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Heart function and thoracic aorta 
gene expression profiling studies 
of ginseng combined with different 
herbal medicines in eNOS knockout 
mice
Yuchen Qian1, Pan Li1, Bin Lv1, Xiaoqing Jiang1, Ting Wang1, Han Zhang1, Xiaoying Wang1,2 & 
Xiumei Gao1

Ginseng, a popular herbal remedy, is often used in combination with other drugs to achieve the 
maximum therapeutic response. Shenfu (SFI) and Shenmai injection (SMI) have been widely used to 
treat cardiovascular disease in China. Our study explored the cardiovascular protection of SFI and SMI 
in eNOS knockout mice to investigate the differences and similarities of the two ginseng-combinations. 
Transthoracic echocardiography was performed to evaluate the left ventricular structure and function 
at baseline and 3, 7, and 14 days after drug administration. Agilent Gene Expression microarrays were 
used to demonstrate the gene expression profiling of the thoracic aorta. Ingenuity Pathway Analysis 
was performed to evaluate the mechanism improved by SFI and SMI in eNOS knockout mice. Both SFI 
and SMI could modulate Gadd45 Signaling from TOP15 canonical pathways. Moreover, SFI showed a 
better effect in the early treatment stage and improved myocardial function via GATA4, GATA6 and 
COL3A1. Meanwhile, SMI exerted better protective effects at the chronic stage, which may be related 
to endothelium protection by VEGFA and ACE. The advantage of multi-target by drug combination in 
progression of complex diseases should be noticed. The appropriate adjustment of drug combination 
could lead to a better accurate medical care in clinic.

Ginseng (Panax ginseng C.A. Meyer), which belongs to the genus Panax of the family Araliaceae, was first 
recorded in the oldest Chinese medical material Shen Nong Ben Cao Jing dating back to the 2nd century AD1. 
Ginseng has been used for health-related purposes for at least 2,000 years and has been among the top 10 selling 
herbal supplements in the United States over the past decade2. Ginseng is used to improve general well-being 
and relieve various health problems, such as cardiovascular disorders, respiratory disorders, and depression. 
Today, ginseng is widely used in Asia to treat cardiovascular diseases (CVD)3. Studies have shown that ginseng 
can inhibit cardiomyocyte hypertrophy and heart failure (HF)4 and prevent cardiac dysfunction5. Experimental 
studies have also revealed that ginseng can improve ischemic and reperfusion injury to the heart in a variety 
of animal models6. However, many complex physiological processes, such as inflammation7, oxidative stress8, 
and apoptosis are involved in CVD9. Medical science has long realized that the pathogenesis and progression of 
diseases are too complex for single drug treatment10. Therefore, herbal combination should be used to enhance 
curative effects, reduce toxicity, expand therapeutic range, adapt to complex disease, and prevent drug poison-
ing. Through a flexible combination, it can adjust the dynamic balance of the body in many ways, moreover, 
the advantages of adapting to the diversity of pathological changes are very prominent11,12. In China, ginseng is 
often used in combination with other herbal medicines to achieve maximum therapeutic response. In Chinese 
Pharmacopoeia (2015 edition), two ginseng-based injections are used to treat CVD; one is Shenfu Injection (SFI), 
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which is ginseng with Radix Aconiti lateralis Preparata, and the other is Shenmai Injection (SMI), ginseng with 
Ophiopogon japonicus13,14.

SFI originates from Shenfu decoction, a well-known traditional herbal prescription recorded in Sheng Ji 
Zong Lu the 1100 s. SFI injection was officially approved in 1987 by the China Food and Drug Administration 
(CFDA)15. SFI is used to treat shock, congestive heart-failure (CHF) and arrhythmia and has been widely 
used clinically with nearly 600 million RMB in annual sales. SFI mainly contains ginsenosides and aconites16. 
Pharmacology research indicates that SFI can strengthen the heart, improve heart function13, and protect against 
post-resuscitation lung injury17. SMI is derived from a traditional decoction named Shengmai San that was pre-
scribed in 1100s15. Identification of ingredients from SMI is in Supplementary File 1. MI was approved by the 
CFDA in 1995 and is used for the treatment of coronary heart disease18, chronic pulmonary heart disease19 and 
viral myocarditis20.

