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Background. Investigation of dynamics and regulation of the TGF-b signaling pathway is central to the understanding of
complex cellular processes such as growth, apoptosis, and differentiation. In this study, we aim at using systems biology
approach to provide dynamic analysis on this pathway. Methodology/Principal Findings. We proposed a constraint-based
modeling method to build a comprehensive mathematical model for the Smad dependent TGF-b signaling pathway by fitting
the experimental data and incorporating the qualitative constraints from the experimental analysis. The performance of the
model generated by constraint-based modeling method is significantly improved compared to the model obtained by only
fitting the quantitative data. The model agrees well with the experimental analysis of TGF-b pathway, such as the time course
of nuclear phosphorylated Smad, the subcellular location of Smad and signal response of Smad phosphorylation to different
doses of TGF-b. Conclusions/Significance. The simulation results indicate that the signal response to TGF-b is regulated by
the balance between clathrin dependent endocytosis and non-clathrin mediated endocytosis. This model is useful to be built
upon as new precise experimental data are emerging. The constraint-based modeling method can also be applied to
quantitative modeling of other signaling pathways.
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INTRODUCTION
The transforming growth factor b (TGF-b) superfamily consists of

TGF-bs, bone morphogenetic proteins (BMPs), activins and

related proteins. These proteins regulate numerous cellular

processes, such as cell proliferation, differentiation, apoptosis and

specification of developmental fate [1,2]. TGF-b initiates signaling

by forming a ligand-receptor complex with the type I and type II

receptors at cell surface. The activated receptor complex

propagates the signal inside by phosphorylating the receptor-

regulated Smad (R-Smad). Activated R-Smad then forms

a heteromeric complex with common mediated Smad (Co-Smad),

Smad4. These complexes accumulate in the nucleus and regulate

gene expression in a cell-type-specific manner through interactions

with transcription factors, coactivators and corepressors [3]. The

nuclear Smad complexes are then dephosphorylated by Smad

phosphatase [4]. Another important player is inhibitory Smad (I-

Smad), Smad7, which recruits Smurf to the TGF-b receptor

complex to facilitate the ubiquitin dependent degradation of

receptors [5]. Both R-Smad and Smad4 continuously shuttle

between the cytoplasm and nucleus in uninduced cells and also in

presence of TGF-b signal [6–8]. The receptors and activated

ligand-receptor complex are internalized through two distinct

endocytic routes, the clathrin-dependent endocytosis and the

caveolar lipid-raft mediated endocytosis [9,10]. Figure 1 schemat-

ically depicts the Smad dependent TGF-b signaling pathways.

Quantitative modeling studies of signaling pathways have been

successfully applied to understand complex cellular processes [11–

14]. Traditionally, the quantitative models are validated by fitting

western-blot data. Due to the complexity of the model and the

quality of the data, over-fitting is a common problem for

parameter estimation. When the model has many estimated

parameters and the corresponding data is a few, the over-fitting

problem might lead to some unwarranted conclusions because the

parameter set in the model might be a special domain of possible

parameter sets which can similarly fit the data well, but result in

different predictions. On the other hand, genome-scale constraint-

based models of metabolism have been constructed and used to

successfully interpret and predict cellular behavior [15]. Con-

straint-based modeling is an effective method to narrow the range

of the possible parameter space for quantitative models. However,

there is less attention to apply the constraint-based modeling for

the quantitative analysis of signaling pathways. Here, we proposed

a constraint-based modeling method to build a comprehensive

mathematical model for the Smad-dependent TGF-b signaling

pathway by fitting experimental data and incorporating the

qualitative constraints from the experimental analysis.

So far, several mathematical models have been proposed for the

TGF-b signaling pathways. Vilar et al. proposed a concise model

for the TGF-b receptor trafficking network [16]. On the other

hand, Clarke et al. [17] and Melke et al. [18] proposed the models

for the Smad nucleocytoplasmic shuttling and Smad phosphory-

lation response to the TGF-b signal without considering the

receptor trafficking steps. In this study, we established a compre-

hensive mathematical model for the TGF-b signaling pathway,

which includes the signal transduction, the receptor endocytosis,

the Smad nucleocytoplasmic shuttling, and the ligand induced
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negative feedback. The simulation analysis of the model agrees

well with the experimental analysis of TGF-b pathway, such as the

time course of nuclear phosphorylated Smad, the subcellular

location of Smad, and Smad phosphorylation response to different

concentrations of TGF-b. We employed the mathematical model

to study the dynamic relationship between receptor trafficking at

the cell surface and the activation of the phosphorylated Smad in

the nucleus. The simulation results indicate that the signal

response to TGF-b is regulated by the balance between clathrin

dependent endocytosis and non-clathrin mediated endocytosis.

