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Abstract
Background Glioblastoma is the most common malignant brain tumor in human adults. Despite several improvements in
resective as well as adjuvant therapy over the last decades, its overall prognosis remains poor. As a means of improving
patient outcome, the possibility of enhancing radiation response by using radiosensitizing agents has been tested in an
array of studies.
Methods A comprehensive review of clinical trials involving radiation therapy in combination with radiosensitizing agents
on patients diagnosed with glioblastoma was performed in the National Center for Biotechnology Information’s PubMed
database.
Results A total of 96 papers addressing this matter were published between 1976 and 2021, of which 63 matched the
subject of this paper. All papers were reviewed, and their findings discussed in the context of their underlining mechanisms
of radiosensitization.
Conclusion In the history of glioblastoma treatment, several approaches of optimizing radiation-effectiveness using ra-
diosensitizers have been made. Even though several different strategies and agents have been explored, clear evidence of
improved patient outcome is still missing. Tissue-selectiveness and penetration of the blood–brain barrier seem to be major
roadblocks; nevertheless, modern strategies try to circumvent these obstacles, using novel sensitizers based on preclinical
data or alternative ways of delivery.
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BNCT Boron neutron capture therapy
CCNU Lomustine
CF Conventional fractions
CFRT Conventionally fractionated radiotherapy
CR Complete response
CRA Cis-retinoic acid
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DFMO Difluoromethylornithine
EBRT External beam radiotherapy
GBM Glioblastoma multiforme
HFRT Hyperfractionated radiotherapy
iv intravenous infusion
MGd Motexafin gadolinium
MGMT O6-methylguanine DNA methyltransferase
MTD Maximum tolerated dose
N/A Not available
OS Overall survival
OSR Overall survival rate
PARP Poly(ADP-ribose) polymerase
PARPi PARP inhibitor
PCV Procarbazine + Lomustine + Vincristine combina-

tion chemotherapy
PR Partial response
RT Radiation therapy
sc Subcutaneous injection
tid ter in die, three times a day
TMZ Temozolomide
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TTP Time to progression
5-FU 5-Fluorouracil

Introduction

Glioblastoma multiforme (GBM) is the most common ma-
lignant brain tumor in adults. Today’s standard therapy in-
volves resective surgery as well as adjuvant chemoradiation
followed by subsequent chemotherapy. But even though re-
search in this field has improved patient outcome by opti-
mizing surgical as well as adjuvant strategies [1–3], over-
all prognosis of this tumor entity remains poor. Clinical
courses are typically branded by local relapse adjacent to
the primary tumor site, often limiting the therapeutic pos-
sibilities of re-resection or re-administration of radiation
therapy (RT).

Several attempts were made to improve patient outcome
by enhancement of radiation response via radiosensitizers.
With multiple possible approaches of targeting this issue,
for instance by reducing radioresistance deriving from tu-
mor hypoxia, generating reactive oxygen species, or inter-
fering with the repair of radiation-induced DNA damage, an
array of agents have been evaluated in clinical trials in this
regard. Nevertheless, the prognosis of glioblastoma remains
inadequate in the 21st century. The paper at hand aims to
give a comprehensive overview over past approaches, find-
ings and problems concerning radiosensitizing agents in
glioma therapy, as well as the possible future directions in
this field.

Methods

A comprehensive search was performed in the National
Center for Biotechnology Information’s (NCBI) PubMed
database, via advanced search. Studies were included or
excluded based on the presence or absence of a therapy
scheme including a radiosensitizing agent during radia-
tion therapy on one or multiple cohorts of patients that
included diagnosed glioblastoma multiforme. The source
was last consorted 18 December 2021. MeSH (medical
subject headings) terms as well as unspecified keywords
were combined in the search term ((glioblastoma multi-
forme[All]) OR (glioblastoma[MeSH Terms])) AND ((ra-
diosensitizer[MeSH Terms]) OR (radiosensitizing[All]))
AND ((radiation therapy[MeSH Terms]) OR (ionizing ra-
diation [All])), filtering for all clinical trials on patients with
glioblastoma multiforme with involvement of radiosensi-
tizing agents. Trials were grouped together based on the
respective agent and underlying mechanism and trial data
were summarized, specifying dosing of the radiosensi-

tizer as well as the radiation regimen, patient number and
outcome. Not available (N/A) data were labeled as such.

Results

A total of 96 publications on clinical trials involving ra-
diosensitizing agents and glioblastoma were registered be-
tween 1976 and 2021. All publications were reviewed for
relevance regarding the paper at hand. 33 publications were
excluded because of unfitting context—several of these tri-
als evaluated the issue of photosensitization in glioma ther-
apy. Since this matter is not only related to the subject of
this review, but the administered agent (5-aminolevulinic
acid) might also play a role in future developments of ra-
diosensitizing research, it will be addressed separately at
the end of the discussion. The remaining 63 clinical trials
were assessed and will be discussed with reference to the
underlying mechanisms concerning their findings as well
as subsequent developments in the use of the specific agent
in glioblastoma therapy.

The different agents addressed in this article will be sum-
marized in groups, based on the underlying mechanisms of
increasing the effectiveness of therapeutic ionizing radia-
tion.

Targeting tumor hypoxia

Glioblastoma multiforme (GBM) is a tumor entity known
for substantial hypoxic development. Furthermore, tumor
hypoxia plays an important role as mediator of radioresis-
tance, limiting the damage caused by ionizing irradiation
based on reduction of oxidative stress as well as limitation
of O2-mediated fixation of radiation-induced DNA damage.
Several drugs aim to optimize perfusion and tissue oxy-
genation during radiotherapy (RT), trying to overcome this
obstacle.

Nitroimidazoles

The earliest approach reviewed in this abstract was pub-
lished in 1976: based on promising preclinical data [4],
Urtasun et al. randomized a cohort of 31 patients with daily
metronidazole during the 18-day course of 60Co-irradiation
with opposing fields of two thirds of the brain versus ra-
diation alone. Resulting in a statistically significant better
time to progression (TTP) and overall survival (OS, median
26 vs 15 weeks) in the experimental treatment group, the
authors attributed the effect to a delay of tumor regrowth re-
sulting from “a higher cell inactivation of the radioresistant
hypoxic cell population” [5]. Preclinical results had already
shown metronidazole to be a potent radiosensitizer, espe-
cially in hypoxic cells based on further oxidization of radi-
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ation-induced oxidized lesions [4]. Subsequent trials were
performed with its more potent successor misonidazole:
in 1984, Fulton et al. followed up on the previous study
combining this second-generation nitroimidazole with hy-
perfractionated radiotherapy (HFRT) and conventional frac-
tions (CF). But while a multiple daily fractionated radiation
therapy seemed beneficial, no significant improvement was
obtained by the addition of the radiosensitizer [6]. A Vi-
enna Study Group reported similar results the same year,
showing no statistical significance concerning survival im-
provement [7]. Both study groups described low evidence
of side effects during initial treatment, but after emerging
evidence of accumulating toxicity in the form of periph-
eral neuropathy [8], studies shifted from using misonida-
zole to the third-generation drug etanidazole. Publications
from Harvard Medical School reported feasibility of its
use via continuous infusions during brachytherapy [9] as
well as accelerated external beam radiotherapy (EBRT) for
glioblastoma [10] and children’s brain stem glioma [11]
with neuropathic symptoms in higher doses still defining
the maximum tolerated dose. A follow-up on this trial by
Chang et al. found the treatment to be well tolerated, but
without improvement of survival compared to other treat-
ment concepts [12]. Subsequently, after several trials with-
out evidence of benefit regarding patient outcome, the use
of nitroimidazoles in oncology shifted. With their affinity
to hypoxic tissue proven beneficial in glioma research, ni-
troimidazole derivatives are being investigated in form of
functional PET imaging for mapping tumor hypoxia with
[F18]FETA or [F18]MISO imaging [13]. Clinical impact
of this procedure remains to be demonstrated at this point.

