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This study aimed to compare fixed-field, intensity-modulated radiotherapy (f-IMRT) 
with intensity-modulated arc therapy (IMAT) treatment plans in dosimetry and 
practical application for cervical esophageal carcinoma. For ten cervical esophageal 
carcinoma cases, f-IMRT plan (seven fixed-fields) and two IMAT plans, namely 
RA (coplanar 360° arcs) and RAx (coplanar 360° arcs without sectors from 80° to 
110°, and 250° to 280°), were generated. DVHs were adopted for the statistics of 
above parameters, as well as conformal index (CI), homogeneity index (HI), dose-
volumetric parameters of normal tissues, total accelerator output MUs and total 
treatment time. There were differences between RAx and f-IMRT, as well as RA in 
PTV parameters such as HI, V95% and V110%, but not in CI. RAx reduced lung V5 
from (50.9% ± 9.8% in f-IMRT and (51.4% ± 10.8% in RA to (49.3% ± 10.4% in 
RAx (p < 0.05). However, lung V30, V40, V50 and MLD increased in RAx. There 
was no difference in the mean heart dose in three plans. Total MU was reduced 
from 1174.8 ± 144.6 in f-IMRT to 803.8 ± 122.2 in RA and 736.2 ± 186.9 in RAx 
(p < 0.05). Compared with f-IMRT, IMAT reduced low dose volumes of lung and 
total MU on the basis of meeting clinical requirements. 

PACS numbers: 87.55.D, 87.55.dk, 87.55.ne
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I.	 Introduction

Definitive chemoradiotherapy is the standard of care for cervical esophageal cancer.(1-3) However, 
because of complexity of anatomic structures in head and neck, conventional radiotherapy often 
results in inadequate tumor dosage and/or acute and chronic normal tissue toxicity. In recent 
years, many studies demonstrated the dosimetric advantages of fixed-field, intensity-modulated 
radiotherapy (f-IMRT) compared with conventional or 3D conformal therapy in sparing organs 
at risk (OAR) as well as improving tumor dose coverage.(4-6) But the long treatment time of 
f-IMRT would enhance the influences of uncertain factors during the treatment, such as body 
displacement, organ motion and discomfort of the patients. The clinical applications of intensity-
modulated arc radiotherapy (IMAT), a combination of intensity-modulated radiotherapy and 
arc radiotherapy, has come to reality with the hardware and software developments, such as 
RapidArc with Varian Eclipse v8.6 treatment planning system (Varian Medical Systems, Palo 
Alto, CA). In RapidArc plans, a series of apertures are generated through serial movements of 
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dynamic MLC while the accelerator gantry rotates continuously, and accompanied by variable 
dose rate. The dynamic parameters, including variations of dose rate, gantry rotation speed, leaf 
motion speed and gantry position, can be synthesized jointly to create IMRT dose distributions. 
For dose calculation, the Anisotropic Analytical Algorithm (AAA) was used. It showed that 
the calculation of the dose distribution can be performed with a clinically acceptable accuracy 
using a resolution of 2.5 mm or better.(7) Court et al.(8) concluded that pencil-beam algorithm, 
used in chest tumor dose calculation, would underestimated the lung dose. Therefore, both 
f-IMRT plan and RapidArc plans used AAA for dose calculation.

Previous dosimetric studies indicated that IMAT was superior or equivalent to f-IMRT. 
Palma et al.(9) reported that IMAT was better than f-IMRT for the rectum and femoral head in 
prostate cancer cases. Cozzi et al.(10) concluded that RapidArc plan in cervix uteri cancer had 
improvements in sparing organs at risk such as intestine and bladder with uncompromised target 
coverage, in comparison with f-IMRT. At the same time, there’s a common observation of re-
duction of total MU in these studies. In this study, f-IMRT and RapidArc plans were compared 
for cervical esophageal cancer cases, and the application of the techniques was discussed.

 
II.	 Materials and Methods

A.	 Patients
Ten patients with pathological proven cervical esophageal squamous cell cancer and who re-
ceived radiation therapy in our hospital from November 2009 to February 2010 were enrolled 
in the study. There are three cases with T4N0M0 and seven cases with T4N1M0 according to the 
AJCC staging system (AJCC, 1997). CT simulation (Philips Brilliance 16) was conducted and 
the patient underwent immobilization using thermoplastic facemask at supine position. The 
scan was from C2 to L1 with 3 mm thickness.
 