Our previous meta-analysis found that both SFI and SMI are effective in treating coronary heart disease and 
HF21. According to the system review, it is more inclined to use SFI in the treatment of acute HF in clinic. One the 
other hand, SMI is better in chronic stable angina patents. However, the complicated CVD leads to a promiscuous 
clinic application the two medicines. To date, there has been no strict standard distinction between SFI and SMI 
in clinical applications. No experimental research compares the different mechanisms of action between ginseng 
combined with Radix Aconiti lateralis Preparata and ginseng combined with Ophiopogon japonicus to under-
stand the different actions of SFI and SMI in clinic.

By the reason of SFI showed significantly better effect than SMI in increasing myocardium function by the 
reason of ginseng combined with Aconiti lateralis, we major focused on the other side of CVD, endothelium. 
Keeping the artery endothelium and its nitric oxide (NO) synthesis intactness is crucial to maintain a normal 
vascular function. NO is known as a potent vascular smooth muscle relaxant and a regulator of cardiovascular 
homeostasis22. Endogenous endothelial NO synthase (eNOS) is a main source of synthetic NO. Previous study 
have been confirmed the eNOS played a significant role in vascular tone regulation. The current male eNOS 
knockout (KO) mice would be cardiac dysfunction and even get heart failure associated with age23. Meanwhile, 
researchers have generated mice heterozygous (+/−) or homozygous (−/−) for disruption of the eNOS gene24, 
which have been maturing applications in public research.

The main purpose of this research is to investigate the difference of the two ginseng combinations on vascular 
function by use of eNOS KO mice and try to get some information to achieve the maximum therapeutic response 
in clinic in the future. We firstly used transthoracic echocardiography (TTE) assay as a basic evaluation approach 
in heart and blood flow function to find the different interventions and also the difference of eNOS (−/−) and 
wild-type mice. Then we focused on vascular endothelial function improvement and processed the gene expres-
sion profile on thoracic aorta by Gene Chip. We hope to investigate the important differences of these commonly 
used ginseng drug combination in CVD and provide new knowledge regarding the compatibility of traditional 
herbal medicine as a basis for clinical medication.

Results
Protection against heart dysfunction with SFI and SMI.  As shown in Fig. 1, the results of the TTE 
assay demonstrated a time-dependent progression of heart dysfunction by gradually decreased left ventricular 
ejection fraction (LVEF), left ventricular fractional shortening (LVFS), fractional area change (FAC), and blood 
flow in the left ventricular outflow tract (LVOT) of eNOS KO mice compared to C57BL/6 J (C57). At t = 0, 3, 7 
and 14d time points, LVEF presented a slight time-dependent decline in eNOS KO mice. However, no significant 
change was found between the different time points in KO mice. When the mice were treated with Valsartan 
(VAL), SFI and SMI, the decreased cardiac function was improved. The LVEF, FAC and LVOT of SFI reached their 
maximum values on day 7, while SMI achieved its maximum value on day 14. In addition, the LVFS of SFI was 
larger on day 3, while SMI was significantly larger on day 7. These findings may indicate that SFI exerted a better 
protective effect, especially in the early stage, while SMI was better in the chronic stage.

The effect of SFI and SMI on blood pressure.  Blood pressure was measured by the tail-cuff method at 
0, 3, 7 and 14 days after drug administration. However, SFI and SMI could not decrease blood pressure in eNOS 
KO mice. Figure 2 shows the blood pressure values over 14 days. Compared to C57, systolic blood pressure 
(SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) were significantly increased in the eNOS 
KO group (P < 0.05). SFI, SMI and VAL could not detect decreases of SBP, MBP and DBP in eNOS KO mice 
(P > 0.05).

Gene Expression Profiling of SFI and SMI in eNOS KO mice.  Screening results identified significantly 
expressed genes among the SFI, SMI, eNOS KO and VAL groups, as shown in Fig. 3A. The results show a total 
of 918 differentially expressed genes in the eNOS KO group. A total of 862 differentially expressed genes were 
detected in the SFI group with 628 up-regulated genes and 234 down-regulated genes. A total of 1,096 genes were 
differentially expressed in the SMI group, with 787 up-regulated genes and 309 down-regulated genes. These 
data indicate that SMI may regulate more genes than SFI in eNOS KO mice. The distribution of this differential 
expression in the eNOS KO, SFI and SMI group is shown in the Venn Diagrams (Fig. 3B and C). A total of 132 and 
137 SFI and SMI up-regulated genes overlapped with down-regulated genes in eNOS KO mice, respectively, while 
43 and 53 down-regulated genes overlapped with up-regulated genes in eNOS KO mice, respectively. Microarray 
data have been submitted as Supplementary File 3.