Table 1 Trials evaluating nitroimidazoles as radiosensitizers, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Urtasun
et al. [5]

1976 Metronidazole 6g/m2 3 times
a week

36 3000 rads in 9 fractions (60Co),
three times a week

Median TTP: 4.5 months
Median OS: 26 weeks

Fulton
et al. [6]

1984 Misonidazole 1.25g/m2

3 times weekly
128
(89)

58Gy in 30 fractions (CF) vs
61.41Gy in 69 fractions
(3× daily HFRT)

Median OS: 50 weeks
(HFRT+MISO) vs 29 weeks
(CF) vs 45 weeks (HFRT)

Stadler
et al. [7]

1984 Misonidazole 2.1–2.7g/m2

twice a week
45 66.5Gy in 31 fractions Median OS 13.8 months

(vs 9.8 months RT alone)

Coleman
et al. [9]

1992 Etanidazole 8–24g/m2

continuous over
48–96h

78
(42)

10Gy/day brachytherapy MTD of 96h infusion is 23g/m2

Riese
et al. [10]

1994 Etanidazole 10–36g/m2

continuously
70
(51)

40Gy in 20 fractions bid,
+20Gy in 10 fractions
vs 50Gy 125I-Brachy (4–5 fx)

MTD: 26g/m2 for Brachyther-
apy,
34g/m2 for External Beam Ra-
diotherapy (EBRT)

Chang
et al. [12]

1998 Etanidazole 10–36g/m2 con-
tinuously

70
(51)

40Gy in 20 fractions bid,
+20Gy in 10 fractions
vs 50Gy 125I-Brachy (4–5 fx)

Median OS: 1.1 years (GBM)

Marcus
et al. [11]

2003 Etanidazole 1.8–2.4g/m2

daily
18 63–66Gy in 42–44 fractions bid MTD: 42g/m2 in children with

brain stem glioma

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 1 summarizes the published trials evaluating nitroim-
idazoles as radiosensitizers.

Hyperbaric oxygen

The concept of using hyperbaric oxygen to increase tis-
sue oxygenation and overcome radioresistance has been ex-
plored for glioma treatment early on. In 1977, Chang et al.
reported on a group of 80 patients randomized to standard
radiation under either atmospheric air (n= 42) or hyperbaric
oxygen (n= 38). With median survival of 38 weeks for the
experimental group and 31 weeks for the control group,
statistical significance was not obtained [14], but showed
a trend encouraging further evaluation. Since setup diffi-
culties arose from the use of hyperbaric oxygen during ra-
diation treatment and preclinical data had proven feasibility
of a sequential approach [15], subsequent studies focused
on the effects of RT shortly after the use of hyperbaric
oxygen. Kohshi et al. had already proven this concept to
be applicable to patients with residual tumor after resec-
tion, combining hyperbaric oxygen with nitrosourea-based
chemotherapy and external beam radiotherapy and found
better treatment response when compared to a control group
[16]. These results were later confirmed in other trials com-
bining radiation and hyperbaric oxygen with nitrosourea-
based chemotherapy [17–19]. Viability of RT after hyper-
baric oxygen with overall low side effects was also proven
for combined modality treatment alongside temozolomide
(TMZ, the current therapy standard) throughout dose es-
calation to the surrounding edema [20] and even before
fractionated stereotactic RT with a gamma unit in relapsed
patients [21]. Although overall results were promising, es-
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Table 2 Trials evaluating hyperbaric oxygen as radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Chang
et al.
[14]

1977 Hyperbaric oxygen N/A 80 N/A 18 months survival: 28% (vs
10% atmospheric air)
Median OS: 38 weeks (vs
31 weeks)

Kohshi
et al.
[16]

1996 Hyperbaric oxygen 60min of 100% O2, 2.5atm 21
(12)

50–71Gy in
20–30 fractions

PR or CR in 100% (vs 33%
atmospheric air)+ Nitrosourea 75mg/m2 d1+ d36

Beppu
et al.
[17]

2003 Hyperbaric oxygen 60min of 100% O2, 2.8atm 39
(29)

60Gy in 30 fractions Median TTP: 38 weeks
(GBM)+ Nitrosourea 80mg/m2 d1+ d36

+ IFN-beta 3 million IU/m2 3 times
a week

Ogawa
et al.
[18]

2003 Hyperbaric oxygen 30–60min of 100% O2, 2.8atm 21
(15)

60Gy in 30 fractions 1-year OSR: 83%
2-year OSR: 56%
Median TTP: 15 months

+ Procarbazine 90mg/m2 d1–14

+ Nitrosourea 80mg/m2 d1

+ Vincristine 0.5mg/m2 d1+ d8
Ogawa
et al.
[19]

2006 Hyperbaric oxygen 30–60min of 100% O2, 2.8atm 41
(31)

60Gy in 30 fractions Median TTP:12.3 months
Median OS: 17.3 months+ Procarbazine 90mg/m2 d1–14

+ Nitrosourea 80mg/m2 d1

+ Vincristine 0.5mg/m2 d1+ d8

Kohshi
et al.
[21]

2007 Hyperbaric oxygen 60min of 100% O2, 2.5atm 25
(11)

Stereotactic gam-
ma-radiation
Median of 22Gy in
8 fractions

Median OS: 11 months
(GBM)

Yahara
et al.
[20]

2017 Hyperbaric oxygen 60–90min of 100% O2, 2atm 24 40Gy in 20 fractions
16Gy Boost in
8 fractions

Median OS: 22.1 months
2-year OSR: 46.5%+ TMZ 75mg/m2 daily

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

pecially regarding the added effectiveness when combined
with TMZ, the lack of randomized controlled studies on
larger cohorts and comparison to standard treatment means
that the concept of hyperbaric oxygen as a way of overcom-
ing tumor hypoxia remains under investigation [22]. Table 2
summarizes the published trials evaluating hyperbaric oxy-
gen as a radiosensitizer.

