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Consumer wearable activity trackers, such as Fitbit are widely used in ubiquitous and

longitudinal sleep monitoring in free-living environments. However, these devices are

known to be inaccurate for measuring sleep stages. In this study, we develop and

validate a novel approach that leverages the processed data readily available from

consumer activity trackers (i.e., steps, heart rate, and sleep metrics) to predict sleep

stages. The proposed approach adopts a selective correction strategy and consists

of two levels of classifiers. The level-I classifier judges whether a Fitbit labeled sleep

epoch is misclassified, and the level-II classifier re-classifies misclassified epochs into

one of the four sleep stages (i.e., light sleep, deep sleep, REM sleep, and wakefulness).

Best epoch-wise performance was achieved when support vector machine and gradient

boosting decision tree (XGBoost) with up sampling were used, respectively at the level-I

and level-II classification. The model achieved an overall per-epoch accuracy of 0.731

± 0.119, Cohen’s Kappa of 0.433 ± 0.212, and multi-class Matthew’s correlation

coefficient (MMCC) of 0.451 ± 0.214. Regarding the total duration of individual sleep

stage, the mean normalized absolute bias (MAB) of this model was 0.469, which is

a 23.9% reduction against the proprietary Fitbit algorithm. The model that combines

support vector machine and XGBoost with down sampling achieved sub-optimal

per-epoch accuracy of 0.704 ± 0.097, Cohen’s Kappa of 0.427 ± 0.178, and MMCC of

0.439± 0.180. The sub-optimal model obtained aMAB of 0.179, a significantly reduction

of 71.0% compared to the proprietary Fitbit algorithm. We highlight the challenges in

machine learning based sleep stage prediction with consumer wearables, and suggest

directions for future research.

Keywords: sleep tracking, machine learning, consumer sleep technology, wearable sleep trackers, Fitbit,

ambulatory sleep monitoring, ubiquitous computing

1. INTRODUCTION

Measuring sleep over a prolonged period of time is important for understanding
the day-to-day variability in sleep dynamics. Traditional sleep monitoring methods,
such as polysomnography (PSG) and videosomnography are expensive, burdensome,
and not suited for longitudinal sleep tracking. In contrast, ubiquitous sleep tracking
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technologies enable unobtrusive measurement of sleep over
extended periods in free-living environments. A variety of
ubiquitous sleep tracking systems have been developed, including
bed sensors (1, 2), wireless EEG (3, 4), smartphone apps (5, 6),
and wearable activity trackers (7). Activity trackers are among
the most popular consumer sleep tracking technologies. The
opportunities and challenges pertaining the personal use of these
devices have been well-studied (8–12). In the meantime, recent
advances in wearable technology has seen a rise in employing
consumer activity trackers, such as Fitbit in research studies for
measuring sleep outcomes (13–16). Some studies even leverage
Fitbit sleep data as the ground truth to validate new sleep tracking
devices (17). The popularity of activity trackers in the research
community is mostly due to their appealing features: they are
more affordable than medical sleep monitors and easy to use
for longitudinal sleep data collection without the necessity of
frequent technical support; they have well-designed dashboard
to visualize sleep data and offer raw data retrieval at reasonably
high granularity through Application Program Interface (API).
All these features allure researchers to use these consumer devices
as an alternative of medical sleep monitors, especially when
research budget is limited and when sleep outcomes are not the
main concern.

Nonetheless, there is strong evidence that consumer activity
trackers have limited accuracy for measuring sleep (18–25).
Previous validation studies show that many devices, such as Fitbit
Flex and Fitbit HR Charge tend to overestimate sleep time while
underestimate wake time compared to PSG (22, 26). The result
was consistent for adolescents (21) and adults (19, 22). Recent
validation studies of the latest Fitbit models (e.g., Fitbit Charge
2/3) further revealed that while new models could measure total
sleep time and sleep efficiency with satisfactory accuracy, their
capability in detecting sleep stages—wakefulness, light sleep,
deep sleep and REM sleep—remains to be limited (18, 19).
The disparity between Fitbit and medical devices may be more
pronounced in free-living environments (18, 27) and among
people with sleep problems (28). Furthermore, the accuracy of
Fitbit demonstrates temporary patterns, with better accuracy for
deep sleep in the first half of a night and better accuracy for REM
sleep in the second half of a night (29).

The limitation in measurement accuracy of consumer
activity trackers demands the development of new sleep
staging algorithms. There is a large body of research on
sleep staging with PSG signals, but these algorithms are not
readily applicable to consumer activity trackers due to the
difference in sensing modalities. A PSG test often involves the
measurement of multiple modalities of physiological signals
including electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), and electrocardiogram (ECG).
In contrast, Fitbit devices only rely on two sensing modalities—
accelerometer and PPG—and use these limited signals as input
for sleep staging. Although these signals demonstrate sleep
stage wise characteristics (30), they are insufficient for achieving
satisfactory accuracy in classifying sleep stages (28).

In this study we propose a two-level classification approach
for sleep staging with consumer activity trackers. The goal was
to train a computational model that captures a mapping relation

between the data derived from Fitbit and standard questionnaire
to medical-grade sleep staging. To be more specific, the level-
I classifier of the model judges whether a Fitbit labeled sleep
stage epoch is misclassified, and the level-II classifier reclassifies
misclassified epochs. The rationale behind the two-level approach
is that a portion of Fitbit labeled sleep stage epochs is correct,
and only incorrect labels need to be re-classified. In this
study we select Fitbit as a representative of consumer activity
trackers because of its popularity, and the two-level classification
approach can be generalized to devices of other manufacturers
(e.g., Apple Watch, Garmin) with adaptation.