Gene expression bioinformatics analysis of SFI, SMI on eNOS KO mice.  The Gene ID and the dif-
ferences in multiple gene expressions were imported into the Ingenuity Pathway Analysis (IPA) analysis system. 
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Diseases and biological functions, canonical pathways and regulator effect networks related to differential genes 
were analysed.

The canonical pathways of SFI and SMI are shown in Fig. 4. The figures only show the top 15 pathways 
according to P-value. The significant pathways included GADD45 signaling, NF-κB signaling, protein kinase 
A signaling and cAMP-mediated signaling. Of all the main pathways, SFI also could regulate PPAR sig-
naling (TOP 5, −log(p-value) = 1.53E + 00), cardiomyocyte differentiation via BMP receptors (TOP 6,−
log(p-value) = 1.38E + 00) and VDR/RXR activation (TOP 12, −log(p-value) = 1.19E + 00). HIF1α Signaling 
(TOP 5, −log(p-value) = 2.46E + 00), ATM signaling (TOP6, −log(p-value) = 2.41E + 00), G-Protein, 
coupled receptor signaling (TOP 6, −log(p-value) = 1.88E + 00) and FGF signaling pathway (TOP 13, 

Figure 1.  Cardiac protective effects of SFI and SMI on eNOS KO mice with echocardiography performed on 
days 0, 3, 7, and 14. (A) LVEF assay. (B) FAC assay. (C) LVOT blood flow. (D) LVFS assay. (E) Representative 
M-mode echocardiograms of C57, eNOS KO and treated groups of SFI, SMI and VAL, showing wall motion. 
The data are expressed as the mean ± SEM; n = 6 in each group; *P < 0.05, **P < 0.01 compared with C57; 
#P < 0.05, ##P < 0.01 compared with eNOS KO.
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−log(p-value) = 1.66E + 00) were the main pathways that regulated by SMI. The whole pathway list was showed 
in Supplementary File 1.

A comparison of diseases and disorders with SFI and SMI are shown in Fig. 5. Both medicines had an impact 
on pathways associated with CVD and organismal injury and abnormalities. Meanwhile, SFI also influenced 
developmental disorder, reproductive system disease and hereditary disorder. SMI worked up to a point with 
cancer, gastrointestinal disease and immunological disease. In CVD, the IPA demonstrated that for both the 
SFI and SMI groups more than 65 percent of the diseases and functions were congenital heart anomaly, cardiac 
hypertrophy, cardiac arrhythmia and HF. Using with IPA analysis, we obtained molecular information of the four 
diseases, as shown in Fig. 6. Based on this data, GATA4 (GATA binding protein 4), GATA6 (GATA binding pro-
tein 6), MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) and COL3A1 
(collagen, type III, alpha 1) may play key roles in SFI-mediated CVD improvement. In contrast, VEGFA (vascular 
endothelial growth factor A), CAV1 (caveolin 1, caveolae protein), MMP2 (matrix metallopeptidase 2) and ACE 
(angiotensin I converting enzyme) were associated with SMI. In addition, IL-18 (interleukin 18), PDE5A (phos-
phodiesterase 5 A, cGMP-specific), and PBX1 (pre-B-cell leukemia homeobox 1) were common among both 
treatments. The whole diseases list was showed in Supplementary File 1.

To predict the participation of other interacting molecules in the pathways, we performed IPA gene networks. 
Figure 6 shows the most remarkable networks related to CVD and SFI and SMI treatment. A few genes previously 
shown to be important were found in these top networks, such as GATA6, MYCN, COL3A1 and PI3K (complex) 
in SFI, and VEGFA, MMP2 and ACE in SMI.

Figure 2.  Effects of SFI and SMI on blood pressure in eNOS KO mice. (A) SBP of eNOS KO mice among the 
groups. (B) MBP of eNOS KO mice among the groups. (C) DBP of eNOS KO mice among the groups. The data 
are expressed as the mean ± SEM; n = 6 in each group; *P < 0.05 compared with C57.