Nicotinamide and carbogen

A similar approach to the use of hyperbaric oxygen is the
breathing of carbogen during RT, resulting in higher so-
lution of oxygen in blood plasma, leading to higher tis-
sue oxygenation. This concept is often combined with oral
intake of nicotinamide for better tumor perfusion by re-
ducing the obturation of supplying blood vessels which
results in a further decrease of tumor hypoxia [23]. Van
der Maazen et al. first explored this concept in 1994 in
a trial of 16 glioma patients and found results comparable
to historical control cohorts, but unexpectedly high acute
liver and subacute neurological side effects [24]. Pickles
et al. obtained similar results where 50% of the patients
developed grade 3 liver toxicity [25]. This led the authors
to the presumption that the combination of nicotinamide,

carbogen and radiation for glioma was to be used with cau-
tion, if at all. This was supported by the findings of several
other small cohort studies [26, 27]. The EORTC 22933 trial
evaluated the same concept on a larger scale, scrutinizing
the different modalities, comparing accelerated 60Gy RT
(2× 1.5Gy daily) with nicotinamide, carbogen or both in
a total of 107 patients. It found treatment arms including
nicotinamide showing higher rates of side effects and ther-
apy interruption without any evidence of benefit concern-
ing median survival in any treatment group (10.1 months
in RT+ carbogen, 9.7 months in RT+ nicotinamide, and
11.1 months in RT+ both) when compared to standard treat-
ment [28]. The concept was further challenged by Hulshof
et al. who demonstrated no benefit in tumor or brain perfu-
sion through the combination of both agents in a 99mTc-
HMPAO SPECT study [29] and furthermore showed that
treatment outcome could not be improved by the addi-
tion of intra-arterial cerebral chemotherapy with nimustine
(ACNU) [23].

As a result, with overall low evidence of any treatment
benefit, but consistent reports of high treatment toxicity,
the concept of improving tumor oxygenation by combining
oral nicotinamide and carbogen-breathing was abandoned.
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Table 3 Trials evaluating nicotinamide and carbogen as radiosensitizers, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Van der
Maazen et al.
[24]

1995 Carbogen
Nicotinamide

5min pre+ during RT
6g

16
(14)

50Gy in 25 fractions Median OS: 233 days
High hepatic and neurotoxicity

Pickles et al.
[25]

1996 Carbogen
Nicotinamide

5–15min pre RT
6g, later 80mg/kg

19 54Gy in 30 fractions
Later 50.1 in 30 frac-
tions

Median OS: 8.5 months
High hepatic toxicity

Fatigante
et al. [26]

1997 Carbogen
Nicotinamide

10min pre+ during
RT
4g+ 2g daily

36 60Gy in 40 fractions
bid

Median OS: 10 months
High gastric and hepatic toxicity

Lambin et al.
[27]

1997 Carbogen
Nicotinamide

5min pre+ during RT
6g

12 60Gy in 30 fractions
tid

Median OS: 7.2 months
High hepatic and neurotoxicity

Miralbell
et al. [28]

1999 Carbogen (C)
Nicotinamide (N)

5min pre+ during RT
85mg/kg

115 60Gy in 40 fractions
bid

Median OS: 11.1 months
(RT+ C+N) vs 10.1 months
(RT+ C)
vs 9.7 months (RT+N)

Simon et al.
[23]

2003 Carbogen
Nicotinamide
+ ACNU

5min pre+ during RT
85mg/kg
100mg/m2, 3 cycles

33 59.4Gy in 33 frac-
tions

Median OS: 36.7 weeks
High gastric toxicity

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 3 summarizes the published trials evaluating nicoti-
namide and carbogen as radiosensitizers.

Tipifarnib

Tipifarnib is a farnesyltransferase inhibitor with the poten-
tial of increasing radiosensitivity by blocking activity of
the RAS- and RhoB-oncogen pathways while also reduc-
ing tumor hypoxia by controlling MMP2 expression [30,
31]. After Cloughsey et al. reported evidence of activity
of the drug in recurrent glioma [32], several studies com-
bined tipifarnib with radiation therapy to exploit this mech-
anism. A 2007 phase I trial demonstrated good tolerance
of the concept when accompanied by 60Gy conventionally
fractionated radiotherapy (CFRT), evaluating a maximally
tolerated dose (MTD) of 200mg/day [31]. This was subse-
quently challenged by higher doses: Lustig et al. reported
on the use of tipifarnib in 28 patients with residual tumor,
depending on antiseizure comedication, but found no signs
of measurable responses in monthly MRIs and no benefit
in overall survival [33]. A later study also included con-
comitant therapy with temozolomide (TMZ) without dose-
limiting effects and acceptable results in short-term follow-
up [34]. These positive results were confirmed by Ducas-
sou et al. who followed up on their 2007 phase I trial [31]
with median OS of 80.3 weeks and TTP of 23.1 weeks
in 27 patients [35]. Since then, no further investigations of
this double effective farnesyltransferase inhibitor have been
made in glioma research. More recent approaches investi-
gating the use of tipifarnib in combination with the multiki-
nase inhibitor sorafenib (without the addition of RT) had to
be stopped prematurely before finding a MTD because of

severe side effects [36]. Table 4 summarizes the published
trials evaluating tipifarnib as a radiosensitizer.

Efaproxiral

Efaproxiral is a synthetic allosteric hemoglobin-modifier
that enhances tissue oxygenation in hypoxic areas by reduc-
ing the oxygen binding affinity through noncovalent bonds
to hemoglobin. Kleinberg et al. reported on a phase I trial
with 19 patients, showing good tolerance of combining
the drug (100mg/kg intravenous application directly before
daily RT) with 60Gy irradiation [37]. Following up on this
with a phase II trial in 2002 where 50 patients enrolled, they
found a median OS of 12.3 months and grade 2 toxicity of
24% [38]. Since this did not mark an improvement when
compared to other combined modality treatments, this con-
cept has not been explored further. Table 5 summarizes the
published trials evaluating efaproxiral as a radiosensitizer.

Tirapazamine

Tirapazamine is a benzotriazine compound that can be re-
duced to hydroxy radicals in hypoxic cells. Its combination
with CFRT was evaluated in 2002 in a single phase II study
by Del Rowe et al. with 124 patients [39]. A statistically
significant benefit in overall survival was not discovered
with median survival varying from 1.3 to 27.4 months
in three different classes (divided according to patient
and tumor characteristics to achieve comparability with
a homogenous standard population of the model based on
a RTOG database of 1500 cases). Median overall survival
(10.8 months vs 9.5 months) as well as treatment tolerance
was better in lower drug levels (159 vs 260mg/m2 per in-
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Table 4 Trials evaluating tipifarnib as radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation
regimen

Results

Moyal et al.
[31]

2007 Tipifarnib 1 week before, during and after RT,
starting at 200mg/day

13 60Gy in
30 fractions

200mg/day tipifarnib is well
tolerated
Median OS: 12 months

Lustig et al.
[33]

2008 Tipifarnib 300 or 600mg bid,
3 weeks on, 1 week off
Three cycles

28 60Gy in
30 fractions

Median OS: 234.5 days
No measurable response or
improvement

Nghiemphu
et al. [34]

2011 Tipifarnib 5–9 days pre and during RT
3 weeks on, 1 week off

51 60Gy in
30 fractions

MTD: 300mg bid
Tolerated with concurrent TMZ

+ TMZ 75mg/m2 (partially)