B.	 Radiation therapy plans
For each case, bilateral supraclavicular lymphatic drainage area, primary tumor and esophageal/
paratracheal lymph nodes were segmented as gross tumor volume (GTV) and clinical tumor 
volume (CTV) by radiologists and radiation oncologists jointly. Then planning target volume 
(PTV) was generated from GTV and CTV plus margins (GTV: 3–5 cm superior and inferior, 
1.5–2 cm lateral; and CTV: 0.5–1 cm in all directions), based on clinical experiences and previ-
ous studies,(11-13) as well as the location of tumor. The volume of PTV on average was 297.9 ± 
104.2 cc. The Varian Eclipse v8.6 treatment planning system (Varian Medical Systems, Palo 
Alto, CA) and the Varian Trilogy accelerator were used. For each case, one f-IMRT plan and 
two RapidArc plans (i.e., RA and RAx) were generated. Six MV X-ray and AAA were used for 
dose calculation. Initiation total prescription dose of all the plans was 60 Gy (2 Gy/fraction, 30f). 
Plan 100% dose level was normalized at PTV mean dose. The planning optimization objectives 
were set as follows: 98% of the volume of PTV reached 95% of the prescription dose with 
10% of the volume of PTV not exceeding 110% the prescription dose, maximum spinal cord 
dose no more than 45 Gy, total lung V5 < 45%, V10 < 35%, and V20 < 20%. It was required that 
there was no cold spot in PTV and no hot spot in esophagus wall. It should be noted that this 
study was only a dosimetric comparison. Therefore, despite the fact that the cases had received 
chemotherapy, all plans were generated following the objectives. During the optimization, the 
dose constraints were adjusted down as low as possible, due to the diversity of PTV or total 
lung volume – though some cases could not reach the objectives. 

B.1  f-IMRT plan
Step-and-shoot technique was adopted, with intensity level 20, dose rate 300 MU/min, and 
seven coplanar fields set at 0°, 51°, 103°, 154°, 206°, 257° and 309°.
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B.2  RA
Two coplanar full arcs were set counter-clockwise 179° to 181° with collimator angle 30°, and 
clockwise 181° to 179° with collimator angle 330°. The highest dose rate was 600 MU/min, 
and maximum gantry rotation velocity 4.8 deg/min. In the plan, a full rotation field (or arc) 
consists of 177 apertures (one aperture per 2 deg), each of which has a different dose rate in 
order to deliver different MU and rotates at maximum speed. In the case that, at some angle, 
one aperture could not meet the dose requirement with the maximum dose rate, the gantry 
rotation velocity will slow down.

B.3  RAx
Two avoidance sectors (from 80° to 110°, and 250° to 280°) were set based on RA plan. When 
gantry rotated in the avoidance sectors, accelerator beamed off with no X-ray output.

C. 	 Plan evaluation
The cumulative DVHs were generated for evaluation and comparison. For PTV, the values of 
D98% and D2% (dose received by the 98% and 2% of the PTV volume) were defined as metrics 
for minimum and maximum doses. Parameters below were recorded and compared:

a)	 PTV: D98%, D2%, V95%, V110%, HI (heterogeneity index) and CI (conformal index)
b)	total lung: V5 (the volume receiving 5 Gy), V10, V20, V30, V40, V50 and mean lung  

dose (MLD)
c)	 B-P: V3, V5 and V10. B-P was defined as the patient’s volume covered by the CT scan minus 

the PTV that represented healthy tissues.
d) 	mean received dose for heart
e) 	total MU and total treatment time, which was defined as the time from the beginning of 

beam on to the end of total MU delivery (In this study, all 30 plans were delivered actually 
without patients on board in order to count the real treatment time.)

The paired, two-tails Student’s t-test was applied by using SPSS 13.0 software. HI = 
(D2-D98) / prescription dose * 100%;(14) and CI = Vt,ref / Vt * Vt,ref / Vref. (Note: Vt = target 
volume, Vt,ref = target volume wrapped by reference isodose, Vref = all volume wrapped by 
reference isodose(15)). The value of CI is between 0 and 1, and the closer the value is to 1 it 
presents a better conformity. 