MATERIALS AND METHODS

Mathematical model of the Smad dependent

TGF-b signaling pathway
We proposed here a comprehensive model for Smad dependent

TGF-b signaling pathway in mammalian cells, which includes

three modules: receptor trafficking and signaling; Smad nucleo-

cytoplasmic shuttling and signaling and I-Smad negative regula-

tion. In the module of receptor trafficking, the model takes into

account the following essential elements: (i) constitutive receptor

synthesis and degradation; (ii) receptor and ligand-receptor

complex trafficking by two distinct endocytic routes; (iii) the

distribution of receptors and ligand-receptor complex in different

pools, such as membrane surface, clathrin-coated pit, early

endosome and caveolar lipid-raft; (iv) the formation of activated

receptor complex induced by TGF-b. In the module of Smad

nucleocytoplasmic shuttling, the signal events we consider are (i)

Smad nucleocytoplasmic shuttling; (ii) Smad complex formation;

(iii) nuclear Smad complex dephosphorylation by nuclear

phosphatase. In the module of I-Smad negative regulation, the

negative feedback contributing to the ligand-induced degradation

of the receptors by I-Smad is simplified and modeled as a black

box from the nuclear phosphorylated Smad. We made the

following assumptions for the model:

(1) Experimental analyses indicate that TGF-b receptor traffick-

ing is not affected by TGF-b stimulation [9,10]. We assume

that the corresponding internalization and recycling rates for

type I receptor, type II receptor and activated ligand-receptors

are the same.

(2) Referring to the concise model of signal processing in the

TGF-b ligand-receptor network [16], we assume that the rate

of sequential formation of ligand-receptor complex is pro-

portional to the amount of ligand, type I receptor and type II

receptor.

Figure 1. Schematic representation of Smad dependent TGF-b signaling pathway. Detailed information about this pathway is described in the text.
doi:10.1371/journal.pone.0000936.g001
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(3) The experimental data shown by Lin, et al. indicate that the

variation of total amount of Smad is small [4]. We assume

that the total amount of Smad is constant. Therefore, the

production and degradation of Smad are not considered in

this model.

(4) Previous experimental analyses suggest that I-Smad/Smurf

complex targets the lipid-raft-bound receptor for degradation

which leads to the ligand-induced negative feedback [5,9]. We

assume that the rate of ligand-induced degradation of

receptors is proportional to the amount of nuclear phos-

hporylated Smad and the receptor complex in caveolar lipid-

raft.

In order to compare with the published data, we used Smad2

denoting R-Smad. We used the law of mass-action to describe the

rate of signal transduction steps. The time-dependent changes of

the concentrations of the signaling proteins and protein complexes

are determined by the following system of differential equations:

d½T1RSurf �
dt

~vT1R{kiCave½T1RSurf �zkrCave½T1RCave�{

kiEE ½T1RSurf �zkrEE ½T1REE �zkrCave½LRCCave�{

kLRC ½TGFb�½T1RSurf �½T2RSurf �

ð1Þ

d½T1RCave�
dt

~kiCave½T1RSurf �{krCave½T1RCave� ð2Þ

d½T1REE �
dt

~kiEE ½T1RSurf �{krEE ½T1REE �{kT1R
deg ½T1REE � ð3Þ

d½T2RSurf �
dt

~vT2R{kiCave½T2RSurf �zkrCave½T2RCave�{

kiEE ½T2RSurf �zkrEE ½T2REE �zkrCave½LRCCave�{

kLRC ½TGFb�½T1RSurf �½T2RSurf �

ð4Þ

d½T2RCave�
dt

~kiCave½T2RSurf �{krCave½T2RCave� ð5Þ

d½T2REE �
dt

~kiEE ½T2RSurf �{krEE ½T2REE �{kT2R
deg ½T2REE � ð6Þ

d½LRCSurf �
dt

~kLRC ½TGFb�½T1RSurf �½T2RSurf �{

kiCave½LRCSurf �{kiEE ½LRCSurf �
ð7Þ

d½LRCCave�
dt

~kiCave½LRCSurf �{krCave½LRCCave�{

klid ½LRCCave�½Smads Complexnuc�
ð8Þ

d½LRCEE �
dt

~kiEE ½LRCSurf �{krEE ½LRCEE �{kcd ½LRCEE � ð9Þ

d½Smad2cyt�
dt

~{kSmad2
imp ½Smad2cyt�z

kSmad2
exp ½Smad2nuc�Vnuc

Vcyt

{kSmads Complex½Smad2cyt�½Smad4cyt�½LRCEE �
ð10Þ

d½Smad2nuc�
dt

~
kSmad2

imp ½Smad2cyt�Vcyt

Vnuc

{kSmad2
exp ½Smad2nuc�

zk
Smads Complex
diss ½Smads Complexnuc�

ð11Þ

d½Smad4cyt�
dt

~{kSmad4
imp ½Smad4cyt�z

kSmad4
exp ½Smad4nuc�Vnuc

Vcyt

{kSmads Complex½Smad2cyt�½Smad4cyt�½LRCEE �
ð12Þ

d½Smad4nuc�
dt

~
kSmad4

imp ½Smad4cyt�Vcyt

Vnuc

{kSmad4
exp ½Smad4nuc�

zk
Smads Complex
diss ½Smads Complexnuc�

ð13Þ

d½Smads Complexcyt�
dt

~kSmads Complex½Smad2cyt�½Smad4cyt�

½LRCEE �zk
Smads Complex
imp ½Smads Complexcyt�

ð14Þ

d½Smads Complexnuc�
dt

~

k
Smads Complex
imp ½Smads Complexcyt�Vcyt

Vnuc

{k
Smads Complex
diss ½Smads Complexnuc�

ð15Þ

d½TGFb�
dt

~(krCave½LRCCave�zkrEE ½T2REE �{

kLRC ½TGFb�½T1Rsurf �½T2Rsurf �)Vcyt=Vextra

ð16Þ

The model is composed of an ordinary differential equations

system with 16 state variables and 20 parameters. The values and

the corresponding biological meaning of the parameters are listed

in Table 1. The initial conditions and the biological meaning of

the variables are listed in Table 2.

Derivation of the parameter values
In order to keep the consistency of the parameter values, we

derived the parameter values from experimental analysis in

epithelial cells. In particularly, most of the data used in this study

is from experimental analysis of HaCaT (Human keratinocyte cell

line) cells. The rational guided the derivation of relative parameter

values is described in the following:

N Parameters for the volume ratio of different compart-
ments: The model distinguishes the different compartments of

extracellular medium, cytoplasm and nucleus where the
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signaling steps take place. The average cytoplasimc/nuclear

volume ratio (
Vcyt

Vnuc

) was measured as about 3 in reference [8].

The volume of HaCaT cell is estimated as about 1.4610212

Liter [19,20], therefore, we can derive the volume of cytoplasm

and nucleus are 1.05610212 Liter and 3.5610213 Liter,

respectively. A typical cell culture experiment would have a cell

density of 1.06106 cells/ml. The average extracellular medium

volume per cell (Vextra) is about 1.061029 Liter. Hence, the

volume ratio of cytoplasm to extracellular medium (
Vcyt

Vextra

) is

set to a value of 0.001.

Table 1. Parameter values in the model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameter symbol Biological meaning Value Unit Reference

vTIR type I receptor production rate constant 0.0103 nM/min estimated

vT2R type II receptor production rate constant 0.02869 nM/min estimated

kiEE internalization rate constant of receptor from cell surface to early endosome 0.33 min21 [9,16]

krEE recycling rate constant of receptor from early endosome to cell surface 0.033 min21 [9,16]

kiCave internalization rate constant of receptor from cell surface to caveolar lipid-raft 0.33 min21 [9,16]

krCave recycling rate constant of receptor from caveolar lipid-raft to cell surface 0.03742 min21 estimated

kcd constitutive degradation rate constant for ligand-receptor complex in early endosome 0.005 min21 [9]

kLRC ligand-receptor complex formation rate constant from TGF-b and receptors 2197 nM22min21 estimated

klid ligand induced degradation rate constant for ligand-receptor complex in caveolar lipid-raft 0.02609 min21 estimated

kT1R
deg constitutive degradation rate constant for type I receptor in early endosome 0.005 min21 [21]

kT2R
deg constitutive degradation rate constant for type II receptor in early endosome 0.025 min21 [21]

kSmad2
imp nuclear import rate constant for Smad2 0.16 min21 [8]

kSmad2
exp nuclear export rate constant for Smad2 1 min21 [8]

kSmad4
imp nuclear import rate constant for Smad4 0.08 min21 [8]

kSmad4
exp nuclear export rate constant for Smad4 0.5 min21 [8]

kSmads_Complex formation rate constant for the phosphorylated Smad complex 6.8561025 nM22min21 estimated

kSmads_Complex
imp nuclear import rate constant for the phosphorylated Smad complex 0.16 min21 [8,22]

kSmads_Complex
diss dissociation rate constant for the nuclear phosphorylated Smad complex 0.1174 min21 estimated

Vcyt/Vnuc ratio of cytoplasmic to nuclear volume 3.0 3.0 [8]

Vcyt/Vextra ratio of cytoplasmic volume to the average extracellular medium volume per cell 0.001 0.001 [19,20]

doi:10.1371/journal.pone.0000936.t001..
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Table 2. Initial conditions of state variables (proteins) in the model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variable symbol Biological meaning Value of the initial condition