Ducassou
et al. [35]

2013 Tipifarnib 100mg bid 1 week before and dur-
ing RT

27 60Gy in
30 fractions

Median TTP: 23.1 weeks
Median OS: 80.3 weeks

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 5 Trials evaluating efaproxiral as radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation
regimen

Results

Kleinberg et al.
[37]

1999 Efaproxiral 100mg/kg iv over 1h
before RT

19 60Gy in
30 fractions

Treatment was well tolerated
Increased oxygen unloading

Kleinberg et al.
[38]

2002 Efaproxiral 100mg/kg iv over 30min
before RT

50 60Gy in
30 fractions

Median OS: 12.3 months

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 6 Trials evaluating tirapazamine as radiosensitizer

Author Year Agent Dose n Radiation
regime

Results

Del Rowe et al.
[39]

2000 Tirapazamine 159 or 260mg/m2

3× a week, 12× overall
124 60Gy in

30 fractions
Median OS: 10.8 months (159mg/m2)
vs 9.5 months (260mg/m2)

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

fusion). It is noticeable that the treatment was comparable
to combination treatment of 60Gy RT with nitrosourea-
based chemotherapy in the matched analysis. Since then,
several trials have explored the use of tirapazamine in other
tumor entities such as head and neck as well as gyne-
cological cancers, but no further studies included glioma
patients. Table 6 summarizes the published trial evaluating
tirapazamine as a radiosensitizer.

Interfering with repair of radiation-induced damage

Cytotoxic properties of ionizing radiation are diverse and
can be subsumed into direct and indirect effects, leading to
damage in cell components or in the DNA itself. Several
radiosensitizers aim to stabilize the different types of dam-
age (especially DNA damage) by preventing or interfering
with cellular repair mechanisms.

Halogenated pyrimidines

The halogenated pyrimidines bromodeoxyuridine (BUdR)
and iododeoxyuridine (IUdR) resemble the chemotherapeu-

tic family of antimetabolites: after incorporation, dividing
cells use them as a substitute for thymine in DNA synthesis
or repair, resulting in higher vulnerability of cells with high
mitotic index to primary or secondary radiation-induced
DNA damage, such as single- or double-strand breaks or
secondary damage from free radicals [40, 41]. To achieve
this, a continuous supply of the drug with long-term intra-
venous infusion is needed. The search for optimal applica-
tion schemes is a key factor in all research regarding this
matter. The first approaches of Jackson et al. in 1987 which
combined BUdRwith conventionally fractionated and IUdR
with hyperfractionated RT found no major differences be-
tween the two agents regarding survival (which was com-
parable to other combined-modality treatments), but higher
incidences of phototoxicity and dermatologic side effects in
short infusion regimens of BUdR (12h infusions) [42]. In
long-term infusion regimens (24h infusions), hematologi-
cal side effects were the main dose-limiting factor, as they
were for treatment with IUdR as well. Further investiga-
tion of the use of BUdR by Matsutani et al. found simi-
lar results in 1988 [43], whereas Greenberg et al. assayed
means to reduce systemic affection of the treatment. By
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direct intra-arterial infusion to the carotid arteries via infu-
sion pump, the group aimed to prevent myelosuppression
and skin reactions with lower drug doses and more direct
delivery to the tumor site [44]. Overall toxicity was reduced
and survival in the small cohort (18 patients, 15 with GBM)
was better than previous results. Following them, the con-
cept of intra-arterial infusion was further tested by Hegarty
et al. with similar results [45] and evaluated concerning
feasibility of co-administration of 5-fluorouracil (5-FU) for
further radiosensitization [46]. But since none of the men-
tioned studies generated OS improvement when compared
to other combined-modality approaches, the increased risk
of long-term intra-arterial infusion over the long course of
radiation treatment for malignant glioma was not deemed
suitable. Meanwhile, other groups further investigated in-
travenous concepts, focusing on finding the optimal dura-
tion for drug administration [47] as well as possible bene-
fits when using hyperfractionated RT [48, 49]. Neither of
the trials revealed clear evidence of a survival benefit and
while IUdR had shown to be less photosensitizing [42, 48],

Table 7 Trials evaluating halogenated pyrimidines as radiosensitizers, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Jackson
et al. [42]

1987 BUdR 650mg/m2/day as 12h or
24h-iv, 2× 14 days

60
(50)

65–70Gy in 35 fractions
(BUdR)

Median OS: 13 months
IUdR vs BUdR: no survival
differenceIUdR 1000mg/m2/day as 12h or

24h-iv, 2× 14 days
45Gy in 30 fractions bid
+25Gy Boost in 20 fractions
bid (IUdR)

Matsutani
et al. [43]

1988 BUdR 800–1000mg/m2/day for
5 days a week

23
(7)

50–60Gy in 25–30 fractions Median TTP (GBM):
37 weeks

Greenberg
et al. [44]

1988 BUdR 400mg/m2/day as 24h-iv for
8 weeks

18
(15)

59.4Gy in 33 fractions Median OS: 22 months

Hegarty
et al. [45]

1990 BUdR 400–600mg/m2/day as
24h-iv, 8.5 weeks

23
(18)

59.4Gy in 33 fractions Median OS: 20 months

Phillips
et al. [51]

1991 BUdR 800mg/m2/day as 24h-iv for
4 days a week

160 60Gy in 30 fractions Median OS: 55.7 weeks
Median TTP: 34.5 weeks

Goffman
et al. [48]

1992 IUdR 1000mg/m2/day as 12h or
24h-iv, 2× 14 days

45 45Gy in 30 fractions bid
+25–30Gy boost in 20 frac-
tions bid

No significant benefit of
IUdR
Median OS: 11 months

Vokes
et al. [50]

1993 IUdR 125–500mg/m2/day as
24h-iv, 2× 5 days

15
(11)

65Gy in 36 fractions Significant systemic toxicity
when combined with 5-FU
and HU+ 5-FU 300mg/m2/day, 5 days

+ Hydroxy-
urea

500mg tid, 11 doses

Urtasun
et al. [47]

1993 IUdR 1000mg/m2/day as 24h-iv,
48h-iv or 96h-iv

79
(56)

60.16Gy in 32 fractions Median OS: 13.4 months
for 96h-iv (vs 10.5 months
for 48h-iv vs 11 months for
24h-iv)

Greenberg
et al. [46]

1994 BUdR 400mg/m2/day 24h-iv 62
(58)

59.4Gy in 33 fractions Median OS: 18 months
Co-delivery with 5-FU
tolerable

+ 5-FU 5mg/m2/day
iv for 8.5 weeks

Groves
et al. [49]

1999 BUdR 2.1g/m2/day as 24h-iv,
2× 4 days

88 55.5–57Gy in 30 fractions tid,
one week on, one week off

Median OS: 50 weeks,
Median TTP: 28.5 weeks
High derma- and hematolog-
ical toxicity