Figure 3.  The number of differentially expressed genes. (A) The total differentially expressed upregulated and 
downregulated genes in C57, eNOS KO, SFI, SMI and VAL. (B) Venn diagram of overlap between upregulated 
genes in the SFI and SMI groups and downregulated genes in the eNOS KO group. (C) Venn diagram of overlap 
between downregulated genes in the SFI and SMI groups and upregulated genes in eNOS KO group.
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Validation of Microarray Analysis.  In Fig. 7, validation of the microarray results was performed using 
quantitative real-time polymerase chain reaction (qPCR) on a subset of the genes identified. The Fbxo5 (F-box 
protein 5) and Fpr1 (formyl peptide receptor 1) genes were upregulated significantly in the eNOS KO group 
compared to the C57 group, and SFI, SMI and VAL could downregulate these genes. In addition, Gadd45g (the 
growth arrest and DNA-damage-inducible, gamma) and Siglech (sialic acid binding Ig-like lectin H) genes were 
downregulated in eNOS KO mice, and the tendencies were reversed by SFI, SMI and VAL. Generally, there was 
good correlation in directionality between the two techniques.

Discussion
In this study we investigated the similarities and differences between SFI and SMI on eNOS KO mice to under-
stand the effects of combining ginseng with other herbal medicines. TTE showed that both SMI and SFI could 
improve the decreased cardiac function of eNOS KO mice by increasing LVEF, LVFS, FAC and LVOT. However, 
we found that SFI (ginseng combined with aconiti lateralis) might be more efficient in the early stage (3–7d) of 
CVD, whereas SMI (ginseng combined with ophiopogonis) was more impactful in the chronic stage (7–14d). The 
result is just coincided with our previous systematic review and meta-analysis21. Several studies have reported that 
there are some differences about SFI and SMI in the treatment of CVD. For example, SFI could improve cardiac 
function and myocardial oxidative stress by increasing left ventricular systolic pressure (LVSP), left ventricular 
end diastolic pressure (LVEDP) and superoxide dismutase (SOD) after six hours of administration25. In addition, 
SFI had a positive inotropic effect on myocardial cells and it combined nitroglycerine and furosemide with acute 
left ventricular failures was significant after 30 minutes of treatment. Moreover, it was previously reported that 
SFI could restore the ability of Na+-K+-ATPase and Ca2+-ATPase enzyme activities at 12-min on myocardial 
metabolism during ventricular fibrillation (VF)26,27. It also had a faster therapeutic effect. Combined use of SFI 
and early goal-directed therapy (EGDT) on septic shock patients, heart rate decreased at 24, 48, and 72 h; while 
gamma-glutamyl transpeptidase and glutamate oxaloacetate transaminase levels increased at one day28. On the 
other hand, SMI could significantly decrease the level of TNF-α and IL-6 at 24 hours in post-cardiac arrest syn-
drome29. A large number of clinical trials have shown that SMI could benefit the patients with chronic cor pulmo-
nale HF14. At the same time, patients with coronary heart disease could get an increase the number of endothelial 
progenitors cells (EPCs) after SMI treatment by 7 to 14 days30. After 2 weeks of SMI treatment, cardiac function, 
such as stroke volume, cardiac index, was significantly improved31. All these results indicated that SFI provides 
a better effect in the early stage while SMI provides a better effect in the chronic stage of CVD. The different effi-
cacy of SFI and SMI might related to the different regulated genes on vascular function according to the current 
research.

Previous reports have reported that ginsenoside’s cardiac protection effect was partially via promoting releas-
ing NO from endothelium32. Aconiti lateralis could inhibit cardiomyocyte apoptosis and myocardial damage and 

Figure 4.  SFI and SMI canonical pathways obtained by IPA. (A) Top 15 canonical pathways in the SFI group 
according to IPA. (B) Top 15 canonical pathways in the SMI group according to IPA. Blue bars indicate −log(P-
value), while yellow points denote the ratio of genes.
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also modulate heart rate, rhythm and hemodynamics33,34. Ophiopogonis can alleviate ischemia/reperfusion injury 
in isolated myocardium35. A clinical trail showed that SFI could reduce the myocardial injury36. Its effects on car-
diac performance and coronary circulation are mediated by ginseng and aconiti lateralis via NO release, increased 