T1Rsurf type I receptor at cell surface 0.237

T1RCave type I receptor in caveolar lipid-raft 2.092

T1REE type I receptor in early endosome 2.06

T2Rsurf type II receptor at cell surface 0.202

T2RCave type II receptor in caveolar lipid-raft 1.778

T2REE type II receptor in early endosome 1.148

LRCSurf ligand-receptor complex at cell surface 0

LRCCave ligand-receptor complex in caveolar lipid-raft 0

LRCEE ligand-receptor complex in early endosome 0

Smad2cyt Smad2 in the cytoplasm 492.61

Smad2nuc Smad2 in the nucleus 236.45

Smad4cyt Smad4 in the cytoplasm 1149.4

Smad4nuc Smad4 in the nucleus 551.72

Smads_Complexcyt phosphorylated Smad complex in the cytoplasm 0

Smads_Complexnuc phosphorylated Smad complex in the nucleus 0

TGFb TGF-b in the extracellular medium 0.08 nM for 2 ng/ml

The initial conditions of the variables are set as the steady state concentration of the corresponding proteins in the uninduced cell which are derived from the
parameter values described in Table 1.
doi:10.1371/journal.pone.0000936.t002..
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N Rate constant of receptor constitutive degradation:

Pervious experimental data indicate that the type II receptor

has a half-life of about 1 hr, whereas type I receptors are more

stable, with a half-life of about 4–6 hr [21]. The receptors are

constitutively degraded from early endosomes and about 50%

percent of initial labeled receptors locate in early endosome [9].

Rescaling the degradation rate of the total receptors to the early

endosome receptors results in constitutive degradation rate

constant of type I receptor (kT1R
deg ) and type II receptor (kT2R

deg )

with value of 0.005 min21 (
{ ln 0:5

300 min |0:5
) and 0.025 min21

(
{ ln 0:5

60 min |0:5
), respectively. On the other hand, Figure 3 of

reference [9] shows that only 30% of the initial labeled receptor

complex remain in the cell after 8 h when the caveolar

endocytosis is inhibited. Based on this information, we can

derive the constitutive degradation rate constant of ligand-

receptor complex (kcd) is 0.005 min21 (
{ ln 0:3

480 min |0:5
).

N Rate constant of receptor internalization and recyc-
ling: Vilar et al. derived the rate constant of receptor

internalization and recycling based on the experimental

observations [16]. On the other hand, reference [9] indicate

that receptors are internalized through clathrin and non-

clathrin independent endocytosis route with similar rates.

Therefore, we choose the internalization rate constant of

receptors (kiEE and kiCave) with the value of 0.33 min21 which is

estimated in reference [16]. The recycling rate constant (krEE)

for the receptors recycled from early endosome back to the cell

surface is set to a value of 0.033 min21, which is derived in

reference [16].

N Rate constant for Smad nuclear import and export:
The nuclear import rate of Smad2 (kSmad2

imp ) was experimentally

measured with the value of 0.16 min21 in reference [8].

Reference [8] also measured that the ratio of mean nuclear

fluorescence to mean cytoplasmic fluorescence (R) of Smad2 in

uninduced cells is about 0.5. The R ratio of Smad2 is

equivalent to the ratio of nuclear to cytoplasmic Smad2

concentrations. We can derive R~
kSmad2

imp
:Vcyt

kSmad2
exp

:Vnuc

according to

equation (31). Therefore, the value for the nuclear export rate

constant (kSmad2
exp ) in our model is about 1 min21

(kSmad2
exp ~

kSmad2
imp

R
: Vcyt

Vnuc

). On the other hand, Figure 5A of

reference [8] also shows that the nuclear export rate of

Smad4 is about half of the nuclear export rate of

Smad2. Hence, the nuclear export rate constant of

Smad4 (kSmad4
exp ) is 0.5 min21. Since the R ratio of Smad4 is

measured with a value of about 0.5 [8], we can derive the

nuclear import rate constant of Smad4 (kSmad4
imp ) a value of

0.08 min21.

N Nuclear import rate constant of phosphorylated
Smad: Figure 3 of reference [22] shows that nuclear import

rate between phoshporylated and unphosphorylated Smad2 is

similar. Therefore, we set the import rate constant for the

phosphorylated Smad complex (kSmads_Complex
imp ) to the same value

as the import rate constant for unphosphorylated Smad2,

which is 0.16 min21.

There are 7 unknown parameter values in the model that are

required to be estimated, i.e. vT1R, vT2R, krCave, kLRC, klid,

kSmads_Complex and kSmads_Complex
diss .

Steady state analysis of the model for the

uninduced cell
We performed steady state analysis of the model for the uninduced

cell without TGF-b stimulation. When there is no TGF-b present to

the cells, the concentrations of the ligand-receptor complex and

phosphorylated Smad complex are assumed to be zero.