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

most investigators reported high incidence of hematologi-
cal toxicity regardless of the agent. Especially in combi-
nation with systemic chemotherapy like 5-FU [50] or the
PCV scheme [51], the use of iv radiosensitization with halo-
genated pyrimidines caused increased amounts of grade III
and IV toxicity, last-mentioned in a large phase III trial
(RTOG 9404) on patients with anaplastic astrocytoma in
2004, which also concluded a lack of survival benefit [52].
With emerging relevance of combination treatment of RT
and temozolomide or nitrosoureas (both also having accom-
panying potential for myelosuppression and lymphopenia,
a side effect with unclear relevance concerning treatment
outcome [53]), the use of halogenated pyrimidines as ra-
diosensitizers for glioma treatment did not prove to be prof-
itable enough and was abandoned. Table 7 summarizes the
published trials evaluating halogenated pyrimidines as ra-
diosensitizers.
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Table 8 Trials evaluating PARP inhibitors as radiosensitizers, sorted by publication year

Author Year Agent Dose n Radiation
regimen

Results

Su et al.
[54]

2014 Veliparib 20–30mg/m2/
dose bid

31 (3) N/A Overall tolerable combination with TMZ,
increased hematotoxicity

+ TMZ (par-
tially)

180mg/m2/day

Lesueur
et al. [61]

2019 Olaparib 50–200mg bid 79 60Gy in
30 fractions

Trial ongoing, evaluating feasibility and
outcome of RT+TMZ+ PARPi+TMZ 75mg/m2

Sim et al.
[60]

2021 Veliparib 200mg bid 125 60Gy in
30 fractions

Median OS: 12.7 (RT+ TMZ+PARPi) vs
12.8 months (RT+ TMZ alone)
Feasibility of RT+ adjuvant TMZ+PARPi

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

PARP inhibitors

The poly(ADP-ribose) polymerase (PARP) proteins are
intracellular mediators for discovery and management
of DNA damage by activating pathways of homologous
recombination (for repair of single-strand breaks) and
nonhomologous end-joining (for repair of double-strand
breaks) [54, 55]. The inhibition of these signaling pro-
teins via PARP inhibitors (PARPi) is being reviewed for
potential radiosensitizing as well as chemosensitizing prop-
erties. Based on the verification of PARP activity in human
glioblastoma by Galia et al. in 2012 [56], several studies
have evaluated these effects. Su et al. reported on a series
of 29 children with recurrent tumors of the central nervous
system (three with GBM), treated with the PARP inhibitor
veliparib in combination with TMZ and (mostly, 90%)
RT. With overall acceptable tolerability of the combined
modality treatment, but increased instances of hematotox-
icity, the group concluded with an optimistic subsumption
of the combination [54]. A follow-up study on children
with diffuse pontine glioma was initiated but failed to
improve survival [57]. In adult patients, Robins et al. eval-
uated veliparib as an addition to TMZ chemotherapy (for
chemosensitization) in patients with recurrent glioblastoma,
and experienced heightened accounts of myelosuppression
[58] as well. Hanna et al. found similar results regard-
ing the PARP inhibitor olaparib in the OPARATIC trial
[59]. However, their evaluation of tissue penetration and
radiation response in vitro found activity of the agent in
radiosensitizing doses in glioma tissue. Nevertheless, a trial
by Sim et al. on 125 patients where veliparib was combined
with glioblastoma treatment, consisting of 60Gy irradiation
and sequential temozolomide did not show survival benefit
(but treatment was tolerated well) [60], while another trial
using olaparib instead of veliparib (OLA-TMZ-RTE-01) is
ongoing momentarily [61]. So, while the underlining mech-
anisms of PARP inhibition seem to be promising for glioma
treatment, evidence of benefit regarding patient outcome

has not yet been found. Table 8 summarizes the published
trials evaluating PARP inhibitors as radiosensitizers.

Motexafin gadolinium (MGd)

Motexafin gadolinium (MGd) is a compound of gadolinium
and an expanded porphyrin, resulting in texaphyrin. Phar-
maceuticals of this class have been investigated as radiosen-
sitizers in combination with cerebral irradiation in several
tumor entities [62–66], relying on the additional genera-
tion of reactive oxygen species and interference with repair
mechanisms of radiation-induced damage which lead to in-
creased cell death [67, 68]. Wu et al. demonstrated promis-
ing data for use in glioma treatment in 2006: MGd uptake
in human GBM was proven in vivo without penetration
of the drug into areas with intact blood–brain barrier, po-
tentially increasing RT effectiveness in tumor tissue, while
having little to no impact on normal tissue complications
[69]. Based on this, a phase I trial was established which
showed good tolerance of the concept when combined with
standard radiation treatment (59.4Gy in 33 fractions) and
a trend towards a survival benefit (16.1 months compared to
11.8 months in a matched analysis with the RTOG database)
[67]. But a follow-up phase II trial by Bachman et al. in
2015, which combined daily MGd before RT with standard
TMZ chemotherapy, did not increase survival benefit when
compared to other combined modality treatment (median
OS: 15.6 months) [70]. A possible reason for the lack of
benefit might be the reduced tissue penetration of MGd
in border regions of the tumor tissue, which are precisely
the areas with high risk for relapse [69]. Table 9 summa-
rizes the published trials evaluating motexafin gadolinium
as a radiosensitizer.

Difluoromethylornithine (DFMO)

DFMO is a polyamine synthesis inhibitor which has been
used in different contexts as a radiosensitizer [71, 72].
While the exact mechanism remains not fully understood
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Table 9 Trials evaluating motexafin gadolinium (MGd) as a radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation
regimen

Results

Ford et al.
[67]

2007 Motexafin
Gadolinium

10–22× 4–5.2mg/kg/day 33 59.4Gy in
33 fractions

MTD: 5mg/kg/day
Median OS: 16.1 months

Bachman
et al. [70]

2015 Motexafin
Gadolinium

3–5mg/kg daily pre
RT

118 60Gy in
30 fractions

MTD MGd: 5mg/kg/day
Median OS: 15.6 months
RT+MGd+TMZ was well tolerated+ TMZ 75mg/m2/day

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 10 Trials evaluating difluoromethylornithine (DFMO) as a radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Prados
et al. [73]

2001 DFMO 1.8gm/m2

tid
231 70.4Gy in 44 fractions bid (HFRT)

vs 59.4Gy in 33 fractions (CFRT)
Median OS: HFRT 40 weeks,
HFRT+DFMO: 42 weeks
CFRT: 37 weeks
CFRT+DFMO: 44 weeks

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 11 Trials evaluating interferon-alpha2a as a radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation
regimen

Results

Dillman et al.
[75]

1995 IFN-alpha2a 3–5 million IU sc.
for 3 days/week

19 (12) 59.4Gy in
33 fractions

Median OS:
7.4 months

Dillman et al.
[77]

2001 IFN-alpha2a 3–6 million IU s.c. qid
for 3 days/week

40 (36) 59.4Gy in
33 fractions

Median OS:
9.3 months

CRA 1mg/kg qid
for 5 days/weeks

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

[71], the reduction of cellular polyamine seems to prevent
DNA stabilization, leading to radiosensitization by reduced
recovery of damage inflicted by ionizing radiation [73]. Af-
ter promising preclinical [71] and clinical [72] results in
other tumor entities, Prados et al. enrolled 231 patients in
a large phase III trial to investigate the benefit of DFMO
when added to either conventionally (CFRT) or hyperfrac-
tionated (HFRT) radiotherapy in patients with newly diag-
nosed glioblastoma [73]. While overall little side effects
were reported, DFMO arms showed increased low-grade
toxicity, a few cases of hearing impairment, and did not con-
clude a statistically significant impact on progression-free
or overall survival. Hyperfractionated radiotherapy also did
not show an advantage over conventionally fractionated RT;
therefore, the investigators concluded with the recommen-
dation of neither of the two evaluated concepts (addition
of DFMO and HFRT). Table 10 summarizes the published
trial evaluating DFMO as a radiosensitizer.