 
III.	 Results 

A.	 PTV coverage
As summarized in Table 1, statistical difference of HI, D2% and V110% were observed as com-
parison of RAx with f-IMRT and RA (p < 0.05), which meant that the high-dose volume of 
RAx enlarged. HI in RAx increased from 13.19 ± 1.40 in f-IMRT and from 13.38 ± 0.98 in RA 
to 14.36 ± 1.28; D2% increased from 68.18 ± 0.96 Gy in f-IMRT and 68.09 ± 0.84 Gy in RA 
to 68.61 ± 0.87 Gy; and V110% increased from 11.0% ± 6.8% in f-IMRT and 11.6% ± 8.6% in 
RA to 14.3% ± 6.8%. Although the V95% and D98% of f-IMRT was better than that of RAx and 
RA (p < 0.05), there was no statistical differences in the CI. There was no statistical difference 
in V95% and D98% for RAx and RA. Of all the ten cases, tumor coverage in RapidArc plans 
reached the equivalent clinical requirements in f-IMRT, though the DVH data showed statisti-
cal differences in some parameters. In RapidArc, direct aperture optimization (DAO)(16) was 
adopted in Eclipse, and due to mechanical limits of MLC motion, it is hard to realize manual 
adjustment of MLC in each aperture. Therefore, it is more difficult to control the high-dose 
spots in RapidArc plans compared with f-IMRT.
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Table 1.  PTV coverage analysis from the DVHs.

	Parameters	 IMRT	 RA	 RAx	 P

	 CI	 0.80±0.05	 0.80±0.07	 0.77±0.08	 > 0.05
	 HI	 13.19±1.40	 13.38±0.98	 14.36±1.28	 b,c
	 D2% (Gy)	 68.18±0.96	 68.09±0.84.	 68.61±0.87	 b,c
	 D98% (Gy)	 60.27±0.48	 60.06±0.47	 60.00±0.52	 a,b
	 V95% (%)	 98.6±0.7	 98.3±0.9	 98.1±0.9	 a,b
	 V110% (%)	 11.0±6.8	 11.6±8.6	 14.3±6.8	 b,c

Statistically significant differences (p < 0.05) of paired t-test analysis for three plans; a: IMRT vs. RA, b: IMRT vs. 
RAx, c: RA vs. RAx.

B.	 Total lung dose
As summarized in Table 2, lung V5 and V10 in RAx plans were lower than that in f-IMRT and 
RA plans (p < 0.05). V5 reduced from 50.9% ± 9.8% in f-IMRT and 51.4% ± 10.8% in RA to 
49.3% ± 10.4%; and V10 reduced from 39.6% ± 7.5% in f-IMRT and 38.5% ± 7.1% in RA to 
36.2% ± 8.8%. Lung V20 in RAx was lower than that of f-IMRT and RA (p < 0.05), while there 
was no statistical difference between f-IMRT and RA. Lung V30, V40, V50 and MLD in RAx 
were all higher than f-IMRT and RA (p < 0.05). 

Table 2.  Lung dose calculated from the DVHs.

	Parameters	 IMRT	 RA	 RAx	 P

	 V5 Gy (%)	 50.9±9.8	 51.4±10.8	 49.3±10.4	 b,c
	V10 Gy (%)	 39.6±7.5	 38.5±7.1	 36.2±8.8	 b
	V20 Gy (%)	 21.6±4.1	 20.7±3.2	 21.8±4.1	 c
	V30 Gy (%)	 12.5±3.3	 13.0±2.8	 13.9±2.8	 b,c
	V40 Gy (%)	 7.9±2.7	 8.1±2.7	 8.9±2.6	 b,c
	V50 Gy (%)	 3.8±1.8	 4.3±2.0	 4.7±2.3	 b,c
	MLD (Gy)	 12.03±1.85	 12.02±1.76	 12.16±1.86	 b,c

Statistically significant differences (p < 0.05) of paired t-test analysis for three plans; a: IMRT vs. RA; b: IMRT vs. 
RAx; c: RA vs. RAx.

