employing an ACE2-inde-
pendent cell entry route that is conserved across a range
of mammalian species.

Analogous to our findings with ACE2-independent
sarbecoviruses, exogenous protease has also been
shown to facilitate human cell entry of several bat-
derived merbecoviruses, independent of the receptor
used by MERS-CoV, dipeptidyl peptidase IV (DPP4).”
Together, these studies demonstrate additional corona-
viruses with zoonotic potential. Because the mechanism
of host cell entry dictates viral transmission routes and
potential pathogenesis, more research is urgently
needed to uncover how these pre-emergent coronavi-
ruses are infecting human cells.
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