2. METHODS

2.1. Problem Formulation
The objective of this study is to build a computational model
for sleep staging based on processed data derived from Fitbit
devices. We apply machine learning algorithms because they can
discover hidden patterns in complex heterogeneous and high
dimensional data (31). The nature of the problem is formulated
as follows. Given x the feature space containing M features, the
x values are vectors in the form of xv1 , xv2 ,. . . ,xvM , where xvm

is either nominal, discrete or continuous feature constructed
from the input data. The y values are class labels drawn from
a discrete set of classes {1, 2, 3, 4}, corresponding to deep
sleep, light sleep, REM sleep and wakefulness. A two-level
classification model constructs a cascading mapping function
f: y = fL_II(fL_I(x)) based on NTR labeled training instances
(x1, y1), (x2, y2), . . . , (x

TR
N , yTRN ), where y belongs to {1, 2, 3, 4},

so that the performance for NTS new unseen instances can be
optimized. The level-1 and level-2 classifiers are denoted as fL_I
and fL_II . Information related to the training sets and test sets are
denoted using superscript notions TR and TS, respectively.

In this study, the model performance was evaluated using
multiple measures, which will be described in detail in section
2.5. As illustrated in Figure 1, the two-level model performs
classification epoch-by-epoch, which is compliant with the
standard epoch-wise sleep staging approach in clinical settings.
For each epoch, the input data to the two-level model include the
corresponding Fitbit labeled sleep stage, aggregated Fitbit sleep
metrics for that day, heart rate data, and a few demographic
features that can be measured using established psychometric
instruments, such as the PSQI questionnaire (32). The output of
the model for each epoch is one of the four sleep stages. Epoch-
wise predicted sleep labels are aggregated to calculate the total
duration of each sleep stage.

2.2. Data Collection
We conducted a three-night data collection experiment with 23
healthy adults (nine women; age = 24.8± 4.4 years) using a Fitbit
Charge 2 and a medical sleep monitor named Sleep Scope. None
of the participants had diagnosed sleep problems at the time of
the study. Ethics approval was obtained from The University of
Tokyo. Data collection was performed in participants’ homes to
ensure that the distribution of data and noise is representative
of real situations in free-living environments. During the data
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FIGURE 1 | Overview of the proposed two-level classification approach.

collection experiment, Fitbit Charge 2 was applied to the non-
dominant wrist. The electrodes of the Sleep Scope were placed in
the middle of the forehead and behind one ear. Details of the two
devices are available in Liang and Ploderer (12). Demographic
information, such as age, sex, and subjective sleep quality
measured by PSQI questionnaire (32) was also collected. The
Fitbit data and demographic information are used to construct
features while the medical data are used for labeling.

To mitigate the first night effect (33), we used the data of
each participant’s second night. Nonetheless, if any of the devices
had more than 50% of data missing due to technical issues (e.g.,
electrodes peeling off, device running out of battery), the third
night’s data were used in place of the second night’s. The first
night’s data were only used when both the second and the third

night’s data were discarded. Using a web app that we developed
in our previous study (15), we retrieved Fitbit labeled sleep stages,
aggregated daily sleep metrics, including total sleep time (TST),
wake after sleep onset (WASO), sleep efficiency (SE) and the ratio
of individual sleep stage, and heart rate data. The Fitbit labeled
sleep stage data were retrieved at a granularity of 30 s. The Fitbit
heart rate data were retrieved at a granularity of 1 s but in practice
the granularity varied. The Sleep Scope generated analysis reports
for each selected night, which consists of 30 s-epoch-by-epoch
sleep stage data. We wrote a C# program to pre-process the Fitbit
labeled sleep stage data, heart rate data and Sleep Scope labeled
sleep stage data. All streams of data were firstly synchronized
and missing data were handled using interpolation. The Fitbit
labeled sleep stages, i.e., “deep sleep,” “light sleep,” “REM sleep,”
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TABLE 1 | Features constructed for epoch n.

Type Feature Collection

method

Static Age, sex, Pittsburgh sleep quality index (PSQI) PSQI

Questionnaire

Total sleep time (TST), wake after sleep onset

(WASO), sleep efficiency (SE), wake ratio, light

sleep ratio, deep sleep ratio, REM sleep ratio

Fitbit

Dynamic ID of epoch n, Fitbit labeled sleep stage for

epoch (n − 3) − (n + 3), average heart rate in

epoch n, heart rate change in epoch n vs.

epoch (n − 1), heart rate change in epoch n +

1 vs. epoch n

Fitbit

and “wakefulness,” were respectively mapped to the class “1,” “2,”
“3,” and “4.” For Sleep Scope, “stage N3” was mapped to the class
“1,” “stage N1,” and “stage N2” were mapped to the class “2,”
“stage R” was mapped to the class “3” and “stage W” was mapped
to the class “4.”

2.3. Feature Construction and Labeling
We constructed 21 features as summarized in Table 1. All
features can be derived from the data of Fitbit and PSQI
questionnaire without relying on additional information. We
selected these features because they have shown to associate to
the accuracy of sleep staging (28, 34, 35) and they are easy
to derive from the available data. In contrast, other potential
features that can be derived from the brainwave signals measured
with the medical device and the raw acceleration data measured
with Fitbit were not selected as these data are often not readily
available in free-living environments.

We divide the features into static features and dynamic
features. As shown in Table 1, static features refer to features that
demonstrate no intra-individual variability for the selected night.
These features include demographic characteristics (i.e., age, sex,
and PSQI) and aggregated sleep metrics (i.e., TST, WASO, SE,
wake ratio, light sleep ratio, deep sleep ratio, and REM sleep
ratio). In contrast, dynamic features are derived from Fitbit time
series data and they demonstrate variability from epoch to epoch.
These features include epoch ID, Fitbit labeled sleep stage for the
current epoch and three preceding and three succeeding epochs,
average heart rate in the current epoch, heart rate change in the
current epoch against the preceding epoch, and heart rate change
in the succeeding epoch against the current epoch.

Figure 2 exemplifies the dataset preparation process. We first
synchronized the time series data of Fitbit and the medical
device to ensure that the data from the two devices matched
epoch-wisely. Thereafter we constructed dynamic features from
the time series data epoch-by-epoch and each epoch was
fed to the dataset as an instance. Lastly, the static features
and the labels for two levels were merged with the dynamic
features. The same set of features were used at both level-
I and level-II classifications. The ground truth labels were
obtained epoch-wisely using the following conversion method.
For level-I binary classification, the label for each instance was

obtained through epoch-wise comparison between the Fitbit
and the medical device. If the two devices agreed, the label
was 0 (representing correct classification); otherwise, the label
was 1 (representing misclassification). For level-II multi-class
classification, the medical data was used as the labels. An example
of label conversion is shown in Table 2.

