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ABSTRACT

Summary: We present a software package for pedigree
reconstruction in natural populations using co-dominant
genomic markers such as microsatellites and single nucleotide
polymorphisms (SNPs). If available, the algorithm makes use of
prior information such as known relationships (sub-pedigrees) or the
age and sex of individuals. Statistical confidence is estimated by
Markov Chain Monte Carlo (MCMC) sampling. The accuracy of the
algorithm is demonstrated for simulated data as well as an empirical
dataset with known pedigree. The parentage inference is robust
even in the presence of genotyping errors.
Availability: The C source code of FRANz can be obtained under
the GPL from http://www.bioinf.uni-leipzig.de/Software/FRANz/.
Contact: markus@bioinf.uni-leipzig.de

1 INTRODUCTION
The reconstruction of genealogical relationships among diploid
species has been an active field of research for more than three
decades. A well-developed statistical theory of paternity inference
has been published in series of articles by E. A. Thompson (e.g.
Thompson, 1976). The study of parentage in natural populations was
the topic of the pioneering papers by Meagher and Thompson (1986)
and Marshall et al. (1998) and is recently reviewed in Blouin (2003);
Jones and Ardren (2003); Pemberton (2008). The pedigree structure
of a sample of individuals is important for a wide range of ecological,
evolutionary and forensic studies. Applications include genealogy
reconstruction (e.g. for wine grape cultivars Vouillamoz and Grando,
2006), the estimation of heritabilities in the wild (Thomas and Hill,
2000) and victim identification (Lin et al., 2006).

In order to reconstruct the pedigree of a sample, the parents
of each individual in the sample need to be determined. If one
has a large amount of genomic data, the task of identifying first
degree relationships, i.e. parent–offspring and full-sibs relations,
is trivial. Unfortunately, many datasets in natural populations do
not contain enough information to unambiguously determine the
parents. Another problem is that datasets often contain only a subset
of a population. Thus, one or both parents of an observed individual
may be missing from the dataset. Furthermore, many datasets are
not free of errors.
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Most programs support only datasets comprising one or two
generations. The approach to partial pedigree reconstruction in one
generation datasets are sibship algorithms. Here, genotype data
is used to infer full-sib and half-sib relationships (Berger-Wolf
et al., 2007; Thomas and Hill, 2002; Wang, 2004b). The parentage
inference programs for two generations typically take an offspring
list, if known their mothers, and a list of candidate parents or fathers
as input and generate the possible parent combinations (Hadfield
et al., 2006; Kalinowski et al., 2007). Much less attention (e.g. in
Almudevar, 2003) has been given to multi-generation pedigrees in
which the offspring and candidate parent sets are not necessarily
non-overlapping. This is the case, for example, in the absence of age
data. Then the ordering of genotypes into generations is not known
a priori and has to be estimated from the genotype data only. Thus,
at difference with parentage inference programs, the general case
treated also here does not admit all possible parentage combinations
as valid pedigrees. The task is therefore to find the parentage
combinations that define the maximum likelihood pedigree. If the
number of possible pedigrees is too large too enumerate, heuristics
are necessary. So far, a flexible software package has not been
available that allows the incorporation of prior information in
addition to the genotypes and that is robust in the case of errors.
It is the purpose of this contribution to fill this gap.

2 DEFINITIONS
A pedigree P= (V ,A) is an acyclic digraph with vertex set V and arc
set A. For an arc (ui,v) we say that v is a child of ui and ui is a parent
of v. The set of (putative) parents of v is denoted by N+(v)⊆V ; it
may have cardinality 2 {ui,uj}, 1 {ui} or 0 ∅. In the latter case, v is
called a founder. In selfing species, ui =uj is allowed and P is a
multigraph. The set of all valid parent combinations of v is denoted
by H (v). Again we include the cases that none or only one of the
parents are present in V . Note that H (v)⊂V ×V ∪V ∪{∅}. The
Mendelian laws of inheritance and prior information such as sex,
age and known mothers restrict H (v).

For each individual, we have to choose one parent combination
N+(v)∈H (v). Not all such combinations of parents are possible,
because this may introduce directed cycles into the pedigree. T
denotes the set of all valid pedigrees.