C.	 B-P
As summarized in Table 3, RA could not achieve the result of reducing low-dose volume (V3 
and V5) of healthy tissues, but RAx performed superior to the other two planning techniques 
in this aspect. V3 of B-P reduced form 86.3% ± 19.5% in f-IMRT and 90.4% ± 19.7% in RA 
to 80.0% ± 15.5%; V5 reduced from 77.9% ± 18.4% in f-IMRT and 81.9% ± 19.5% in RA to 
70.6% ± 16.2%; V10 reduced from 62.0% ± 15.8% in f-IMRT and 59.6% ± 16.0% in RA to 
54.8% ± 14.1%.

Average cumulative DVH for PTV, OARs and B-P were built from the individual DVHs 
(Figs. 1-3). These histograms were obtained by averaging the corresponding volumes.

Table 3.  Dose to healthy tissues (B-P) calculated from the DVHs.

	Parameters	 IMRT	 RA	 RAx	 P

	 V3 Gy (%)	 86.3±19.5	 90.4±19.7	 80.0±15.5	 a,b,c
	 V5 Gy (%)	 77.9±18.4	 81.9±19.5	 70.6±16.2	 a,b,c
	V10 Gy (%)	 62.0±15.8	 59.6±16.0	 54.8±14.1	 b,c

Statistically significant differences (p < 0.05) of paired t-test analysis for three plans; a: IMRT vs. RA; b: IMRT vs. 
RAx; c: RA vs. RAx.
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Fig. 1.  Average DVH of PTV for IMRT, RA and RAx.

Fig. 2.  Average DVH of total lung for IMRT, RA and RAx.

Fig. 3.  Average DVH of healthy tissues for IMRT, RA and RAx.
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D.	 Heart dose
In this study, most heart volumes were not involved in the radiation area. The results indicated 
that there were no differences in mean heart doses in three plans. 

E.	 Total MU and treatment time
As displayed in Table 4, compared with f-IMRT (1174.8 ± 144.6), the total MU was reduced 
by 31.6% to 803.8 ± 122.2 in RA, and 37.3% to 736.2 ± 186.9 in RAx. Because of X-ray 
transmission through MLC, fewer MUs were needed, resulting in fewer low doses scattered in 
the radiation area. Therefore, IMAT technique is superior to f-IMRT in controlling low-dose 
volume, theoretically. The treatment time for each case in RA was 2.66 min, and was almost 
the same in RAx, while in f-IMRT, it was 11.39 ± 1.03 min, on average.

As Fig. 4 shows, three plans for one representative case were compared qualitatively in 
isodose distribution at axial and coronal views.

Table 4.  Total MU and treatment time. 

	
Cases

	 Total MU	 Time (min)
		  IMRT	 RA	 RAx	 IMRT	 RAa	 RAx

	 1	 1053	 719	 650	 10.2 	 2.66	 2.66 
	 2	 1081	 956	 764	 10.5 	 2.66	 2.66 
	 3	 1113	 893	 1171	 11.1 	 2.66	 3.3b

	 4	 1202	 691	 792	 12.0 	 2.66	 2.66 
	 5	 1247	 631	 773	 12.4 	 2.66	 2.66 
	 6	 1057	 934	 831	 10.1 	 2.66	 2.66 
	 7	 1491	 936	 601	 13.2 	 2.66	 2.66 
	 8	 1288	 697	 520	 12.5 	 2.66	 2.66 
	 9	 1010	 730	 540	 9.9 	 2.66	 2.66 
	 10	 1206	 851	 720	 12.0 	 2.66	 2.66 
	Average	 1174.8	 803.8	 736.2	 11.39	 2.66	 2.66

a all fields rotated at the maximum speed; bfields rotated at a variable speed with the maximum dose rate.

 

Fig. 4.  Isodose distributions on axial and coronal views of one case: a) IMRT; b) RA; c) RAx.
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IV.	D ISCUSSION