2.4. Model Construction
We applied different machine learning algorithms at each level
of classification. For level-I binary classification, we used three
machine learning algorithms—Naïve Bayes (NB), random forest
(RF), and support vector machine (SVM) with linear kernel.
These algorithms were selected because of their simplicity,
computational efficiency, and good performance on binary
classification. For level-II classification which involves four
classes, we applied the gradient boosting decision tree (XGBoost)
because a preliminary analysis of model performance with
default parameter values demonstrated their advantage over
other widely used machine learning algorithms, such as artificial
neural network. Model training of classifier-1 and classifier-2
were independently performed using the same dataset. For each
level of classifier, model parameters were tuned through grid
search with 10-fold cross validation. Feature normalization was
performed in the SVM algorithm.

A major challenge at the level-II classification lies in the
imbalanced nature of the datasets, where the class “2” (indicating
light sleep) significantly outnumbers other classes. The reason
is that a night of normal human sleep typically consists of
large portion of light sleep (40–60%), while the portion of
REM sleep (15–25%), deep sleep (15–20%), and wakefulness
(5–15%) are significantly smaller than light sleep (36). The
hitch with the imbalanced nature of sleep data is that standard
machine learning algorithms may bias toward the majority class
and yield higher learning errors on the minority class. This is
especially true for machine learning techniques that are sensitive
to class distribution (37). To cope with this problem, we applied
resampling techniques to balance different classes. We examined
the effect of two simple resampling techniques: random up
sampling and random down sampling. Random up sampling
randomly generates data points to the minority classes so that the
frequency of the minority classes is close to that of the majority
one. Random down sampling randomly subsets themajority class
to match the frequency of the minority classes. A preliminary
study demonstrated the effectiveness of these techniques in
enhancing model performance (38). It is worth mentioning that
resampling was performed within cross-validation to ensure that
only the training sets were resampled, and the test sets were not.

2.5. Model Evaluation
We obtained nine models with different combinations of
resampling techniques and machine learning algorithms. Models
are denoted as L1_L2resamp. For example, NB_XGB denotes the
model that uses Naïve Bayes at level-I and XGBoost without
resampling at level-II, and NB_XGBd denotes the model that
uses Naïve Bayes at level-I and XGBoost with down sampling
at level-II. We compare the performance of the nine two-level
models with four baseline models, including the proprietary
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FIGURE 2 | Feature construction and label conversion.

TABLE 2 | An example of label conversion.

Epoch ID Fitbit Sleep Data Medical Sleep Data Level-I label Level-II label

1 4a 4 0 4

2 4 4 0 4

3 2 4 1 4

4 2 4 1 4

... ... ... ... ...

N-1 3 2 1 2

N 3 3 0 3

a1 = deep sleep, 2 = light sleep, 3 = REM sleep, 4 = wakefulness.

Fitbit model (denoted as Fitbit) and three one-level models
(denoted as XGB, XGBu, and XGBd). The three one-level models
attempt to reclassify all Fitbit labeled sleep stage epochs through
four-class classification instead of selective correction as the two-
level models do. These three baseline models all use XGBoost
algorithm but with different resampling strategies.

We evaluate model performance using nested leave-one-
subject-out cross validation (LOSO-CV) (39). There are two
practical reasons underlying the necessity of using this strategy.
First, due to the chronological nature of sleep data, a model
should be tested on a whole night of sleep data from one person,
not over a mix of epochs from different people. Second, since
class distribution demonstrated interpersonal variations, it is
important to check the performance of themodels on test set with
possible data shift, which refers to the cases where training and
test data follow different distribution and is especially relevant
to imbalanced classification (40, 41). As illustrated in Figure 3,
the nested LOSO-CV operates in an iterated manner. In each

iteration, the data of one participant are held out as the test
set, while the data of the remaining 22 participants are merged
and used as the training set. A model is tuned on the training
set through intensive grid search using 10-fold cross validation.
Once themodel is fixed on the training set, it was evaluated on the
test set. The nested-evaluation process iterates 23 times with each
subject’s data being kept out as test set once. We then averaged
the performance over all the 23 iterations.

We adopt two types of performance measures–microscopic
performance metrics and macroscopic performance metrics–to
thoroughly evaluate the two-level models. These measures cover
not only epoch-wise comparison between the models and the
ground truth (with microscopic measures) but also comparison
on aggregated sleep metrics (with macroscopic measures).

2.5.1. Microscopic Measures
Microscopic measures are calculated based on epoch-wise
comparison between model predicted value and the true value of
each epoch. These measures include overall per-epoch accuracy,
Cohen’s Kappa, multi-class Mathew’s correlation coefficient
(MMCC), confusion matrix, correcting power (CP) and over-
correcting rate (OR). The per-epoch accuracy and Kappa have
been widely used to evaluate the performance of automatic
sleep staging algorithms in sleep research. Despite that they
may not be the most appropriate performance measure for
imbalanced classification, we use them as complementary metric
to facilitate cross-study comparison. On the other hand, MMCC
is widely accepted as a more appropriate performance measure
for imbalanced multi-class classification as it considers the
accuracy and error rates on all classes and involves all elements
of a confusion matrix (42, 43). The CP and OR are original
measures specific to our approach for probing deeper into the
behavior of the two-level models. While an ideal model would
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FIGURE 3 | Nested leave-one-subject-out cross validation (LOSO-CV). The M denotes the set of performance measures.

be characterized by high CP and low OR, in practice it is only
feasible to achieve a good trade-off between the two metrics.

• Overall per-epoch accuracy: The number of correctly
predicted sleep epochs vs. the total number of epochs. Despite
that this metric is not considered as a legitimate performance
measure for imbalanced classification in the machine learning
community, we use it as a complementary metric that
facilitates cross-study comparison.