Enhancing apoptotic pathways

Scientific as well as technical advances have and will allow
for a better, more detailed understanding of cellular mecha-
nisms of interaction and communication as well as invasion

strategies into cells and their internal signaling pathways.
This leads to an increase of possible targets in modern on-
cology with more starting points for targeted therapies, but
also agents of radiosensitization, leading to apoptosis in an
array of interactions.

Interferon-alpha2a

Recombinant interferons are used in cancer treatment as
immunomodulators with antiproliferative and antiangio-
genetic properties [74]. Via pathways of enhancing p53,
they also yield radiosensitizing potential by increasing
the amount of cell death by radiation-induced apopto-
sis [74]. Dillmann et al. explored this concept in 1995
in a phase I/II trial with little toxicity [75], combined
with conventionally fractionated radiotherapy for patients
with newly diagnosed glioblastoma. A follow-up trial also
explored the addition of cis-retinoic acid (CRA) to the
treatment, which had shown an additive effect in combina-
tion with interferon-alpha in previous studies [76]. Again,
feasibility of the concept was proven, but without establish-
ing a benefit in survival when compared to other treatments
[77]. Table 11 summarizes the published trials evaluating
interferon-alpha2a as a radiosensitizer.
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Table 12 Trials evaluating lovastatin as a radiosensitizer, sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Larner et al. [80] 1998 Lovastatin N/A 18 N/A Combination with RT is well tolerated

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Table 13 Trials evaluating boron neutron capture therapy (BNCT) sorted by publication year

Author Year Agent Dose n Radiation regimen Results

Coderre et al.
[84]

1997 BPA 130–250mg/kg 18 Maximum of 52.6± 4.9Gy-Eq
Minimum of 25.2± 4.2Gy-Eq
to the tumor

Feasibility of the concept, no
adverse events

Takagaki
et al. [85]

1997 BSH 20mg/kg 11 N/A 2-year OSR: 50%

Chadha et al.
[86]

1998 BPA 250mg/kg 10 Minimum of 20 to 32.3Gy-Eq to the
tumor

Median OS: 13.5 months

Palmer
et al. [83]

2002 BPA 250–350mg/kg 22 8.8–14.2Gy-Eq in 1–2 fractions Feasibility of the concept
Mean tumor dose: 25.7 RBE
Gy

Capala
et al. [87]

2003 BPA 900mg/kg 17 Maximum of 8.0–15.5Gy-Eq
Average dose 3.3–6.1Gy-Eq to the brain

No severe acute toxicities

Diaz et al.
[96]

2003 BPA 250–330mg/kg 53 Total of 8.9–15.9Gy-Eq delivered in
1–3 fields

Feasibility of the concept

Kageji
et al. [88]

2004 BSH N/A 18
(16)

Maximum of 15–18Gy-Eq to the tumor Maximum vascular dose
should be below 12Gy

Kiger
et al. [89]

2004 BPA 14g/m2 6 Maximum 7–7.7Gy-Eq to the whole
brain in two fractions

Median tumor dose: 57.8 RBE
Gy

Yamamoto
et al. [90]

2004 BSH 100mg/kg 9 (5) Maximum vascular dose 10.8Gy-Eq, 1
intraoperative fraction

Median OS: 23.2 months
(GBM)

Miyatake
et al. [91]

2005 BSH
& BPA

5g
250mg/kg

13
(10)

Maximum of 13Gy-Eq to the normal
brain

Mean volumetric reduction:
46.4%

Stenstam
et al. [98]

2007 BPA 900mg/kg 7 Minimum of 36.9Gy-Eq to the tumor
(mean)

Postmortem whole brain slices
showed local control in all
cases

Henriksson
et al. [100]

2008 BPA 900mg/kg 30 Average 3.2–6.1Gy-Eq to normal brain,
minimum of 15.4–54.3Gy-Eq to the
tumor

Median TTP: 5.8 months
Median OS: 14.2 months

Miyatake
et al. [92]

2009 BSH
& BPA

100mg/kg
250–600mg/kg

22
(19)

Maximum of 13Gy-Eq to the normal
brain

Median OS: 9.6 months
(rGBM)

Kawabata
et al. [93]

2009 BSH
& BPA

100mg/kg
250–700mg/kg

21 Maximum of 13–15Gy-Eq to the
normal brain, partially followed by
20–30Gy photons (11)

Median OS: 15.6 months vs
23.5 months in combination
with photons

Aiyama
et al. [95]

2011 BPA 250mg/kg 2 (1) Maximum of 12Gy-Eq to the normal
brain

No adverse events

Kankaanranta
et al. [97]

2011 BPA 350–450mg/kg 22
(20)

Maximum average 6Gy-Eq to normal
brain, maximum peak of 8Gy

MDT: 400mg/kg
Median OS: 7 months (rGBM)

n= number of patients included (number of patients with glioblastoma in parentheses if multiple entities were included)

Lovastatin

Lovastatin is a lipid-lowering drug that also influences radi-
ation sensibility in multiple ways: by interfering with sig-
naling pathways leading to apoptosis (such as p53), sen-
sibility to radiation-induced cell damage was found to be
increased [78], while also having protective capabilities in
endothelial tissue without impairing induction of double-
strand breaks [79]. A single trial in 1998 evaluated the ben-
efit of cotreatment with ionizing radiation (without specifi-

cation regarding dosage of the agent or radiation). The over-
all treatment was tolerated well, but the trial did not deliver
long-term results or follow-up investigations [80]. No fur-
ther trials concerning the use of statins as radiosensitizers
in glioma treatment have been published since. An analysis
of two glioblastoma trials in 2018 did not detect an impact
of comedication with statins (among others) concerning pa-
tient outcome [81]. Table 12 summarizes the published trial
evaluating lovastatin as a radiosensitizer.
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Boron neutron capture