For type I receptor, we can derive the following algebraic

equations for the steady state of the unindcued cell:

d½T1RSurf �ss

dt
~vT1R{kiCave½T1RSurf �sszkrCave½T1RCave�ss

{kiEE ½T1RSurf �sszkrEE ½T1REE �ss~0

ð17Þ

d½T1RCave�ss

dt
~kiCave½T1RSurf �ss{krCave½T1RCave�ss~0 ð18Þ

d½T1REE �ss

dt
~kiEE ½T1RSurf �ss{krEE ½T1REE �ss

{kT1R
deg ½T1REE �ss~0

ð19Þ

The steady state concentrations of type I receptor at cell surface, in

the lipid-raft and in the early endosome, obtained by solving the

systems of algebraic equations (17–19), are

½T1RSurf �ss~
vT1R(krEEzkT1R

deg )

kT1R
deg

:kiEE

ð20Þ

½T1RCave�ss~
vT1R(krEEzkT1R

deg )kiCave

kT1R
deg

:kiEE
:krCave

ð21Þ

½T1REE �ss~
vT1R

kT1R
deg

ð22Þ

The steady state concentrations of type II receptor at cell surface,

in the lipid-raft and in the early endosome are

½T2RSurf �ss~
vT2R(krEEzkT2R

deg )

kT2R
deg

:kiEE

ð23Þ

½T2RCave�ss~
vT2R(krEEzkT2R

deg )kiCave

kT2R
deg

:kiEE
:krCave

ð24Þ

½T2REE �ss~
vT2R

kT2R
deg

ð25Þ

For the Smad2 in the cytoplasm and nucleus, the following

algebraic equations should be satisfied for the steady state of the

unindcued cell:

d½Smad2cyt�ss

dt
~{kSmad2

imp ½Smad2cyt�ssz

kSmad2
exp ½Smad2nuc�ssVnuc

Vcyt

~0

ð26Þ
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d½Smad2nuc�ss

dt
~

kSmad2
imp ½Smad2cyt�ssVcyt

Vnuc

{

kSmad2
exp ½Smad2nuc�ss~0

ð27Þ

Because the total amount of Smad2 is a constant, mass

conservation reads:

Ntotal
Smad2~Vcyt½Smad2cyt�sszVnuc½Smad2nuc�ss ð28Þ

Solving the algebraic equations (26–28) yields the steady state

concentrations of cytoplasmic and nuclear Smad2 in the

uninduced cell as following:

½Smad2cyt�ss~
Ntotal

Smad2
:kSmad2

exp

Vcyt(k
Smad2
imp zkSmad2

exp )
ð29Þ

½Smad2nuc�ss~
Ntotal

Smad2
:kSmad2

imp

Vnuc(kSmad2
imp zkSmad2

exp )
ð30Þ

The ratio of nuclear to cytoplasmic Smad2 concentration

corresponds to the ratio of mean nuclear fluorescence to mean

cytoplasmic fluorescence (R) of Smad2, according to equations

(29–30), which is

R~
½Smad2nuc�ss

½Smad2cyt�ss

~
kSmad2

imp
:Vcyt

kSmad2
exp

:Vnuc

ð31Þ

The steady state concentrations of cytoplasmic and nuclear Smad4

in the uninduced cell are

½Smad4cyt�ss~
Ntotal

Smad4
:kSmad4

exp

Vcyt(k
Smad4
imp zkSmad4

exp )
ð32Þ

½Smad4nuc�ss~
Ntotal

Smad4
:kSmad4

imp

Vnuc(kSmad4
imp zkSmad4

exp )
ð33Þ

The total amount of Smad2 (N total
Smad2) and Smad4 (N total

Smad4) are

estimated to be 6610219 mol per cell and 1.4610218 mol per cell

in HaCaT cells, which corresponds to about 3.66105 and 8.46105

molecules per cell, respectively [23].

Without the treatment of TGF-b, the concentrations of

signaling proteins will arrive at steady state balancing protein

production, degradation, receptor endocytosis and Smad protein

nucleocytoplasmic shuttling. We set the initial concentrations of

the signaling proteins as their steady state values before TGF-b is

added.

Parameter estimation by constraint-based modeling
The parameter estimation for the 7 unknown values of rate

constants was done using a modified version of the tool SBML-

PET [24], which incorporates stochastic ranking evolution strategy

(SRES) for parameter estimation jobs. SRES is an evolutionary

optimization algorithm that uses stochastic ranking as the

constraint handling technique [25]. The objective of the para-

meter estimation is to find the most feasible parameters in the

model that reproduce the quantitative experimental data for the

TGF-b signaling pathway. At the same time, the model with the

estimated parameters should satisfy some qualitative experimental

observation of this pathway. Therefore, the corresponding quanti-

tative time course data is used in the objective function definition

and the qualitative data is coded as constraints during the optimi-

zation process. We used two time courses of Smad phosphoryla-

tion for parameter estimation:

(1) The quantitative western blot data reported in Figure 1A in

Lin et al. [4] gives us the time course of Smad2 in the whole

HaCaT cell extract in the presence of continuous TGF-

b stimulation for 24 hours. We normalized the data to its

maximum value which gives us the dynamic change of the

protein. We also normalized corresponding simulation data to

its maximum value so that we can compare the experimental

data and the simulation data.

(2) The quantitative western blot data reported in Figure 1C in

Lin et al. [4] gives us the time course of Smad2 phosphor-

ylation under a different condition. TGF-b (2 ng/ml) is added

at first 30 minutes, then washed out and type I receptor kinase

inhibitor SB431542 is added to terminate the signal.

Other qualitative information from the literatures is used as

constraints encoded within SRES method.