• Cohen’s Kappa: An indicator of model quality by taking into
account how much agreement between predicted and true
values would be attributed to chance. According to (44), a
value <0 indicates no agreement, 0–0.40 as poor, 0.40–0.75 as
fair to good, >0.75 as excellent. Higher value indicates better
performance.

• Multi-class Matthew’s correlation coefficient (MMCC): A
singlemetric that summarizes a confusionmatrix and has been
considered as one of the best performance measure for multi-
class imbalanced classification. A value of −1 and 1 represent
perfect misclassification and perfect classification, and a value
of 0 indicates random guess (45, 46).

• Confusion matrix: A table that summarizes the prediction
accuracy and error rate on individual sleep stages. Each row
represents an actual sleep stage, while each column represents
a predicted sleep stage.

• Correcting power (CP): The ratio of epochs that are mislabeled
by Fitbit and are corrected by the two-level model. Higher
value of CP means that more Fitbit misclassified epochs are
corrected by the model and hence better model performance.

• Over-correcting rate (OR): The ratio of epochs that are
correctly labeled by Fitbit but are misclassified by the
two-level model. Lower value of OR indicates better
model performance.

1 =
Mproposal −Mfitbit

Mfitbit
× 100% (1)

The performance improvement of the two-level models over
Fitbit, which is denoted as 1, is computed using Equation (1),
where Mproposal and Mfitbit denote the performance (e.g.,
accuracy, Kappa, andMMCC) of the two-level models and Fitbit,
respectively. Two-tailed t-test is applied to examine if statistically
significance difference exist between the average performance of
the two-level models and that of the Fitbit.

We also perform Pearson’s correlation analysis between the
performance measures and the class imbalance or the dataset
shift to investigate the effect of dataset characteristics on model
performance. The Shannon’s diversity index (47) is used to
quantify the imbalance of individual sleep stage in the test set
of each iteration in the LOSO-CV process. A lower value of the
Shannon’s diversity index implies more imbalance of classes. The
Anderson-Darling (AD) statistic (48) is adopted to quantify the
difference in sleep stage distribution between a training set and
the corresponding test set in each iteration of the LOSO-CV
process. A higher value of the AD statistic indicates larger shift
between a training set and the corresponding test set.

2.5.2. Macroscopic Measures
Macroscopic measures are calculated by comparing the predicted
values and true values on aggregated sleep metrics including
the total duration of light sleep, deep sleep, REM sleep, and
wakefulness. The following metrics are adopted.

• Bland-Altman (BA) plot (49): A plot that illustrates the

difference between two methods as a function of the mean

of these methods. The visual examination of the BA plot
allows for an evaluation of the global agreement between
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TABLE 3 | Demographic information and sleep characteristics.

Age PSQI Wakefulness Light sleep Deep sleep REM sleep

(min) (min) (min) (min)

All (N = 23) 24.3 ± 2.7 4.3 ± 2.3 55.7 ± 52.9 499.1 ± 149.0 45.1 ± 64.5 177.4 ± 66.1

Female (N = 9) 24.4 ± 2.7 4.1 ± 1.5 59.8 ± 72.9 479.8 ± 174.9 58.9 ± 78.5 178.2 ± 66.2

Male (N = 14) 24.4 ± 2.8 4.6 ± 2.7 59.1 ± 40.4 537.1 ± 153.1 32.4 ± 50.7 171.8 ± 68.6

FIGURE 4 | The overall per-epoch accuracy, Kappa and multi-class Matthew’s correlation coefficient (MMCC) of sleep staging models.

the model and the ground truth. The biases and lower and
upper level of agreement (LOA) are calculated. Two-tailed one
sample t-test is performed to examine whether the biases are
statistically different from 0. A positive bias indicates that the
model underestimated a sleep metric against the ground truth,
while a negative bias indicates overestimation. The LOAs are
computed as bias ±1.96 standard deviation of the differences.
Linear fitting with statistical test is performed to examine
whether there is a significant tend in errors as a function of
the magnitude of the measured value.

• Mean normalized absolute bias (MAB): An average over
the normalized absolute values of the bias (i.e., the average
discrepancy between a model and the ground truth) of
each sleep stage. The MAB of model j is calculated using
Equation (2), where |ei,j| denotes the absolute value of the bias
of model j for sleep stage i, min|ei| and max|ei| denote the
minimum and maximum absolute bias of all models for sleep
stage i, and W, L, D, R denote wakefulness, light sleep, deep
sleep, and REM sleep, respectively.

MABj =
1

4

∑

i∈{W,L,D,R}

|ei,j| −min |ei|

max |ei| −min |ei|
(2)

3. RESULTS

3.1. Descriptive Statistics
The processed dataset consists of 23 nights of sleep data–one
night from each participant. Among all the nights of data, five
cases used the first night, 13 cases the second night, and five

cases the third night. The total sleep time as measured by the
medical device ranges from 4.0 to 9.8 h. Complying with the
practice in sleep research, each night of sleep was divided into 30
s-epochs, yielding 480–1,176 epochs for individual participant.
The demographic information and the sleep characteristics as
measured with the medical device and the PSQI are summarized
in Table 3. It is worth noting that 12 participants (five females)
had a PSQI score higher than or equal to 5, indicating perceived
poor sleep quality at the time of the study. These participants
referred to their academic stress or the sultry weather as
the main reasons of their temporarily poor sleep. In what
follows we describe the micro-level andmacro-level performance
of the models.

3.2. Microscopic Performance
Figure 4 shows the box plots of the overall per-epoch accuracy,
Cohen’s Kappa and multi-class Matthew’s correlation coefficient
(MMCC). The two-level approach demonstrates the best
performance when SVM and XGBoost with up sampling are
used, respectively for the level-I and level-II classification,
yielding an overall per-epoch accuracy of 0.731 ± 0.119 (a
3.4–21.2% increase compared to the four baseline models),
Cohen’s kappa of 0.433 ± 0.212 (a 14.4–24.1% increase) and
MMCC of 0.451 ± 0.214 (a 10.9–16.6% increase). Table 4

presents the performance comparison between Fitbit and the
best top six models together with the hypothesis testing results.
Two-tailed t-test shows that most two-level models achieved
statistically significant improvement of per-epoch accuracy. The
improvement in Kappa and MMCC was not significant, which
is likely due to the relatively small sample size (N = 23). A
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TABLE 4 | Comparison between Fitbit and the best two-level models on

microscopic performance measures.