For a given individual i, we denote an observed single-locus
genotype by gi and its multi-locus genotype by Gi.
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3 BACKGROUND

3.1 LOD scores
Consider a triplet of individuals (A, B, C) with single-locus
genotypes gA, gB and gC . In likelihood-based paternity analyses,
one compares the likelihood of the hypothesis (H1) that the three
individuals are offspring, mother and father, with the likelihood
of the alternative hypothesis (H2) that the three individuals are
unrelated. This comparison is usually expressed as a log-ratio,
the parent-pair log-odds ratio (LOD) score (e.g. Meagher and
Thompson, 1986):

LOD(gA,gB,gC)= log
Pr(gA,gB,gC |H1)

Pr(gA,gB,gC |H2)
= log

T(gA|gB,gC)

Pr(gA)

The likelihood of (H2) is the probability of observing the three
genotypes when randomly drawn from a population in Hardy–
Weinberg equilibrium. For diploid heterozygotes, the probability
of a genotype with the alleles a1 and a2 and with the allele
frequencies p and q is Pr(a1,a2)=2pq; for homozygotes, we have
Pr(a1,a1)=p2. The Mendelian transmission probability is denoted
by T(·). Variations of this equation can be derived for the cases
where only one parent is sampled (single-parent LOD scores) and for
triples where the relationship of two individuals A and B, typically
mother and offspring, is known (Kalinowski et al., 2007; Meagher
and Thompson, 1986).

3.2 Statistical significance of a parentage
Different ways of assessing the confidence of the parentage with
the largest LOD score have been proposed. Marshall et al. (1998)
use �LOD as test statistic, which is the difference of the LOD
scores between the two most likely parentages. The critical value
of this test statistic is obtained by simulation. If not all individuals
of the population are sampled, then the total number of breeding
individuals N in the population must be estimated and incorporated
in the simulation. Nielsen et al. (2001) proposed a Bayesian
approach, extending the fractional paternity approach suggested by
Devlin et al. (1988). The posterior probability that male Fi is the
father of O can now be calculated for the case when the mother M
is known as

Pr(Fi|GO,GM ,GF ,A,N)=
T(GO|GM ,GFi)∑n

j T(GO|GM ,GFj)+(N −n) T(GO|GM ,A)

where GO,GM and GF are the offspring, maternal and paternal
genotypes, A the population allele frequencies and n the number
of sampled males. So (N −n) weights the case that the true father
is unsampled accordingly. Ignoring this weighting will give many
false matches when the sampling rate and the amount of genomic
information is low (Nielsen et al., 2001). In the following, we
shortly write Pr(N+(vi)|A,N) for the parentage posterior probability
of vertex vi.

For the case that the mother is unknown and assuming that the
numbers of breeding males and females do not differ significantly,
we have to add (N −n)2 Pr(GO|A) to the denominator to weight the
case that both parents are unsampled.

One important advantage of this Bayesian approach over the
simulation approach is that for the case that N is not known with

high confidence, it is possible to estimate this value simultaneously
with the pedigree reconstruction.

3.3 IBD coefficients
For each pair of individuals, we can calculate the probability that the
two have a particular relationship R: unrelated U, parent–offspring
PO, full-sib FS, half-sib HS, etc. The usual way of calculating
the likelihoods Pr(gA.gB|R) uses the so-called IBD (identical by
descent) coefficients k0,k1 and k2. Alleles are IBD if they are
identical and are segregated from a recent common ancestor. A child,
for example, shares with each parent exactly one allele that is IBD
(k1 =1); monozygotic twins share two (k2 =1) whereas unrelated
individuals share no alleles (k0 =1) IBD. For full-sibs, it is easy to
show that the probability that they share one allele IBD is 0.5 and
that they share no or two is in both cases 0.25 (so k0 =0.25, k1 =0.5
and k2 =0.25). Given the allele frequencies, the probabilities that the
genotype pair gA.gB shares 0, 1 or 2 alleles IBD, P0,P1 and P2, are
then calculated and are inserted in the final IBD likelihood formula
(for details, see e.g. Blouin, 2003):

Pr(gA.gB|R)=k0P0 +k1P1 +k2P2 (k0 +k1 +k2 =1)

For unlinked loci, which we assume in the following, the
logarithms of the IBD relationship likelihoods and the LOD scores
are additive over the loci.