Figure 5.  Summary of the diseases, disorders and the significant molecules of the four diseases identified by 
IPA. (A) The list of top 5 diseases and disorders with their respective scores obtained from IPA in the SFI group. 
(B) The list of top 5 diseases and disorders with their respective scores obtained from IPA in the SMI group. (C) 
a: The significant congenital heart molecular profile identified by IPA. b: The significant cardiac hypertrophy 
molecular profile identified by IPA. c: The significant cardiac arrhythmia molecular profile identified by IPA. d: 
The significant HF molecular prolife identified by IPA. (The regulated SFI molecules are shown in green, while 
those associated with SMI are shown in red; common molecules are shown in blue.)

Figure 6.  The most significant molecular networks identified by IPA. (A) The most significant SFI molecular 
network as identified by IPA. (B) The most significant SMI molecular networks as identified by IPA.
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coronary flow, left ventricular developed pressure (LVDP) and the rate-pressure product (RPP)37. Meanwhile, 
SFI had a reduced inflammatory reaction in patients with acute myocardial infarction complicated by cardiac 
shock38. At the same time, SMI is used for treatment of chronic HF39,40. Moreover, it can alleviate the lung injury 
after cardiac pulmonary bypass through raise the level of NO and reduce the level of ET-1 (endothelin-1)41, and 
improve the endothelial function in patients with coronary heart disease complicated with diabetes mellitus42.

Evidences have shown the worthy to a deep research with NO related mechanism of SFI and SMI. By Agilent 
Mouse Gene Expression and IPA we analyzed the different genes and pathways of the two interventions. To 
determine major treatment features of CVD, we used the “diseases and functions” sections of the IPA software 
and selected the top 4 significant correlation diseases according to score. The results demonstrated that congenital 
heart anomaly, cardiac hypertrophy, cardiac arrhythmia and HF account for a large percentage in SMI group. To 
predict correlations of relevant genes and pathways, “networks” of IPA were scored based on the molecules con-
tained in these networks. The IPA analysis showed that GATA4 and GATA6 were significantly down-regulated 
in SFI at −2.5 and −2.4-fold, respectively, when treating CVD. GATA4 and GATA6 are important transcription 
factors that primarily impact myocardial cell proliferation, differentiation, and apoptosis43,44. Previous studies 
showed that GATA4 appears to be essential and its upregulation is sufficient to promote myocyte survival, in part 
through transcriptional regulation of the anti-apoptotic Bcl-2 gene45. Similarly, GATA4 is a key nuclear effecter in 
numerous signalling pathways that are activated by hormones and growth factors that cause myocyte enlargement 
and cardiac hypertrophy46. Meanwhile, the primary function of GATA-6 during cardiovascular development is 
to regulate morphogenetic patterning of the cardiac outflow tract and aortic arch47. Both GATA4 and GATA6 
can act directly on myocardial cells and the cardiac outflow tract to improve heart function in eNOS KO mice.

The SFI molecular network analysis (Fig. 6A) showed that Collagen type III accounted for a large proportion. 
COL3A1 was the primary down-regulated gene in this network at −2.4-fold. COL3A1 is a member of the colla-
gen family and is primarily expressed in extensible connective tissues, including skin and vessels48. COL3A1 is 
essential for normal collagen I fibrillogenesis in the cardiovascular system49. Collagen type III is the second most 
abundant collagen in human tissues after collagen type I and is expressed in blood vessels. It is encoded by the 
COL3A1 gene and is closely linked with the COL5A2 (collagen, type V, alpha 2) gene50. The result demonstrated 
that SFI directly improved myocardial function to treat CVD via important genes, such as GATA4, GATA6 and 
COL3A1. These results also partly explained why the effect of SFI was more pronounced in the early stage in the 
TTE assay.

The IPA molecular network showed that VEGFA was the vital component and was up-regulated by SMI at 
2.3-fold compare to eNOS KO mouse. VEGFA is one of the most potent inducers of angiogenesis and is potent and 
specific for vascular endothelial cells51. Blocking VEGF-A may lead to endothelial dysfunction and adverse vascular 
effects52. VEGFA closely correlated with coronary artery disease53, atherosclerosis54, and HF55. Meanwhile, the IPA 
molecular analysis of SMI indicated that ACE was also an importantly down-regulated gene at −2.2-fold. The main 
site of ACE expression is the vascular endothelium, underlining its vital role in normal blood pressure control56. 
Both VEGFA and ACE are closely related to endothelial cells, which can respond with appropriate control and 
regulatory processes to maintain homeostasis. Such responses can include the release of paracrine mediators, such 
as NO, prostacyclin and ET-157–59. In brief, both VEGFA and ACE defend against heart dysfunction by protecting 
endothelial cells, which can provide nutrients and promote the development of myocardial cells.