Since Brahme et al.(17) put forward the IMRT technique, it has been widely applied in clinical 
treatment for many kinds of solid tumors. IMRT can achieve better tumor dose coverage, as 
well as sparing OAR and normal tissues. Generally, f-IMRT plan adopted five to nine fixed 
fields, and it will cause relatively larger low-dose volume on OAR and normal tissues which 
may lead to side effects, such as radiation pneumonitis,(18) as well as inducing second primary 
cancer.(19) The relative long treatment time of f-IMRT will also increase patients’ discomfort. 
Although the effect of prolonging fraction time has not been clearly acknowledged in clinical 
radiotherapy, careful consideration should be given to the clinical treatment. Mu et al.(20) con-
cluded that the effects of prolonging fraction time were underestimated by biological models. 
The prolongation of the fraction time will spare tissues with a fast DNA healing, but there is 
also a risk for sparing tumors. It should be considered when IMRT is implemented in clinical 
treatment. Moiseenko et al.(21) studied the IMRT time effect in three cell lines: Chinese ham-
ster V79 fibroblasts, human cervical carcinoma SiHa and colon adenocarcinoma WiDr. In all 
cases, the cell survival results reached a consistent conclusion. Although Keall et al.(22) and 
Paganetti(23) obtained different results, they also suggested it ought to reduce the total treatment 
time in a fraction. Compared with f-IMRT, RapidArc displayed a decrease of total treatment time 
by about 80%. The treatment was completed within 2.66–3.3 min without considering couch 
movement and other factors, which leads to less discomfort and better compliance from the 
patient. It could also reduce influences of body position movement, organ motion and volume 
change, and other uncertain factors on therapeutic effects. These advantages benefit hundreds 
of patients in our center who no longer need to wait for therapy, and daily QA takes less time. 
Furthermore, the relatively shorter treatment time could ensure the effect of rectification of 
setup error through on-board imaging system. Shorter treatment time, higher dose rate (Varian 
6MV-X-SRS mode, 1000 MU/min) and supports from image-guide technique would make 
RapidArc more suitable for conducting hypofractionated accurate radiotherapy. Total MU of 
RapidArc was 30%–40% less than f-IMRT. Besides, due to DAO algorithm during optimiza-
tion, the total MLC motion scope was smaller than f-IMRT, which could, to a certain extent, 
reduce MLC engines’ abrasions and maintenance cost of the accelerator. For a radiotherapy 
plan, while the target shape is complicated and dose constraints on OAR are strict, the number 
of aperture and MU increase correspondingly to meet the requirements, with less of an increase 
in RapidArc than in f-IMRT. But if the total MU of RapidArc is close to f-IMRT, there will 
be no advantage in dosimetry. The total MU in RapidArc plan of one case in this study was, 
respectively, 88.4% (RA) and 73.9% (RAx) of that in f-IMRT, with most parameters of total 
lung and B-P higher than f-IMRT.

For RapidArc, because the gantry is always in rotation during the treatment, it cannot form 
a planar fluence. However, the optimization variables are the leaves position of MLC in each 
incidence direction, which is called aperture. Considering the degree of freedom in optimization 
selection, it is easy to obtain a better result for f-IMRT by optimizing beamlets of each fixed 
field, rather than that for IMAT by optimizing angles and apertures in a rotation cycle. In Eclipse 
system, a fluence map is first obtained after optimization, and then converted into MLC aper-
tures. Because the transmissions of MLC are only then taken into consideration, the low-dose 
volume cannot be controlled under anticipation. DAO was adopted as optimization algorithm in 
RapidArc, so the final results come closer to optimization anticipation. Wagner et al.(24) found 
that f-IMRT was better than RapidArc in both PTV coverage and OAR sparing for glioma. If 
PTV was large enough, RapidArc could be inferior to f-IMRT on PTV coverage and lead to a 
larger low-dose volume. The results in our study supported the conclusion. Alternatively, the 
RAx plans had B-P volume reduced. According to the studies from Liu et al.(18) and Nutting 
et al.,(25) f-IMRT could reduce lung V20, V30 and MLD in lung and esophageal cancer, but an 
increase of lung V5 and V10 were also observed. Recent Studies(18,26-29) indicated that there 
was a certain relationship between the incidence/degree of radiation pneumonia and low-dose 
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irradiation (< 5 Gy). Gopal et al.(28) pointed out that a small dose of radiation to a large volume 
of lung could be much worse than a large dose to a small volume, in functional lung damage. 
Because of the high utilization rate of X-ray and less apertures and MU, IMAT can theoretically 
reduce the low-dose volume in radiation area. This was supported by the data of healthy tissues 
(B-P) in this study. With less total MUs, it could produce less X-ray transmission of MLC. The 
RAx was designed primarily to reduce the volume of organs involved in radiation area and 
achieve similar treatment effect with RA and f-IMRT. Although the lung volume > 20 Gy and 
MLD increased slightly, it was still within the clinical tolerance.(27,30) On the other hand, the 
advantage of RAx was reducing low-dose volume (especially for B-P). The value of V5 reduced 
on average 1.6% from f-IMRT and 2.1% from RA, as shown in Table 2 (p < 0.05). Due to the 
absence of an optimal threshold of V5, it’s considered to be better with a lower value, with the 
value of V20 and MLD in a safer clinical tolerance. And the clinical significance of this difference 
need to be further investigated. In this study, the lung involved was the upper part in all cases. 
Although Yorke et al.(29) had concluded in their study that there was no correlation between dose 
and pneumonitis, the value of V5 here was not to verify the conclusion, but a parameter, as the 
same as that in B-P, to prove the reduction of low-dose volume involved. As RAx was based 
on RA, it could reduce the low-dose volume, with the equivalent PTV coverage. Furthermore, 
RapidArc was not inferior to f-IMRT on dosimetric metrics, summarized in Table 2. For these 
cases, the radiation targets were located in mediastinum centrally and symmetrically. Therefore, 
there’s no significant difference between right and left lung doses.