3.4 Genotyping errors
Even high quality datasets contain errors where at least one allele
at a given locus does not match with what we expect from the
Mendelian laws. Thus, it is unwise to exclude a parent immediately
when observing such a mismatch. There are many reasons for such
mismatches, see Bonin et al. (2004) for a review. Genotyping errors
occur when the genotype determined by molecular analysis does
not correspond to the real genotype. For instance, a common type of
genotyping error in microsatellite datasets are null alleles, which are
often the result of a mutation in the primer annealing site. Somatic
mutations form another source of mismatches.

The model implemented here defines an error to be the
replacement of the true genotype at a particular locus in an individual
with a random genotype. This leads to a modification of the
expressions for the LOD score, see Kalinowski et al. (2007), and to
corresponding modifications in the IBD likelihood calculations, see
Broman and Weber (1998) for details.

4 METHODS

4.1 Simulation
Given the population allele frequencies and the expected typing error rate,
which are either estimated using the sample itself or provided by the user,
we generate individuals with known relationships to determine various
distributions.

One important characteristic is the distribution of the number of
mismatching loci given the expected error rate for pairs (parent–offspring
versus unrelated) as well for triples (offspring, mother and father versus
offspring, mother and unrelated male). This knowledge allows us to speed
up the algorithm, because we know when likelihood calculations can
be terminated. We can furthermore omit the O(n3) triple calculation for
pairs with more mismatches than maximally expected for a triple. These
parameters are also important because too many allowed mismatches may
lead to an increased number of false positive parent–offspring arcs.
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Furthermore, we will later test the null hypothesis that a pair is a full-sib
against the alternative hypotheses that they are unrelated, parent–offspring
or half-sib. We calculate the P-values by generating following distributions
for full-sibs and for pairs of the alternative hypothesis relationship:

�u = logPr(Gi.Gj|FS)−logPr(Gi.Gj|U)

�po = logPr(Gi.Gj|FS)−logPr(Gi.Gj|PO)

�hs = logPr(Gi.Gj|FS)−logPr(Gi.Gj|HS)

So for example �po is generated for full-sibs and parent–offspring pairs
to estimate the statistical significance of an observed positive �po value.
Note that HS are all second degree relationships (half-sib, grandparent–
grandoffspring and avuncular), which has to be considered in the P-value
calculation.

4.2 Calculation of the possible parent–offspring arcs
For every individual v, we calculate the LOD scores with all candidate parents
ui, individuals we cannot exclude a priori as parents, for example, because of
their age. We discard pairs (ui,v) or triples (ui,uj,v) with negative multi-locus
LOD scores from our further analyses, because adding the corresponding
arcs to the pedigree would decrease its likelihood. Hence, for every pair of
individuals with positive single-parent LOD score, (ui,?) is included in the
set of valid parent combinations H (v), just as well (ui,uj) for every triple
with positive parent-pair LOD score. Unless we know that at least one parent
of v is sampled, we include the empty parent pair (?,?) in H (v).

The parentage likelihood calculation is the most important step in the
pedigree reconstruction procedure as these likelihoods define the set of all
possible arcs in the pedigree. However, as described in detail in Thompson
and Meagher (1987), if we cannot exclude two full-sibs, vi and vj , as
parent and offspring, they in general give a higher likelihood than do true
parents. Thus, for highly probable full-sibs, a reasonable strategy is to use
only the intersection of the valid parent combinations: H (vi)=H (vj)=
H (vi)∩H (vj). The critical values of �po and �hs that a full-sib pair must
exceed should be high enough to prevent false positives, which may result in
an exclusion of the true parents in the next step, the pedigree reconstruction.
Note that if the intersection contains a parent pair, this is an additional hint
that vi and vj are full-sibs. Modeling this in the P-value calculation is difficult,
we could use however a less conservative critical α value in this case.
As default values for α, we use 0.01 and 0.05, respectively. The observed
P-values are adjusted for multiple testing (Benjamini and Hochberg, 1995).