Figure 7.  Validation of microarray data by qPCR. (A) Fbxo5 gene analysis. (B) Fpr1 gene analysis. (C) Gadd45g 
gene analysis. (D) Siglech gene analysis. The data are expressed as the mean ± SEM; n = 3 in each group; 
*P < 0.05, **P < 0.01 compared to C57; #P < 0.05, ##P < 0.01 compared to eNOS KO mice.
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In addition, we found that MMP2, a zinc dependent protease, played a key role in SMI and is down-regulated 
at −2.3-fold60. MMP2 participates in many biological processes, such as inflammation, cardiomyocyte hyper-
trophy and systolic HF61,62. In addition, it can also modulate signalling of growth factors, such as VEGF (vas-
cular endothelial growth factors)63. The common thing in these genes is that they have close correlation with 
endothelial cells from these evidence. Meanwhile, there is no clinic evidence showed SMI’s effect on myocardium. 
Therefore, SMI may be not directly involved in myocardial cells, instead, it relies on the effects of endothelial cells. 
This also confirms the results from TTE, which demonstrated that SMI was more involved in long-term treatment 
than SFI. This may be related to MMP2 and the protection of endothelial cells by VEGFA and ACE.

Inflammation has been well known to play an important role in CVD development and progress. IL-18, a 
pro-inflammatory cytokine in the interleukin 1 (IL-1) cytokine superfamily, is a common down-regulated 
gene in SFI and SMI at −2.1 and −2.0-fold, respectively, compared to eNOS KO mice. IL-18 plays an impor-
tant role in immune, infectious, and inflammatory diseases due to its induction of IFN-gamma64. The “canon-
ical pathways” section of the IPA analysis showed that IL18 was primarily involved with PPAR signaling 
(−log(p-value) = 1.53E + 00) in SFI, and NF-κB signaling and IL-12 signaling and production in macrophages 
(−log(p-value) = 1.64E + 00 and 1.50E + 00, respectively) in SMI.

From the top 15 canonical pathways by IPA analysis (Fig. 4), it is worth mentioning that Gadd45 signal-
ing is the only common pathway in SFI and SMI (−log(p-value) = 2.26E + 00, −log(p-value) = 1.92E + 00, 
respectively). Gadd45 play important roles in cellular genotoxic and non-genotoxic stress responses acting as 
stress sensors and tumor suppressors, which are rapidly induced after DNA damage, resulting in cell cycle arrest 
and/or apoptosis, DNA repair mechanisms65,66. It have been implicated in linking NF-κB and MAPK, such as 
involved in the activity of NF-κB in the cell death and survival control67,68. Previous studies have also shown that 
non-steroidal anti-inflammatory drugs (NSAIDS) rely on Gadd45 up-regulation for induction of cell cycle arrest 
and apoptosis in tumor cells69. Gadd45 signaling is closely related to inflammation. Our microarray data showed 
that SFI and SMI could up-regulated Gadd45g at 2.6 and 2.4-fold, respectively, compared to eNOS KO mice. In 
addition, we used qPCR to verified Gadd45g and the result was coincided with microarray data (Fig. 7C). These 
findings may provide a theoretical basis for clinical medication.

By whole genome analysis, we found oxidative stress, inflammation, and apoptosis were all involved in eNOS KO 
induced injury. The pathogenesis is too complex for the classic single drug treatment. Herbal combination should be 
paid attention to especially on enhance curative effects and expand therapeutic range to adapt to complex disease. In 
this study, there are some similarities as well as some differences in the two ginseng combinations. Simultaneously, 
we should noticed the advantage of multi targets by drug combination in progression of complex diseases (Fig. 8). 
The appropriate adjustment of drug combination could lead to a better accurate medical care in clinic.