While it is hardly comparable to standard photon irradia-
tion, the premise of radiosensitization in neutron irradiation
via boron neutron capture therapy (BNCT) shares similar-
ities. Infusions with stabilized boron-10 (in the form of p-
boronophenylalanine [BPA] or sodium borocaptate [BSH])
are used prior to thermal or epithermal neutron irradiation,
leading to higher energy transfer by producing high lin-
ear energy transfer particles with short range which causes
subsequent local cell death. With preferred uptake in tu-
mor tissue, the treatment aims to achieve high toxicity in
tumor cells with minimal risk of damaging surrounding tis-
sue [82]. Beginning in 1994, several study groups have
evaluated this concept as an alternative treatment method
for malignant glioma [82–85], optimizing the concepts of
dose delivery and monitoring [86–89] as well as explor-
ing concepts of intraoperative treatment [90], combination
of different boron sources (BPA+BSH, [91, 92]), different
types of radiation (neutrons+ photons, [93, 94]) and pal-
liative approaches [95]. But while several studies showed
promising results [89–92, 96, 97] as well as histopathologic
proof of treatment response [98, 99], the benefit did not ex-
ceed standard therapy with photon irradiation and concur-
rent chemotherapy with TMZ [100]. While evidence seems
to indicate a possible advantage for patients with unmethy-
lated MGMT promotor [101, 102], the overall small number
of participants in studies utilizing the concept of boron neu-
tron capture therapy does not yet allow a clear verdict on the
concept. Further randomized trials with larger patient num-
bers are needed [103], but the complexity of the treatment
as well as the required infrastructure seem to be consider-
able roadblocks in this regard [100]. The concept of par-
ticle irradiation for glioblastoma patients is also a present
topic in contemporary research [104]. Table 13 summarizes
the published trials evaluating BNCT in glioblastoma treat-
ment.

5-Aminolevolinic acid

5-Aminolevolinic acid (5-ALA) is a ketone carbon amino
acid with several interesting capabilities in glioma treat-
ment. So far, it is mainly used in resective surgery to in-
crease the extent of tumor resection via visualizing tissue
infiltration. Oral intake of pharmacological 5-ALA leads
to an accumulation in glioma tissue and enzymatic trans-
formation to protoporphyrin IX (PPIX), allowing for flu-
orescence-guided resection which has proven to increase
progression-free survival after surgery [105]. Furthermore,
stimulation of PPIX-enriched tissue with light of a cer-
tain wavelength and energy leads to induction of cell death,
making the treatment of glioblastoma patients with 5-ALA-
based photodynamic therapy (PDT) a valuable concept in

Hier steht eine Anzeige.
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cases with reduced resective potential [106]. In this anal-
ysis, multiple trials that were assessed as not fitting the
context of the matter at hand directly were covering PDT,
possibly due to the similarity of photosensitization to ra-
diosensitization. But while the impact of photodynamic and
surgical therapy with 5-ALA is covered elsewhere [107,
108], there is also evidence of radiosensitizing capability.
In vitro and rodent models have shown increased cell death
induced by mitochondrial oxidative stress and production of
reactive oxygen species after photon irradiation [109–111].
Additional experiments on other cell lines have proven this
effect to also occur under high energy photon beam irra-
diation with 15 MV, as used in modern radiation oncology
[112, 113], but trials involving human patients are still miss-
ing.

Radiosensitizing effects of chemotherapeutic drugs
in glioblastoma treatment

For the sake of completion, it should be stated that several
chemotherapeutic drugs also yield radiosensitizing poten-
tial. However, since their use in glioblastoma treatment de-
rives from their cytoreductive nature, and the accompanying
increase of effectiveness of RT is more of a side effect, we
will not fully cover the extent of reported trials, but address
the underlining mechanisms of radiosensitization concern-
ing the relevant agents of systemic glioma therapy.

Temozolomide

As an alkylating chemotherapeutic drug, temozolomide
has become standard treatment in systemic adjuvant ther-
apy for glioblastoma multiforme, based on the trial by
Stupp et al. [2]. By methylating radiation-induced lesions
such as double-strand breaks, preferably on the O6-atom
of adenine, temozolomide can stabilize is damage, lead-
ing to increased effectiveness of RT concomitant to TMZ
application [114]. Unfortunately, tumors expressing O6-
methylguanine DNA methyltransferase (MGMT) show in-
creased potential of repairing these lesions, which leads
to a decreased effectiveness of TMZ therapy in patients
with nonmethylated MGMT promotor [115], resulting in
poorer prognosis [116]. Scientific studies currently try to
overcome these limitations for example by using a com-
pound-drug to increase the alkylating effects in MGMT-
expressing tumor tissue [117].

Nitrosoureas

Nitrosoureas like ACNU, BCyNU and CCNU are alkylat-
ing substances with abilities of cross-linking DNA, work-
ing cell-cycle dependent and independent [118]. Herein, the
majority of activity seems to happen in the late S phase, the

most radioresistant phase of the cell cycle [119, 120], mak-
ing nitrosoureas a valuable asset to radiation therapy by tar-
geting resistant cells in recurrent glioma as well as in other
glioma entities like oligodendroglioma, e.g., in combina-
tions like the PCV scheme [118, 121, 122]. A novel com-
bination of CCNU and TMZ concurrent with RT evaluated
in the CeTeG/NOA-09 trial did show improved overall sur-
vival in patients with newly diagnosed MGMT-methylated
glioblastoma multiforme [3], but since possible downsides
regarding effectiveness of lomustine in subsequent recur-
rence are being discussed, the use of the combination is still
limited [123]. The additional intrinsic effect of nitrosoureas
of radiosensitization by inhibition of the glutathione reduc-
tase [119] in this combination is not yet fully understood.

Procarbazine

Procarbazine is an alkylating chemotherapeutic drug, used
as part of the PCV-combination scheme in glioma treat-
ment. But while the accompanying vincristine does not
seem to have radiosensitizing capabilities [124], such po-
tential was demonstrated for procarbazine in hypoxic cells,
based on preclinical data because of the embodied redox
potential of its structure [125]. Even though the combina-
tion of lomustine (CCNU) and vincristine is highly ben-
eficial in grade 2 and 3 glioma, especially regarding the
oligodendroglial subtype [126, 127], its use in the treat-
ment of glioblastoma seems to be of limited effectiveness
when compared to other regimens [3, 121, 122, 128].

Taxanes

Targeting the assembly of the mitotic spindle, the taxane
family of chemotherapeutic drugs disrupts the cell cy-
cle, resulting in a G2/M cell cycle arrest. This phase has
been proven to show increased sensitivity to ionizing ra-
diation, resulting in taxanes to be valuable radiosensitizers
[129]. Especially paclitaxel has been studied extensively for
glioblastoma in this regard [130–133]. At first, it showed
promising results, for example in combination with high
fraction doses [134], as an alternative treatment for older pa-
tients or with reduced performance status [135], but overall,
it showed little benefit when compared to other regimens.
PPX, a conjugate of paclitaxel and poly-L-glutamic acid
that showed increased radiosensitization in rodent models
[136], also initially resulted in increased progression-free
survival when combined with radiation and temozolomide
[137]. But a large follow-up study (BrUOG 244) could not
reproduce these benefits [138] and therefore, the concept
of taxanes as a radiosensitizers in glioma therapy has been
abandoned for the time being.
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5-Fluorouracil (5-FU)/capecitabine

5-Fluorouracil and its oral prodrug capecitabine, as mem-
bers of the family of antimetabolites, increase effectiveness
of ionizing radiation when administered simultaneously via
several mechanisms. They target and kill radioresistant cells
in the S phase, similar to how nitrosoureas [139] do, and
reduce the repair of induced DNA damage by blocking the
synthesis of thymidine [140]. 5-FU was used in glioma
treatment in combination with several other chemothera-
peutic agents [141–143] as well as radiosensitizers [46, 50],
but did not reach standard therapy status. Modern research
explored the continuous application of 5-FU via locally ap-
plied microspheres, a new concept with potential benefits
in glioma treatment with inherent radiosensitization [144,
145].