4.3 Pedigree likelihood
The log-likelihood of a pedigree P is now computed as the sum of the
logarithms of the NI parentage posterior probabilities given this pedigree:

max
P∈T

LL(P|A,N) =
NI∑

i=1

logPr(N+(vi)|A,N)

We use simulated annealing (Kirkpatrick et al., 1983) for the pedigree
reconstruction as described in Almudevar (2003) to find the maximum
likelihood pedigree. If necessary, then every NI +2 iterations a random
missing value is estimated by Gibbs sampling.

4.4 Incomplete sampling
As already stated in Section 3.2, if not all candidate parents are sampled, it
is important to estimate the number of unsampled candidates. This number
could be either estimated by additional experiments, for example capture–
recapture surveys or by using the data alone. The pedigree structure itself
contains information about the sampling rate in the ratio of the number
vertices with indegree 1 and with indegree 2, d1 and d2:

r = 1

(d1/2d2)+1
and N ≈ n

r
·x for x≥r .

For larger samples, setting x=1 should give a good point estimate of N
when we assume that r and x are constant across sampled generations. Again

every NI +2 iterations, we draw a new value of x from a flat distribution
U (r,xmax) and accept the change with the simulated annealing acceptance
probability. A value of 4 for xmax showed a very robust performance in our
tests. Depending on the data, it might be also necessary to specify a Nmax

(Nielsen et al., 2001). In the absence of age data, it is not known a priori which
sampled individuals are candidate parents. So it might also be necessary here
to specify n and to exclude at least the direct descendants in the parentage
posterior calculation.

4.5 MCMC
When T does not allow all parentage combinations, the parentage
posterior probabilities Pr(N+(vi)|A,N) (Section 3.2) must be corrected
accordingly. FRANz samples from the pedigree posterior distribution
Pr(P) by Markov Chain Monte Carlo (MCMC) and redefines
Pr(N+(vi)) as the probability of observing the parentage N+(vi) when
drawing from Pr(P). Another benefit of MCMC sampling is that it
allows to incorporate the uncertainty of the pedigree reconstruction
when estimating parameters from the pedigrees (Hadfield et al.,
2006).

To speed up mixing, FRANz automatically uses parallel Metropolis
coupled Markov chain Monte Carlo (MCMCMC; Huelsenbeck and
Ronquist, 2001), implemented in a shared memory programming model,
when run on computers with multiple CPU cores. In short, in addition to the
normal, unheated chain, n−1 heated chains are started on the CPU cores
2,...,n and states are attempted to swap with a given probability. Swaps
are then accepted with normal Metropolis–Hasting acceptance probability.
Pedigrees are only sampled from the unheated chain.

4.6 Allele frequencies
The population allele frequencies are often unknown. If the sample size is
large and family sizes are small, it is reasonable to assume that individuals
are unrelated and then to use all genotypes for the estimation. If not,
however, then this strategy will overestimate the frequency of rare alleles
in large families. FRANz therefore updates the allele frequencies during SA
optimization or MCMC sampling. This is computationally extensive, but it
is not necessary to update after every change of the pedigree (Thomas and
Hill, 2000).

5 RESULTS

5.1 Real microsatellite data
Our first dataset is a microsatellite dataset of the black tiger
shrimp Penaeus monodon (Jerry et al., 2006). The true pedigree is
known from direct observation. The dataset consists of 13 families
with a total number of 85 individuals (of which 59 offspring),
genotyped at seven highly polymorphic loci. For 10 individuals,
alleles are missing at one locus. The error rate is very low, with
only one observed mismatch. Figure 1 shows the best pedigrees
with and without full-sib calculation (Section 4.2). Full-sibs tend
to have higher parentage likelihoods, but large full-sib groups
greatly enhance the performance of our algorithm such that the
accuracy of the reconstructed pedigree increases from 82.8 to
97.1%. A recent publication (Berger-Wolf et al., 2007) listed an
accuracy rate of several sibling reconstruction methods ranging
from 67.8 to 78.0% percent on the same dataset. Classic parentage
inference programs such as CERVUS (Marshall et al., 1998),
where the absence of age data violates main assumptions, assign
statistical significant parentages to the parental genotypes even when
the correct parameters (sampling rate, fraction of relatives in the
candidate parents) are provided.
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(a)

(b)

Fig. 1. Reconstructed Penaeus monodon pedigree (Section 5.1). The white vertices are the parental genotypes, black the offspring genotypes. (a) without
full-sib calculation. (b) with full-sib calculation.