In addition to the result, there is an abnormal phenomena that we observed. Figure 1A showed LVEF had the 
significant drop on day 14 in SFI group. This may be related to a potential problem caused by the alkaloids from 
Aconiti lateralis with prolonged the course of treatment70–72. Therefore, in general, SFI have a protective effect on 
the heart in short-term intervention in clinic. However, from the current results, the feasibility and safety to use 
SFI for 14 days is worth deep research Fig. 8.

In conclusion, our study has demonstrated that ginseng combined with aconiti lateralis was more efficient in 
the early stage compared to ginseng and ophiopogonis, which was more impactful in the chronic stage. From the 
result of TTE assay and IPA analysis, it suggested that SFI and SMI could both improve the LVEF and modulate 
Gadd45 Signaling from TOP15 canonical pathways. The distinction was that SFI showed a better effect in the 
early treatment stage, manifested in improving LEVF and FS, and might directly improved myocardial function 
to treat CVD via GATA4, GATA6 and COL3A1. While SMI exerted better protective effects at the chronic stage, 
which may be related to MMP2 and endothelial cell protection by VEGFA and ACE. By in vivo experiment and 
gene expression profiles, the results indicated that SFI could provide a better effect in the early stage while SMI 
presented a better effect in the late stage of heart dysfunction. The result could partly show the value to adjust 
herbal combination in the precision medication in clinic.

Figure 8.  The most significant inflammation networks identified by IPA. (A) The most significant inflammation 
network of SFI identified by IPA. (B) The most significant inflammation network of SMI identified by IPA.
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Materials and Methods
Animals.  Wild-type (C57) and eNOS KO mice (B6.129P2-Nos3tm1Unc/NJU) (Six-to-eight weeks) weighing 
18–22 g were purchased from the National Resource Center of Model Mice (Nanjing, China. Permit NO:SCXK 
(Su 2010-0001)). All animals were fed a standard feed and provided water ad libitum while housed in the Institute 
of Radiation Medicine Chinese Academy of Medical Sciences (Tianjin, China). All experiments were performed 
under the Guidelines for Animal Experiments at the Tianjin University of Traditional Chinese Medicine. The 
Animal Ethics Committees of the Faculty of Medicine approved all experimental protocols in accordance with the 
Principles of Laboratory Animal Care and Use in Research (Permit Number: SCXK 2010-0001).

Drug intervention.  SFI (Yaan Sanjiu Pharmaceutical CO.LTD, Sichuan, China) and SMI (Chiatai 
Qingchunbao Pharmaceutical CO.LTD, Jiangsu, China) were administered via a single intraperitoneal dose of 
clinical equivalence 0.216 g/kg and 0.144 g/kg daily. Meanwhile, C57 mice, serving as the control, and eNOS 
KO mice, as the model, were given intraperitoneal injections of equal volumes of saline. VAL (10.4 mg/kg, daily, 
Novartis, Beijing, China) were administered intragastrically. SFI, SMI, VAL and saline were injected for 2 weeks.

TTE assay.  The Vevo 2100 ultrasound system (VisualSonics, Toronto, Canada) was turned on standby, and 
the MS400 probe adjusted to a suitable position. Isoflurane (Martx, New York, USA) was used for anaesthe-
sia (totally anaesthesia: 1% O2 + 5% isoflurane; continued anaesthesia: 1% O2 + 2% isoflurane). Mice were fixed 
supinely and coupling agent was smeared after depilation. The FAC was evaluated in B-Mode, the LVEF and LVFS 
were obtained in M-Mode, and blood flow in the LVOT was measured in Colour Doppler Mode. All measure-
ments were performed at baseline and 3, 7, and 14 days after drug administration.

Blood pressure measurement.  Blood pressure was measured by the tail-cuff method (BP98AWU, Softron 
Biotechnology, Tokyo, Japan) at 0, 3,7 and 14 days after drug administration. The SBP, DBP and MBP values were 
continuously monitored and recorded. Two measurements were obtained by an investigator-blinded method and 
averaged for each mouse.