These results differ from conventional IMRT in Eclipse, which optimizes intensity map, while 
the DAO algorithm optimizes the shapes and weights of apertures. The additional number of 
optimization variables including mechanical constraints make the DAO process complicated 
and relatively time-consuming. After Otto(31) and Luan et al.(32) had succeeded in conducting 
improvement on DAO algorithm to achieve higher efficiency, and with upgrade of hardware, the 
optimizing time had been greatly reduced. In this study, the total optimization time of RapidArc 
plans were three to five times as that of f-IMRT. Furthermore, generating a good RapidArc plan 
depended to a great extent on experience. In a RapidArc plan, the number of fields, starting and 
ending rotation angles, collimator angle, couch angle, jaw positions, optimization constraints, 
and control of optimization process have to be further studied and summarized by physicists. 
Vanetti E et al.(33) found that RapidArc plan could not meet the dosimetric or clinical require-
ment for head and neck tumor using only one arc. However, the brainstem and parotids could 
be well protected in the RapidArc plans using two arcs. Our initial study demonstrated that one 
arc (one field rotated fully) was not sufficient to achieve the dosimetric goals compared to two 
arcs for cervical esophageal cancer. The key differences are shown as Table 5. Therefore, two 
RapidArc arcs (RA) and an improved method based on it (RAx) were adopted in this study. 
However, Wang et al.(34) had recently developed a new algorithm (AMRT) using one arc and 
achieved ideal dose distribution. It is assumed that, using the algorithm, the treatment time 
would be reduced, more or less, with an ideal tumor coverage and dose distribution.
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Table 5.  Comparison of RA-1 and RA-2 from DVH in the previous study.

	Parameters	 RA-1a	 RA-2

	 PTV		
	 CI	 0.80±0.05	 0.80±0.07
	 HI (%)	 16.2±1.4	 13.4±1.0
	 V110% (%)	 20.2±8.3	 11.6±8.6

	 Total-lung		
	 V5 Gy (%)	 51.5±10.7	 51.4±10.8
	V10 Gy [%]	 41.8±9.3	 38.5±7.1
	V20 Gy (%)	 24.7±4.8	 20.7±3.2
	V30 Gy (%)	 14.5±3.5	 13.0±2.8
	MLD (Gy)	 12.83±2.03	 12.02±1.76

	 B-P		
	 V5 Gy (%)	 83.2±19.7	 81.9±19.5
	V10 Gy (%)	 65.0±17.1	 59.6±16.0

	 Total MU	 709.7±101.8	 803.8±122.2
	 Time 	 1.9±0.3b	 2.66

a RA-1 were set one arc, RA-2 were set two arcs; bRA-1 rotated at a variable speed with the maximum dose rate.

V.	C onclusions

RapidArc could be delivered to achieve the similar tumor coverage as f-IMRT and effectively 
sparing OARs. The improved method (RAx) could reduce low-dose volume of the tissues to a 
certain extent. It could be served as an alternative therapeutic method for cervical esophageal 
cancer. To summarize, the RapidArc technology exhibited a remarkable ability in delivering 
with much shorter time and less MU.
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