(1) The number of total receptors per cell falls into the range of

1000 to 100000 per cell according to the distribution of

TGF-b receptors in a wide spectrum of cell types reported in

Wakefield et al. [26].

(2) Experimental results of receptor distribution at the cell

surface, in the early endosomes and caveolin-positive vesicles

indicate that about 40,50% percent of total receptors are

located in the early endosomes [9,10]. We set a constraint for

the distribution of receptors, that the about at least 30% and

at maximum 60% of receptors locate in the early endosome.

(3) Schmierer et al. quantified the Smad redistribution in HaCaT

cells upon 2 ng/ml TGF-b with photobleaching experiments

using EGFP-Smad (enhanced green fluorescent protein)

fusions [8]. The study indicates that the ratio of nuclear to

cytoplasmic Smad2 concentrations is about 2.5 after 1 hour

TGF-b treatment. After TGF-b stimulus, about 80% of the

Smad2 in the nuclues is phosphorylated or complexed. We set

constraints for the corresponding Smad2 distribution: the

ratio of nuclear to cytoplasmic Smad2 concentrations should

be in the range of 1.5,3.5 and 60%,90% of the Smad2 in

the nucleus is phosphorylated or complexed after 1 hour

TGF-b treatment.

(4) Previous experimental data indicate that 0.5 ng/ml (20 pM)

of TGF-b is sufficient to yield a maximal response of Smad

phosphorylation after 1 hour TGF-b treatment [27,28]. We

encode this information as a constraint that the ratio of Smad

phosphorylation level with the dose of 0.5 ng/ml to that with

the dose of 2 ng/ml TGF-b at 60th minute should be larger

than 0.9 and smaller than 1.1.

RESULTS AND DISCUSSION

Comparison of kinetic simulation with experimental

analysis
We first check whether the model obtained by constraint-based

modeling method can reproduce the experimental data used for
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parameter estimation, which can give us the information about

quality of ‘‘in-sample fit’’ (how good is the model fitting the data

used for parameter estimation). Experiments reported that the

signal would peak at about 30–60 min after TGF-b addition. The

result shown in Figure 2A indicates that the simulated time courses

of Smad2 phosphorylation agree well with the experimental data

[4]. The model is also able to reproduce the experimental

observation that the treatment with type I receptor kinase inhibitor

SB431542 will cause rapid decrease of the nuclear phosphorylated

Smad2 level [4,29] (Figure 2B). Taken these simulation results

together, the model has good ‘‘in-sample fit’’ for the data.

We next asked whether the model has a good match to other

experimental data that were not used for parameter estimation.

This test can be regarded as ‘‘out-sample fit’’ or model validation.

The result shown in Figure 2C indicates that the simulated time

courses of nuclear phosphorylated Smad2 agree well with the

experimental data [29]. As a further test, we calculated the

subcellular location of Smad2 from the simulation result of the

model. The results are in agreement with previous reports that

TGF-b causes a change in the overall Smad2 distribution from

predominantly cytoplasmic to predominantly nuclear [6–8,29].

After TGF-b treatment, Smad2 proteins are rapidly accumulated

in the nucleus and then return to the cytoplasm (Figure 2D).

Finally, we tested whether the model can predict well the signal

response to different dose of TGF-b. Previous experimental data

indicate that the response of Smad phosphorylation after 1 hour

TGF-b treatment will be saturated when the concentration of

TGF-b is larger than 0.5 ng/ml [27,28]. The model successfully

predicts the dose-response of Smad phosphorylation upon

different concentrations of TGF-b (Figure 3).

Model performance is significantly improved by

constraint-based modeling
We compared the performance of the model generated by

constraint-based modeling method and that of the model obtained

Figure 2. Comparison of experimental analysis and simulation results from the model obtained by constraint-based modeling method. (A–B) for
‘‘in-sample fit’’. (C–D) for ‘‘out-sample fit’’. (A) Comparison of the model time course and experimental time course of Smad2 phosphorylation with
24 hours TGF-b treatment. The experimental data is normalized from Figure 1A in Lin et al. [4]. (B) Effect of type I receptor kinase inhibitor SB431542.
Cells were treated with TGF-b for 30 minutes, then were washed out TGF-b at 30th minute and added SB431542 to prevent rephosphorylation of
Smad2. The experimental data is normalized from Figure 1C in Lin et al. [4]. (C) Comparison of the model time course with an experimental time
course of nuclear phosphorylated Smad2 after TGF-b treatment (80 pM, 2 ng/ml). The western-blot data reported by Inman et al. (Fig. 1A, top panel)
is quantified with Scion Image software [29]. (D) Subcellular location of Smad2 after TGF-b treatment (80 pM). The concentrations shown here refer to
the local concentrations in cytoplasm and nucleus.
doi:10.1371/journal.pone.0000936.g002
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by only fitting the time course data. We first compared the

experimental data and simulation results from the model obtained

by only fitting the time course data. The results shown in Figure 4

indicate that the model has been over-fitted to the data used for

parameter estimation (Figure 4A–4B), but it has bad predictions

for the data that are not used for parameter estimation. For

example, experimental evidence shows that the response of Smad

phosphorylation after 1 hour TGF-b treatment will be saturated

when the concentration of TGF-b is larger than 0.5 ng/ml

[27,28]. However, the predicted time course of phosphorylated

Smad2 in the model, obtained by only fitting the time course data,

is not saturated even for a very high dose of TGF-b (10 ng/ml),

which contradicts the experimental results (Figure 4C).