Microarray Analysis.  The thoracic aortas were excised from the mice. The peri-adventitial, fibro-adipose 
tissues were carefully isolated. Total RNA was extracted using mirVana RNA Isolation Kit (Thermo Scientific, 
Waltham, USA), and quantified using the NanoDrop ND-2000 (Thermo Scientific, Waltham, USA) and the RNA 
integrity was evaluated using Agilent Bioanalyser 2100 (Agilent Technologies, Palo Alto, USA). Sample labelling, 
microarray hybridization and washing were successively performed according to the manufacturer’s instructions. 
The Agilent SurePrint G3 Mouse Gene Expression (8*60 K, Design ID: 028005) was used in this experiment. 
Briefly, after transcribing total RNA to double strand cDNA, cDNA were synthesized into cRNA and labelled 
with Cyanine-3-CTP. Then, we hybridized the labelled cRNAs onto the microarray and washed. The arrays were 
scanned by the Agilent Scanner G2505C (Agilent Technologies).

Array images were analysed using Feature Extraction software (version10.7.1.1, Agilent Technologies) to 
obtain raw data. Genespring were assessed with the raw data as a basic analysis. The raw data were normalized 
with the quantile algorithm. Among the conditions, one probe that was flagged as “Detected” with 100% of the 
values in at least one group was chosen for further data analysis. Differentially expressed genes were then iden-
tified through fold change as well as P value calculated with t-test. The threshold set for up- and down-regulated 
genes was a fold change > = 2.0 and a P value < = 0.05, these genes which satisfy the set threshold had been col-
lected as “Differential genes” for IPA (Ingenuity Systems, Redwood City, CA, USA, www.ingenuity.com) analysis, 
which is supported by Ingenuity Knowledge Base. Canonical pathways, diseases and biological functions and reg-
ulator effect networks related to differential genes were generated by the software algorithm. A fold change higher 
than 2 means “activated” while lower than −2 means “inhibited”. Statistical significance was set at P < = 0.05. 
The “canonical pathways” section was calculated using the right-tailed Fisher Exact Test. We choose the top 15 
pathways to analyse. Blue bars indicate −log (P-value), while yellow points denote the ratio of genes. The mean-
ing of the ratio of genes is, in a specified path, all the genes contained in this pathway (currently confirmed) is 
assumed to be A, and the differences expression genes involved in experimental group (assuming E). The ratio 
of genes = E/A *100%. It vividly shows the enrichment state of the group of genes in this pathway. To determine 
major treatment features of CVD, we used the “diseases and functions” sections of the IPA software and selected 
the top 4 significant correlation diseases according to score. To predict correlations of relevant genes and path-
ways, “networks” of IPA were scored based on the molecules contained in these networks.

Validation of Microarray results by qPCR.  Total RNA was extracted from aorta using Trizol rea-
gent (Invitrogen, Chicago, USA). The purity of RNA was verified by calculating the absorbance ratio of 1.8–
2.0 at 260/280 nm, and the RNA concentration was quantified spectrophotometrically at 260 nm (Malcom, 
Tokyo, Japan). Total cellular RNA (2.0 μg) was reverse transcribed by TaqMan Reverse Transcription 
Reagents (Applied Biosystems, Foster City, USA) and the cDNA was used in qPCR reactions. The primers 
(Sangon Biotech, Shanghai, China) used were as follow: β-actin F: 5′-AGAGGGAAATCGTGCGTGAC-3′; R: 
5′-CAATAGTGATGACCTGGCCGT-3′; Fbxo5 F: 5′-GCGCCTTTTAAGAGCTGCGG-3′; R: 5′-GCTCAT 
GCCGCAAAACTCG-3′; Fpr1 F: 5′-CCTTGGCTTTCTTCAACAGC-3′; R: 5′-GCCCGTTCTTTACA 
TTGCAT-3′; Gadd45g F: 5′-CGCACAATGACTCTGGAAGA-3′; R: 5′-CAGGGTCCACATTCAGGACT-3′; 
Siglech F: 5′-AGACACTGGAGCTTGGTCGT-3′; R: 5′-CCTGACAGGTGAGGTTGGTT-3′. The amplification 
was performed in an ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City, USA). β-actin mRNA 
was measured as an internal control and the expression of related target genes was determined by the 2−ΔΔCT 
method.

http://www.ingenuity.com
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Statistical analyses.  Statistical analysis was conducted using SPSS 16.0. The results were represented as 
the means ± standard error of the mean (SEM), and all data passed a normality test. Statistical significance was 
assessed by one-way analysis of variance (ANOVA) followed by Tukey’s test. A P value < 0.05 was considered 
statistically significant for all cases.
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