Gemcitabine

Gemcitabine is a deoxynucleoside analogue with radiosen-
sitizing qualities deriving from several mechanisms of
reducing DNA repair and lowering thresholds for apoptotic
pathways and redistributing cells in the cell cycle [146,
147]. Since it is also capable of passing the blood–tumor
barrier in human glioma [146] and its activity is ob-
servable in MGMT-methylated and -unmethylated tumors
[148], combination therapy has been explored in several
phase I and II trials but failed to improve survival outcome
[148–152]. Contemporary research explores novel drug-
conjugates and a different way of intratumoral delivery of
gemcitabine as injectable hydrogel in preclinical glioma
settings [153, 154].

Platinum derivates (cisplatin/carboplatin)

As alkylating chemotherapeutic agents, platinum derivates
cisplatin and carboplatin can synergize with ionizing ra-
diation via the inhibition of nonhomologous end joining
which results in the stabilization of radiation-induced dam-
age [155]. While the use of platinum-based therapy con-
current to radiation is a method of increasing therapeu-
tic effectiveness in a variety of malignancies, combination
schemes did not result in survival improvement for glioma
patients. Moreover, their use was associated with increased
treatment toxicity, limiting the applicable dose and there-
fore effectiveness [156, 157], possibly due to poor pene-
tration of the blood–brain barrier [158]. Newer approaches
try to circumvent this obstacle, for example with liposo-
mal-coated drugs, but have not yet reached clinical testing
[160–162]; this concept is also currently explored in similar
circumstances with doxorubicin in different tumor entities
[159].
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Bevacizumab

Glioblastoma multiforme is a tumor entity with a high
degree of vascular proliferation, a process reducing therapy
effectiveness due to inadequate vascularization leading to
tumor hypoxia and insufficient distribution of chemother-
apeutic agents [163, 164]. As a monoclonal antibody to
vascular endothelial growth factor A, bevacizumab presents
a therapy challenging this mechanism by reducing tumor
angiogenesis, thus increasing proper perfusion, and low-
ering hypoxia and therefore radioresistance [165]. Sev-
eral phase II trials showed promising results [166, 167],
but recent phase III trials did not find a survival bene-
fit [168–170]. Hence, the role of anti-VEGF therapy in
combined modality treatment remains unclear and its use
remains restricted to second line treatment of recurrent
glioma with high local variability regarding approval state
for this indication [123, 171].

Discussion

Despite major scientific efforts, the prognosis of patients
with glioblastoma multiforme remains poor. The use of flu-
orescence-guided resection and the introduction of temo-
zolomide as systemic treatment managed to achieve longer
sustained survival, and radiation therapy plays a key role
in postponing the seemingly inevitable relapse. Since tu-
mor recurrence mostly occurs in areas bordering on the
initial treatment site, the use of radiosensitizers seems to
be a feasible option to optimize local control. Clinical tri-
als have evaluated several different agents, aiming for in-
creased patient outcome so far, capitalizing on different
pathways of increasing the effectiveness on ionizing ra-
diation. The reduction of tumor hypoxia with agents like
nitroimidazoles or nicotinamide in combination with car-
bogen breathing peaked at a median OS of 13.8 months
(misonidazole [7]) and 11.1 months (nicotinamide [28])
but showed high incidents of neuropathic or intestinal side
effects. Other agents aimed to reduce DNA repair: halo-
genated pyrimidines achieved promising results in studies
with mixed tumor grades (up to 22 months [44]) but the
largest cohort of only glioblastoma patients did not ver-
ify a benefit (median OS 55.7 weeks [51]) and resulted in
increased toxicity. Novel approaches in this strategy, like
PARP inhibition or the use of compound-gadolinium also
failed to show statistically significant benefit as an asset to
the implemented Stupp regimen (MGd: 15.6 months [70],
PARPi: 12.7 months [60]). A very interesting approach is
the concept of BNCT, which has already shown some en-
couraging results (median OS of 23.2 months [90], 2-year
OSR of 50% [85]) but the complexity of the treatment re-

sults in overall low case numbers. Future studies with larger
cohorts are needed to validate this promising data.

All in all, while the variety of methods and agents ex-
amined for radiosensitizing benefit in glioblastoma therapy
is large, most substances either failed to improve survival
when compared to standard treatment or lack validation via
phase III trials with large cohorts. Thus, the combination of
radiotherapy with concurrent and adjuvant temozolomide
as introduced by Stupp et al. in 2005 (leading to a median
overall survival of 14.6 months in the respective trial) re-
mains the standard of care for glioblastoma and all future
therapy approaches will be measured against it. Trials like
Yahara et al. [20] demonstrated that the current standard
of the RT+ TMZ can be elevated even further when the
regimen is complemented by another method of radiosensi-
tization (in this case hyperbaric oxygen, leading to a median
OS of 22.1 months), but again, further research and lager
cohorts are needed.

However, while several chemotherapeutic drugs like
temozolomide in the standard Stupp regimen or new com-
binations (e.g., with lomustine [3]) also capitalize on the
inherent radiosensitizing effect of the compounds, most ad-
ditional agents failed to improve glioma therapy. Obstacles
often seemed to be penetration of the blood–brain barrier
and tumor selectiveness. In this regard, the photosensitizing
agent 5-aminolevolinic acid has also presented radiosensi-
tizing capabilities in preclinical trials. This substance has
proven its benefit concerning accumulation in glioma tissue
in the context of resective surgery and PDT, but clinical
studies are yet to confirm the approach of combining it with
ionizing radiation. A benefit of 5-ALA is its sparing of nor-
mal brain tissue and selectiveness to glioma cells because
of active uptake after passing the defective blood–brain
barrier and diffusion with surrounding edema [108]. Lim-
itations might derive from limited tissue penetration [172,
173], individual variations in the generation of the active
substance PPIX [174] and uncertainties regarding toxicity
of repeated administration of 5-ALA (based on the lack
of data). Whether this concept might result in a valuable
new treatment strategy or in a dead end is uncertain at this
point. Nevertheless, additional scientific effort is needed to
design other substances capable of increasing the effective-
ness of RT in glioblastoma with better tissue penetration
and ideally greater radiosensitizing capabilities.

Conclusion and outlook

Although initial results were often promising, the search for
ways to improve survival rates for patients with glioblas-
toma multiforme via radiosensitization has mostly been un-
successful. At our institution, we aim to further investi-
gate the safety and effectiveness of 5-ALA as a possible
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radiosensitizer in combination with standard ionizing irra-
diation for patients with glioblastoma. In addition, novel
agents, drug-conjugates or alternative approaches of deliv-
ery or sensitization are still being explored [175]. Scientific
effort regarding this topic still is far from complete.
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