On the other hand, we compared the possible variation of

parameter sets of the models by these two different methods. For

each method, we independently generated 1000 parameter sets

which make the model have similar goodness of fitting the time

course data of Smad phosphorylation (Table S1 and Table S2).

According to the statistical result for the parameter sets shown in

Table 3, the ranges of the variation for the 7 estimated parameter

values are significantly narrowed by constraint-based modeling

method.

Previous modeling studies of TGF-b signaling pathway indicate

that the Smad phosphorylation response to TGF-b is robust to

a large variation of some parameters [17,18]. The large variations

in the estimated parameter sets are usually caused by two reasons.

The data quality is the main reason for the large variation of

parameter sets obtained by only fitting the time course data. When

we fit the western-blot data, we actually fit the scaled data.

However, the parameter for the scaled coefficient is unknown,

which can vary in a large range if we only fitting the scaled time

course data without considering other qualitative constraints.

Another reason comes from the insensitivity of some parameters to

the signal response. For example, the sensitivities of the parameters

kLRC, vT2R and klid are very small (Figure 5), which means the

output of the model (Smad phosphorylation level) is robust to the

variation of these insensitive parameters.

Sensitivity analysis of the model
We next systematically investigated the sensitivity of all the rate

constants and found those whose perturbation the pathway is most

sensitive or most robust against. Response sensitivities were used

for quantifying the effects of all the rate constants on the

concentration of signaling proteins. In this model, we regard

nuclear phosphorylated Smad complex (nuclear phosphorylated

Smad2) as the readout of the signal in this pathway because

experimental results indicate that nuclear phosphorylated Smad

complex acts as transcription factor to induce the expression of

many genes [1,3]. We determined the sensitivity of the integral

concentrations of the nuclear phosphorylated Smad complex from

the beginning of the TGF-b activation to the end of the simulation

time (8 hours). The definition of response sensitivity for nuclear

phosphorylated Smad is as following:

RSmads Complex n
pi

~

L(Smads Complex n)

Smads Complex n

Lpi

pi

ð34Þ

As shown in Figure 5, we can divide the parameters into three

groups: positive control, negative control and almost no control to

the changes of nuclear Smad complex. The strong positive and

negative control groups belong to the reactions participating

phosphorylation of Smad, receptor endocytosis, type I receptor

production. The most negative control on the concentration of

nuclear Smad complex is the rate constants corresponding to the

dephosphorylation of nuclear Smad complex, which implies

Figure 3. Effects on Smad2 phosphorylation by different doses of
TGF-b.
doi:10.1371/journal.pone.0000936.g003

Figure 4. Comparison of experimental analysis and simulation results from the model obtained by only fitting the time course data. (A–B) The
model has been over-fitted for ‘‘in-sample fit’’. (C) The model has a bad prediction for ‘‘out-sample fit’’. (A) Comparison of the model time course and
experimental time course of Smad2 phosphorylation with 24 hours TGF-b treatment. Experimental data is the same as described in Figure 2A. (B)
Effect of type I receptor kinase inhibitor SB431542. Experimental data is the same as described in Figure 2B. (C) Effects on Smad2 phosphorylation by
different doses of TGF-b.
doi:10.1371/journal.pone.0000936.g004
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that the nuclear phosphatase has a strong negative control on

the nuclear phosphorylated Smad level. Finally, we want to point

out that all these analyses are based on small perturbations of

relative parameters according to the definition of response

coefficient.

The regulation of the signal: balance between

clathrin dependent endocytosis and non-clathrin

mediated endocytosis
In the experimental studies, potassium depletion can be used to

interfere with clathrin-dependent trafficking of receptors, which

can inhibit the TGF-b signal [9,30]. On the other hand, nystatin

treatment causes the inhibition of the non-clathrin endocytosis

pathway [9]. The simulation analysis of the model indicates that

the inhibition of clathrin dependent endocytosis causes a transient

response of Smad2 phosphorylation (Figure 6A). The simulation

result also shows that inhibition of non-clathrin dependent

endocytosis increases TGF-b signal amplitude, which produces

a prolonged signal (Figure 6C).