Per-epoch accuracy Kappa MMCC

Fitbit 0.638 ± 0.100 0.371 ± 0.148 0.387 ± 0.151

NBd + XGBd 0.701 ± 0.098*,a 0.422 ± 0.175 0.437 ± 0.177

RF + XGBd 0.681 ± 0.109 0.405 ± 0.187 0.419 ± 0.191

SVM + XGBd 0.704 ± 0.097∗ 0.427 ± 0.178 0.439 ± 0.180

NBd + XGBu 0.728 ± 0.123∗∗ 0.427 ± 0.214 0.445 ± 0.215

RF + XGBu 0.722 ± 0.109∗∗ 0.414 ± 0.206 0.437 ± 0.200

SVM + XGBu 0.731 ± 0.119∗∗ 0.433 ± 0.212 0.451 ± 0.214

aBold indicates statistically significant difference compared to Fitbit. *p< 0.05; **p< 0.01.

comparison among the three baseline models (i.e., XGB, XGBd,
and XGBu) shows that resampling alone does not improve
model performance. Adding one level of binary classification
to the baseline model with no resampling (i.e., NB + XGB, RF
+ XGB, and SVM + XGB) reduces the variability but not the
average of model performance. In contrast, adding one level
of binary classification to the baseline model with resampling
successfully improved the model performance. This indicates
that resampling at level-II is essential to the performance of the
two-level approach.

The confusion matrix for individual sleep stage is provided
in Table 5. RF + XGBd achieved the best sleep stage wise
performance and improved the average accuracy for both light
sleep (by 12.1% compared to Fitbit) and REM sleep (by 14.0%),
while minimize the sacrifice on the classification accuracy for
deep sleep. In general, down sampling at the level-II classification
helped achieved a more balanced performance, whereas up
sampling had trivial effect on the overall tendency of the final
outcome. With either XGB or XGBu being used for the level-
II classification, the models tend to have the best average
accuracy for light sleep but deteriorated accuracy for deep
sleep and wakefulness. The most common misclassifications
were deep/light (two-level model: 42.9–85.3%; Fitbit: 29.1%),
REM/light (two-level model: 22.9–41.9%; Fitbit: 31.7%), and
wake/light mislabeling (two-level model: 25.7–71.3%; Fitbit:
50.3%). Figure 5 illustrates the correcting power (CP) and over-
correcting rate (OR) of the models. The best trade-off between
CP and OR is achieved when up sampling was applied at the
level-II classification.

Table 6 provides the results of the Pearson’s correlation
analysis between the microscopic performance measures and the
Shannon’s diversity index of the test sets. Per-epoch accuracy,
Kappa and MMCC are in general positively correlated to the
Shannon’s diversity index. Such correlation is moderate but
statistically significant for Fitbit, NB + XGB, RF + XGB, SVM +
XGB, RF + XGBd, which implies improved model performance
when class distribution in the test sets are more balanced. CP
and OR may be weakly or moderately correlated to Shannon’s
diversity index, but with no statistical significance. Table 7

shows that the AD statistic is negatively correlated to the per-
epoch accuracy of almost all models. The correlation strength
ranges from moderate to strong and with statistical significance,
indicating that prediction errors are more pronounced when

TABLE 5 | Confusion matrix for sleep stages (%).

Ground truth

Light sleep Deep sleep REM sleep Wakefulness

Light Fitbit 69.3 29.1 31.7 50.3

sleep XGB 87.0 83.0 41.9 64.4

XGBd 61.7 42.9 22.9 25.7

XGBu 85.1 78.7 41.1 62.0

NB + XGB 90.9 85.3 37.3 70.2

RF + XGB 90.2 82.6 40.1 65.5

SVM + XGB 91.2 85.4 37.1 71.3

NB + XGBd 81.0 52.6 33.8 53.4

RF + XGBd 77.7 49.9 33.1 46.1

SVM + XGBd 81.5 55.5 33.9 54.8

NB + XGBu 89.4 79.4 36.8 68.6

RF + XGBu 88.7 77.9 39.8 63.4

SVM + XGBu 89.6 81.0 36.3 69.3

Deep Fitbit 21.6 60.9 3.5 6.5

sleep XGB 1.1 4.4 0.0 0.4

XGBd 11.2 39.6 1.7 2.3

XGBu 1.8 9.3 0.0 0.4

NB + XGB 1.0 3.8 0.6 0.6

RF + XGB 1.2 5.4 0.2 0.5

SVM + XGB 0.8 3.7 0.0 0.5

NB + XGBd 9.1 36.4 1.5 1.6

RF + XGBd 9.5 36.3 0.9 1.7

SVM + XGBd 8.9 34.1 0.7 1.2

NB + XGBu 1.8 9.4 0.7 0.6

RF + XGBu 2.0 10.7 0.1 0.5

SVM + XGBu 1.6 8.7 0.0 0.4

REM Fitbit 5.9 2.9 59.6 8.1

sleep XGB 9.5 5.7 54.5 12.0

XGBd 14.2 7.1 63.9 18.8

XGBu 8.6 4.9 54.6 12.9

NB + XGB 6.9 4.0 59.8 9.3

RF + XGB 6.5 5.0 56.8 11.3

SVM + XGB 6.9 4.0 60.7 9.3

NB + XGBd 6.6 3.6 60.4 10.6

RF + XGBd 7.7 5.5 59.2 12.3

SVM + XGBd 6.7 3.3 61.0 10.6

NB + XGBu 7.1 4.2 60.0 10.3

RF + XGBu 6.4 4.5 56.3 11.0

SVM + XGBu 7.1 3.6 60.9 10.2

Wakefulness Fitbit 3.2 2.7 5.3 35.0

XGB 2.4 2.6 3.6 23.1

XGBd 12.9 6.1 11.5 53.2

XGBu 4.5 2.7 4.4 24.7

NB + XGB 1.2 2.4 2.3 20.0

RF + XGB 2.0 2.4 2.9 22.7

SVM + XGB 1.2 2.4 2.2 19.0

NB + XGBd 3.3 3.1 4.3 34.4

RF + XGBd 5.1 4.0 6.8 39.9

SVM + XGBd 2.9 2.8 4.4 33.4

NB + XGBu 1.7 2.4 2.5 20.5

RF + XGBu 2.9 2.5 3.7 25.0

SVM + XGBu 1.6 2.4 2.8 20.0

The bold values indicate the percentage of correctly classified epochs for each sleep stage

by different models.