5.2 Simulated data
We artificially generate population datasets as follows. A population
of 100 unrelated founders is created by drawing genotypes
independently with allele frequencies of 64 human microsatellites
(Jin et al., 2000). Then we let individuals die, mate or marry
according to rates extracted from the statistics of the German
population (Federal Statistical Office, 2007). As mating partners
or husbands, we only allow unrelated individuals. Married couples
only mate with each other. We stop when the desired number of
individuals is reached. In order to simulate typing errors, we replace
the true allele with a random one. Null alleles are simulated in
heterozygote genotypes by replacing the null allele with the other
allele (ai.an becomes ai.ai). Homozygote genotypes are marked as
missing.

We analyze the accuracy of the pedigree reconstruction as a
function of the number of available loci, see Figure 2. In all cases
where the accuracy is below 1, the optimal pedigree from our
algorithm has an even larger likelihood than the true one. Thus
without exceptions, our algorithm finds a pedigree with at least the
log-likelihood of the true pedigree (data not shown). The plots show
that the reconstruction is robust even when the upper limit of the
total number of breeding individuals per generation in the population
Nmax was largely overestimated (164 versus 1000).

Age data is clearly the most informative prior knowledge.
Knowledge about the sex rarely helps to exclude a false parentage
mainly because mothers are sampled like all individuals with a rate
of 0.5 and sex requires candidate parent pairs for exclusion. Thus,
the knowledge of the sex does not resolve the difficult cases where
the true parents are unsampled but a close relative (e.g. aunt or uncle)
is sampled.

Without age data, the direction of a large fraction of parent–
offspring arcs cannot be determined, which explains the plateaus
in the plots. These parentages are easily identified by their posterior
probability which is typically near 0.5. In Nielsen et al. (2001),
a parentage was assigned when the posterior probability was
higher than 0.95. Figure 2 visualizes the proportion of correct and
incorrect assignments. In almost all cases, the proportion of wrongly
assigned parentages was smaller than 0.01. These parentages are
mainly the difficult cases mentioned above or false positives of the
sibling calculation, whose sensitivity and specificity is plotted in
Figure 2c.

6 DISCUSSION
We have presented a new algorithm for the multi-generation pedigree
reconstruction problem. The publicly available implementation is
written in the C programming language and is platform-independent.
The genealogy of datasets with thousands of individuals is typically
reconstructed in a few minutes. Our implementation is flexible in
incorporating additional data like age, sex, sampling locations, sub-
pedigrees and allele frequencies. This was suggested in Almudevar
(2003) but not previously implemented in a publicly available
software package. The reconstruction of large and deep pedigrees is
highly accurate with only 10–15 polymorphic microsatellite loci.
Our approach is to our knowledge the first one that combines
paternity inference and sibship reconstruction.

In Almudevar (2003), some remaining challenges in the pedigree
reconstruction problem were listed. These are the assumption that
founders are unrelated, a better estimation of allele frequencies,
linkage, support for typing errors or mutation and estimation of
the error of the reconstruction procedure. FRANz makes significant
progress in the latter two tasks by combining the error model
described in Kalinowski et al. (2007) with an MCMC sampling.