What will happen if both clathrin dependent and non-clathrin

dependent endocytosis are inhibited? The simulation results

indicate that the key quantity is the ratio of clathrin to non-

clathrin dependent endocytosis rate. A transient response of

Smad2 phosphorylation appears upon the combination of a strong

inhibition of clathrin dependent endocytosis and a weak inhibition

of non-clathrin mediated endocytosis, which corresponds to a low

ratio of clathrin to non-clathrin dependent endocytosis rate

(Figure 6D). Furthermore, when both clathrin dependent

endocytosis and non-clathrin dependent endocytosis are equally

inhibited (a medium ratio of clathrin to non-clathrin dependent

endocytosis rate), the signal response of Smad2 phosphorylation is

Table 3. Range of the variation for the estimated parameters in the 1000 parameter sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Obtained by constraint-based modeling method Obtained by only fitting the time course data

Parameter Minimum value Maximum value
Range of variation:
log10(max/min) Minimum value Maximum value

Range of variation:
log10(max/min)

vT1R 0.007482 0.02712 0.55927 0.001309 0.5195 2.5986

vT2R 0.02167 0.1101 0.70593 0.008435 4.874 2.7618

krCave 0.03737 0.04243 0.05515 0.001571 0.04571 1.4638

kLRC 1305 86850 1.8232 0.1088 6.835e+006 7.7981

klid 0.001011 0.9774 2.9853 1.383e-005 0.9988 4.8587

kSmads_Complex 2.28361025 9.69461025 0.628 3.152e-007 0.000203 2.8089

kSmads_Complex
diss 0.09519 0.1298 0.13468 0.07243 0.9985 1.1394

The values of the 1000 parameter sets obtained by each method are available in Table S1 and Table S2
doi:10.1371/journal.pone.0000936.t003..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Figure 5. Sensitivity analysis of the rate constants on nuclear Smad phosphorylation. The original values of the sensitivities are present Table S3
doi:10.1371/journal.pone.0000936.g005
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similar as the control (Figure 6E). Finally, a prolonged signal

response of Smad2 phosphorylation is observed (Figure 6F) with

the combination of a weak inhibition of clathrin dependent

endocytosis and a strong non-clathrin dependent endocytosis (a

high ratio of clathrin to non-clathrin dependent endocytosis rate).

Therefore, the TGF-b signal response is regulated by the balance

between the strength of signal initiation from clathrin dependent

endocytosis and the strength of negative feedback in the venue of

non-clathrin mediated endocytosis.

Recently Vilar et al. proposed a concise computational model of

signal processing in TGF-b superfamily ligand-receptor network

[16]. This work indicates that the key quantity that determines the

qualitative behavior of the pathway is the ratio of the constitutive

to the ligand-induced rate of receptor degradation (CIR,

constitutive-to-induced degradation ratio). Low CIR causes

a transient increase of signal activity that returns to pre-stimulus

levels. On the contrast, high CIR produces a permanently elevated

level of signal activity. The concept of CIR refers to the rates of

two degradations process rather than the simple expression of the

degrading rate constants. This conclusion is affirmed by our

analysis of the balance between clathrin dependent endocytosis

versus non-clathrin mediated endocytosis. Our model shows the

TGF-b signal response is regulated by the ratio of clathrin to non-

clathrin endocytosis rate. On the other hand, the concise model

doesn’t distinguish the receptors in early endosomes and in

caveolar lipid-raft. For ligand-induced degradation of receptors,

the concise model simply regards the processes of the non-clathrin

dependent internalization, recycling and the degradation of the

receptors in caveolar lipid-raft as one-step of ligand induced

receptor degradation at cell surface. Therefore, the control role of

CIR ratio proposed in the concise model is consistent with

regulation role of the clathrin to non-clathrin endocytosis rate ratio

in the comprehensive model of this work.

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0000936.s001 (0.19 MB

XLS)

Table S2
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XLS)

Table S3
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Figure 6. Computational simulations of the time course of nuclear phosphorylated Smad2 by the inhibition of different receptor endocytosis in
1000 parameter sets estimated by constraint-based modeling method. The red lines refer the simulations for the parameter values listed in Table 1.
Blue lines correspond to the 1000 parameter sets with the estimated parameter values listed in the Table S1. (A) Same parameter values as those in
parameter sets with the exception that clathrin dependent internalization rate constant is decreased by a factor of 10: kiEE = 0.033 min21. (B) Same
parameters values as those in parameter sets. (C) Same parameter values as those in parameter sets with the exception that non-clathrin dependent
internalization rate constant is decreased by a factor of 10: kiCave = 0.033 min21. (D) Same parameter values as those in parameter sets with the
exception that kiEE is decreased by a factor of 10 and kiCave is decreased by a factor of 2: kiEE = 0.033 min21, kiCave = 0.165 min21. (E) Same parameter
values as those in parameter sets with the exception that kiEE and kiCave are decreased by a factor of 10: kiEE = 0.033 min21, kiCave = 0.033 min21. (F)
Same parameter values as those in parameter sets with the exception that kiEE is decreased by a factor of 2 and kiCave is decreased by a factor of 10:
kiEE = 0.165 min21, kiCave = 0.033 min21.
doi:10.1371/journal.pone.0000936.g006
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