Frontiers in Digital Health | www.frontiersin.org 8 May 2021 | Volume 3 | Article 665946

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Liang and Chapa-Martell Sleep Prediction With Activity Trackers

FIGURE 5 | The correction power (CP) and over-correction rate (OR) of sleep staging models.

TABLE 6 | Pearson’s correlation coefficients between model performance and

Shannon’s diversity index (SDI) of test sets.

Model rSDIaccuracy rSDI
kappa

rSDImmcc rSDIcp rSDIor

Fitbit 0.46∗a 0.48∗ 0.51∗ / /

XGB 0.35 0.36 0.32 −0.06 −0.06

XGBd 0.36 0.45∗ 0.40 −0.31 −0.23

XGBu 0.38 0.37 0.41∗ −0.14 −0.25

NB + XGB 0.46∗ 0.47∗ 0.48∗ 0.04 −0.08

RF + XGB 0.46∗ 0.51∗ 0.51∗ −0.23 −0.30

SVM + XGB 0.45∗ 0.45∗ 0.46∗ 0.12 −0.03

NB + XGBd 0.35 −0.06 −0.04 0.02 −0.00

RF + XGBd 0.43∗ 0.46∗ 0.46∗ −0.12 −0.24

SVM + XGBd 0.33 0.36 0.37 −0.08 0.33

NB + XGBu 0.39 −0.13 −0.12 −0.04 0.25

RF + XGBu 0.38 0.46∗ 0.43∗ −0.14 −0.16

SVM + XGBu 0.37 0.40 0.40 0.00 −0.04

aBold indicates statistically significant correlation. *p < 0.05.

there is larger data shift between training set and test set.
Kappa and MMCC are not as strongly correlated to the AD
statistic as per-epoch accuracy. CP may be moderately and
negatively correlated to the AD statistic but the relations are
not significant. OR shows strong and positive correlation to
the AD statistic for XGBu and SVM + XGBu, indicating
increased over-correction rate for these models when there
is large drift in data distribution between training set and
test set.

3.3. Macroscopic Performance
The Bland-Altman plots constructed for the individual sleep
stage are provided in Figures 6–9. Figure 6 shows that the two-
level model RF + XGBd (mean bias: 4.7 min, bias to limit: 194.9
min; t = 0.224, p = 0.825) agreed well to the ground truth for light
sleep. Two other models, NBd + XGBd (mean bias: −19.7 min,
bias to limit: 353.5 min; t =−0.525, p = 0.605) and SVM + XGBd

TABLE 7 | Pearson’s correlation coefficients between model performance and

Anderson-Darling (AD) statistic.

Model rADaccuracy rAD
kappa

rADmmcc rADcp rADor

XGB −0.65∗∗∗a −0.36 −0.36 −0.31 0.40

XGBd −0.40 −0.45∗ −0.28 −0.07 0.10

XGBu −0.72∗∗∗ −0.26 −0.44∗ −0.31 0.64∗∗∗

NB + XGB −0.43∗∗ −0.21 −0.21 −0.05 0.11

RF + XGB −0.42∗ −0.23 −0.22 −0.08 0.05

SVM + XGB −0.44∗ −0.21 −0.21 −0.00 0.12

NB + XGBd −0.65∗∗∗ 0.10 0.11 0.17 0.04

RF + XGBd −0.54∗∗ −0.29 −0.28 −0.37 0.04

SVM + XGBd −0.64∗∗ −0.31 −0.30 −0.39 0.22

NB + XGBu −0.75∗∗∗ 0.05 0.06 0.03 0.04

RF + XGBu −0.67∗∗∗ −0.37 −0.34 −0.36 0.36

SVM + XGBu −0.76∗∗∗ −0.47∗ −0.46∗ −0.36 0.81∗∗∗

aBold indicates statistically significant correlation. *p < 0.05; **p < 0.01; ***p < 0.001.

(mean bias: −20.9 min, bias to limit: 190.8 min; t = −1.030, p
= 0.314), also had smaller mean bias compared to Fitbit (mean
bias: 55.9 min, bias to limit: 192.0 min; t = 2.737, p = 0.012).
Statistical test on the linear fitting between model difference and
model mean showed no significant trend in all models.

All two-level models have better agreement to the ground
truth for deep sleep compared to the baseline models. The best
agreement was achieved by SVM+XGBd (mean bias:−15.3 min,
bias to limit: 154 min; t = −0.929, p = 0.363), followed by RF +
XGBd (mean bias: −18.5 min, bias to limit: 153.8; t = −1.129, p
= 0.271) and NBd + XGBd (mean bias: −18.8 min; bias to limit:
178.0 min; t = −0.991, p = 0.332). These three models together
with Fitbit demonstrated no statistically significant trend. In
contrast, a positive trend was observed in other models. Better
agreement was observed for nights with shorter deep sleep, and
on nights when there was longer deep sleep themodels weremore
variable. We also noticed that the scatter around the bias line gets
larger as the average gets higher.
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FIGURE 6 | Bland-Altman plots for light sleep.

FIGURE 7 | Bland-Altman plots for deep sleep.