The error model, however, was criticized in the literature because
of its simplicity. Other programs explicitly model special kinds
of errors, for example null alleles and sample the true genotypes
with an individual-by-individual Gibbs sampling (Hadfield et al.,
2006; Wang, 2004b). For multi-generation pedigrees, one has to
sample over the family to ensure irreducibility of the Markov
chain (Sheehan, 2000). For large pedigrees, this becomes very fast
computationally infeasible and the gain is questionable. Extending
the likelihood formulas in (Kalinowski et al., 2007) to model null
alleles, however, could be a valuable extension if they occur at higher
rates. Now, FRANz estimates the null allele frequency (Kalinowski
and Taper, 2006) and warns the user when null alleles are likely to
be present in the data.

Extensions of the LOD scores for linked loci when the linkage
phase is known are proposed in Devlin et al. (1988). If the linkage
phase and recombination rates are known with high accuracy, the
incorporation of this prior information can significantly enhance the
performance of the parentage assignments (Devlin et al., 1988).
However, in most cases the linkage phase is unknown and has
to be estimated jointly. Loose linkage of a small fraction of
markers should not seriously bias multi-locus likelihood calculations
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Fig. 2. These plots visualize the results of the reconstruction of simulated pedigrees (Section 5.2). The various measurement are plotted as a function of the
number of loci. The values are the median of 10 randomly generated pedigrees of size 1000, reconstructed with different combinations of available prior
knowledge. The error bars indicate the first and third quartile. The dataset has a sampling rate of 0.5 (1000 of 2000 individuals sampled) and has an overall
typing error rate of 0.01. In addition, the first locus comprises one null allele (pn =0.05). The pedigree depth ranges from 5 to 9 and the mean number
of sampled candidate parents is 82. Nmax (see Section 4.4) was largely overestimated set to 1000. (a) The accuracy of the maximum likelihood pedigree.
(b) The proportion of incorrect (unfilled symbols) and correct parentages with a posterior probability >0.95. (c) The sensitivity and specificity of the sibling
calculation.

(Meagher, 1991). Tightly linked loci in contrast, such as neighboring
single nucleotide polymorphisms (SNPs), can be combined and
treated as one single pseudolocus. In general, linked loci are less
informative than unlinked ones and therefore the calculated LOD
scores are too large. The best advice now is probably to avoid
medium linked loci (Jones and Ardren, 2003).

The framework we have presented in this article may easily
be extended to incorporate prior knowledge in the likelihood
calculation (Neff et al., 2001). Currently, prior knowledge is only
used to reduce the search space. For parentages, sampling locations
and behavioural data have been successfully used to increase
the parentage assignments in Hadfield et al. (2006). Priors about
the pedigree structure (the expected inbreeding rates, number of
offspring, etc.) might further improve the performance (Sheehan
and Egeland, 2007). Information of this kind is oftentimes unknown
a priori, however. In fact, these are parameters that one typically
would like to infer from the reconstructed pedigrees.

Our implementation currently only allows co-dominant markers.
In Gerber et al. (2000), the original LOD scores for co-
dominant markers (Meagher and Thompson, 1986) were modified
for dominant markers, such as amplified fragment length
polymorphisms. Statistics for estimating pairwise relationships with
dominant markers were proposed e.g. in Wang (2004a).

Our incorporation of full-sib probabilities is a reaction to the
concern expressed in Meagher and Thompson (1986) that non-
excluded full-sibs of the offspring have on average a higher LOD
score than the true father. To keep the pedigree likelihood function
simple and efficient to calculate, we use only highly significant
full-sibs to reduce the pedigree space. It seems possible to include
more siblings than just the highly significant ones into the pedigree
likelihood calculation without the risk of excluding the true parents.
Since such ‘local’ factors in the pedigree likelihood are also not
very computationally intensive, we plan to explore this avenue in
future work.

With the rapid progress and decay of cost in high-throughput
sequencing techniques, it is just a matter of time until there are whole
genomes of complete populations available. Large amounts of SNP
data with high quality genetic maps will be therefore available, at
least for some model organisms. The identification of parents with
such an amount of data is a trivial task and the methods are well
known (Boehnke and Cox, 1997). A challenging question is then
how many unobserved generations we can reconstruct back in time
[see Steel and Hein (2006) and Thatte and Steel (2007) for first
results]. As we cannot expect an elegant solution to this problem,
MCMC heuristics are promising tools for throwing some light on a
population’s immediate past.
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