As for REM sleep, RF + XGBd (mean bias: 17.5 min, bias to
limit: 105.12 min; t = 1.567, p = 0.238) achieved the smallest
bias to the ground truth among all models. SVM + XGBu (mean
bias: 22.0 min, bias to limit: 87.3 min; t = 2.372, p = 0.027) and
SVM + XGBd (mean bias: 22.3 min, bias to limit: 95.4 min; t =
2.197, p = 0.039) also had better performance than Fitbit (mean

bias: 29.1 min, bias to limit: 92.0 min; t = 2.971, p = 0.007). No
model showed statistically significant trend in model difference
as a function of model mean.

As for wakefulness, RF + XGBd (mean bias: −3.7 min, bias
to limit: 117.3 min; t = −0.296, p = 0.770) is the only model
that achieved better agreement to the ground truth compared

Frontiers in Digital Health | www.frontiersin.org 10 May 2021 | Volume 3 | Article 665946

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Liang and Chapa-Martell Sleep Prediction With Activity Trackers

FIGURE 8 | Bland-Altman plots for REM sleep.

FIGURE 9 | Bland-Altman plots for wakefulness.

to Fitbit (mean bias: 8.7 min, bias to limit: 90.9; t = 0.894, p =
0.381). Statistically significant and positive trend is evident along
the graph for all models except XGBd, XGBu, and RF + XGBd,
and the scatter around the bias line gets larger as the average gets
higher for all models.

Figure 10 shows the mean normalized absolute bias (MAB) of
all models. RF + XGBd achieved the lowest MAB (0.010), which
translates to a 98.4% decrease compared to that of Fitbit (0.617).
All two-stage models achieved lower MAB than Fitbit. Breaking
down into the four sleep stages, it shows that the decrease inMAB
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FIGURE 10 | Mean normalized absolute bias (MAB).

in the two-level models relied on all sleep stages, especially the
deep sleep stage.

4. DISCUSSION

4.1. Principal Findings
This study demonstrates the feasibility of achieving reasonable
accuracy in sleep staging with processed data derived from
consumer wearables. We have described the evaluation results
of the two-level models using multiple performance measures.
The two-level models significantly outperform the baseline
models in multiple facets when validated against a medical-
grade single channel portable EEG. The best microscopic and
macroscopic performance were achieved, respectively by SVM
+ XGBu and RF + XGBd, and SVM + XGBd achieved a good
trade off between microscopic and macroscopic performance.
Breaking down into individual sleep stage, the best accuracy
of the three models was obtained for light sleep (i.e., 89.6%),
whereas prediction accuracy for deep sleep was deteriorated.
The two-level models also demonstrated different tendency in
misclassification compared to Fitbit. Less light sleep, REM sleep
and wake epochs were misclassified as deep sleep, and less REM
sleep epochs were misclassified as wakefulness. Nevertheless,
more deep sleep and REM sleep epochs were misclassified as
light sleep, and more wakefulness epochs were misclassified as
REM and light sleep.This indicates that the features constructed
using the processed data of the consumer activity tracker may
not be sufficient to capture the differences between certain sleep
stage pairs.

Regarding overall agreement, the two-level models achieved
satisfactory agreement with the ground truth for light sleep and
wakefulness. They had lower discrepancy for deep sleep and REM
sleep compared to Fitbit, while also eliminating the trends in
bias for light sleep and REM sleep. Nevertheless, inconsistent
variability was still observed for deep sleep and wakefulness. The
scatter around the bias line gets larger as the average gets higher,
but such tendency is weaker than Fitbit. Taking all four sleep

stages together, the two-level models achieved a MAB of as low
as 0.010, which is <1% of the MAB of the baseline models.

We also observed the effect of imbalanced data and dataset
shift on model performance. Higher degree of class imbalance
of the test set (as quantified by lower value of the Shannon’s
diversity index) was significantly correlated to deterioratedmodel
performance in multiple dimensions. Resampling at the level-II
classification of the two-level models significantly enhanced the
overall model performance. While the two-level models using no
resampling at level-II performed similarly to or even worse than
one level models, both down sampling and up sampling at level-II
help improve themodel performance with significantly enhanced
correcting power. Up sampling generally enhanced microscopic
performance, and down sampling allows the models to achieve
more balanced accuracy for individual sleep stages and better
macroscopic performance. On the other hand, larger dataset
shift (as quantified by higher value of the Anderson-darling
statistic) was also significantly correlated to deteriorated model
performance. The effect was especially manifested in models
with up sampling. This is likely due to the side effect of up
sampling, which affected the distribution of the three minority
classes (while down sampling only affecting one major class) and
thus exacerbated dataset shift.

4.2. Comparison to Prior Work
While automatic sleep staging with PSG signals has been
well-studied for more than two decades, research efforts on
approximating sleep stages with widely available consumer
activity devices has just started a few years ago.

To our knowledge, there are only three publications
attempting four-class sleep stage classification with embedded
sensors in consumer activity trackers (35, 50, 51). Fonseca et al.
developed a model using features extracted from ECG heart
rate variability and trained with multi-class Bayesian linear
discriminant (142 features). This model achieved a Kappa of 0.42
± 0.12 and overall per-epoch accuracy of 59% (51). This model
overestimated wakefulness (mean bias = 3.2 min), light sleep
(mean bias = 28.3 min), underestimated REM sleep (mean bias
= 41.5 min), and agreed well for deep sleep, which yielded a
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mean absolute bias of 18.3 min. Beattie et al. developed models
based on raw acceleration and PPG signals from activity trackers
using linear discriminant classifiers, quadratic discriminant
classifiers, random forest and support vector machine. These
models achieved a Cohen’s Kappa of up to 0.52 ± 0.14 and
overall per-epoch accuracy of up to 69% (50). The model
agreed well to the ground truth for deep sleep and wakefulness,
whereas underestimated light sleep (mean bias = 11.1 min)
and overestimated REM sleep (mean bias = 13.0 min). The
most common misclassifications were light/REM and light/wake
mislabeling. This echoes the finding in the present study that
the pairs of light/REM and light/wakefulness remains to be
challenging to classify based on data from consumer wearable
activity trackers. In a recent study, Walch et al. developed
sleep staging models using several machine learning algorithms
with raw signals from smart watches (35). With artificial neural
network, the model achieved the best performance of overall
per-epoch accuracy = 72% and Kappa = 0.30.

In contrast with the above models that perform sleep
classification with raw sensory signals (e.g., acceleration and
PPG signals), our approach relies only on processed data from
wearable activity trackers (e.g., steps, heart rate, sleep metrics).
This strategy sacrifices the granularity of the input data and has
to cope with the noise introduced by the proprietary algorithms
that are used to process the raw signals, but may increase the
feasibility for the models to be implemented in practice, as many
wearable devices do not provide public API for retrieving raw
sensory signals (15). Our two-level approach adopts a “selective
correction” strategy that only reclassifies mislabeled sleep epochs
by the manufacturer’s proprietary model while keeps labels of
the epochs that are correctly classified. The evaluation results
demonstrate comparable performance of the two-level models
against existing models. That said, there is still much room
for improvements especially regarding the accuracy for deep
sleep and wakefulness. Possible directions include expanding the
feature extraction window, using different set of features at each
level of classification, and addressing the class imbalance and
dataset shift problems with more advanced techniques.

4.3. Challenges in Machine Learning Based
Sleep Stage Prediction With Consumer
Wearable Activity Trackers
Despite of using only a few manually crafted features, the two-
level models demonstrate promising performance. Enhancing
the accuracy of widely used consumer sleep technologies not only
brings benefits to the end users by helping them gain a better
understanding of their sleep health, but also enables researchers
to use these devices to measure sleep outcomes conveniently in
longitudinal studies.

As consumer activity trackers take over medical actigraphy
with more sensing modalities and functions (52), the
opportunities for these devices to be used as a complementary
tool in sleep medicine have been increasing (53, 54). Nonetheless,
there is a need to develop new algorithms, and machine learning
is a powerful building block. In the meantime, the present
work as well as previous studies highlight several challenges

in applying machine learning to sleep stage prediction with
consumer devices. Addressing these issues requires inputs from
multiple disciplines including sleep medicine, data science,
statistics and the consumer wearable industry.

4.3.1. Challenge 1: Class Imbalance Due to Intrinsic

Sleep Stage Distribution in Human Sleep Structure
Previous sleep studies have shown that the portion of individual
sleep stage in a normal night of sleep is highly imbalanced,
with light sleep dominating more than 50% of the total sleep
duration (36), which is supported by the sleep data collected
in the present study. Applying machine learning algorithms to
sleep staging thus face the challenge of class imbalance. Standard
machine learning algorithms may bias toward light sleep and
yield high learning errors on other sleep stages. Many solutions
have been developed to handle the imbalanced problem in the
machine learning community. In this study we investigated the
effectiveness of two basic resampling techniques. Down sampling
at the level-II classification helped achieve more balanced
performance for individual sleep stage and significantly reduced
systematic bias. Nevertheless, the accuracy for minority classes
(especially deep sleep) still has large room for improvement. A
possible reason could be that the basic resampling techniques
introduced extra noise to the data by affecting the variance of the
features, which exacerbated dataset shift and adversely affected
classification accuracy. Future studies may explore advanced
techniques for handling imbalanced dataset, such as ensemble
methods (54) and cost-sensitive learning (55).

4.3.2. Challenge 2: Dataset Shift Due to

Intra/Inter-Individual Variability in Sleep Structure
Another issue closely related to dataset characteristics is the
dataset shift problem which refers to the possible differences
in the data distribution for training and test data (40, 56).
Data shift is a pertinent issue in sleep staging due to day-
to-day and inter-individual variability in sleep structure (57,
58). This has been confirmed in the present study using
the AD statistic. Dataset shift invalidates the assumption of
many supervised learning algorithms that the joint probability
distribution remains unchanged between training and testing. It
could be a major reason for the high variability of the model
performance across participants in this study and in Walch et al.
(35).While the issue of dataset shift was not exclusively addressed
in this study, future research may employ methods, such as
importance-weighted cross validation (IWCV) (59), subclass re-
estimation (60), GP-based feature extraction (61) and transfer
learning (62–64).

4.3.3. Challenge 3: Lacking a Framework for Model

Performance Evaluation
Machine learning based sleep staging also face the challenge
of lacking a framework for model performance evaluation. No
consensus has been reached so far as to which measures yield the
most objective and unbiased evaluation on sleep staging models.
This study evaluates model performance using three measures,
which demonstrates slightly different results with varied level
of statistical significance. While performance measures, such
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as overall per-epoch accuracy and Cohen’s Kappa have been
routinely used in previous studies, these measures are not
considered as legitimate for imbalanced classification in the
machine learning community. Performance measures, such as
MMCC adopted in this study may be a promising alternative,
but a cut-off value for good performance is yet to be decided.
Furthermore, the performance evaluation in this study assumed
equal importance of all sleep stages, whereas in practice a
certain sleep stage may hold more clinical significance than other
sleep stages. For example, the diagnosis of narcolepsy requires
the accurate detection of REM sleep. To this end, a universal
framework for model performance evaluation should be able to
accommodate a wide range of application scenarios.

4.4. Limitations of Present Study
The present study has two major limitations. First, a single
channel medical EEG device was used as the reference
instead of the gold standard PSG. Data recorded using
this device may contain noise that negatively affected the
supervised model training process. Second, the robustness of
the model performance on minor classes–especially deep sleep
and wakefulness–demands further improvement. While the
macroscopic performance of the two-level models demonstrated
good agreement for light sleep, REM sleep and wakefulness,
epoch-wise inspection showed that improvement in microscopic
performance was limited to light sleep. It was also observed
that the model performance heavily relied on the choice of the
machine learning techniques and the parameter tuning. These
are likely the consequence of the data imbalance and dataset
shift issues, which was further exacerbated by the relatively small
size of the training dataset. Our further research will focus on
addressing these limitations through improving research design

(e.g., increasing sample size and using PSG data as the ground
truth) and applying advanced machine learning techniques (e.g.,
online machine learning and transfer learning).
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