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Purpose: To demonstrate that vessel selectivity in dynamic arterial spin labeling  
angiography can be achieved without any scan‐time penalty or noticeable loss of 
image quality compared with conventional arterial spin labeling angiography.
Methods: Simulations on a numerical phantom were used to assess whether the 
increased sparsity of vessel‐encoded angiograms compared with non‐vessel‐ 
encoded angiograms alone can improve reconstruction results in a compressed‐ 
sensing framework. Further simulations were performed to study whether the 
difference in relative sparsity between nonselective and vessel‐selective dynamic 
angiograms was sufficient to achieve similar image quality at matched scan times 
in the presence of noise. Finally, data were acquired from 5 healthy volunteers to 
validate the technique in vivo. All data, both simulated and in vivo, were sampled in 
2D using a golden‐angle radial trajectory and reconstructed by enforcing image do-
main sparsity and temporal smoothness on the angiograms in a parallel imaging and 
compressed‐sensing framework.
Results: Relative sparsity was established as a primary factor governing the recon-
struction fidelity. Using the proposed reconstruction scheme, differences between 
vessel‐selective and nonselective angiography were negligible compared with the 
dominant factor of total scan time in both simulations and in vivo experiments at ac-
celeration factors up to R = 34. The reconstruction quality was not heavily dependent 
on hand‐tuning the parameters of the reconstruction.
Conclusion: The increase in relative sparsity of vessel‐selective angiograms com-
pared with nonselective angiograms can be leveraged to achieve higher acceleration 
without loss of image quality, resulting in the acquisition of vessel‐selective informa-
tion at no scan‐time cost.
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1 |  INTRODUCTION

Angiographic methods are used to detect vascular abnormal-
ities such as aneurysms, atherosclerosis, and arteriovenous 
malformations. However, many of the commonly used tech-
niques for imaging the cerebral vasculature have associated 
risks. Digital subtraction angiography involves ionizing radi-
ation and risk of complications.1 In contrast‐enhanced mag-
netic resonance angiography (MRA), there are also concerns 
associated with gadolinium‐based contrast agents, which are 
unsuitable for patients with renal dysfunction2 and have been 
shown to be retained in the brain.3

Arterial spin labeling (ASL) can be used for non‐ 
contrast‐enhanced MRA. Compared with other non‐contrast‐ 
enhanced MRA methods, ASL is a more versatile and flexible  
technique. For example, ASL can provide dynamic infor-
mation about blood flow. Because of the complete removal 
of background tissue signal by subtraction of “label” and 
“control” images, smaller vessels can be resolved using ASL 
compared with time‐of‐flight angiography at the same reso-
lution.4 Arterial spin labeling can also provide vessel‐specific 
angiograms, whereas other MR methods generally provide 
only nonspecific angiograms. Vessel specificity and dynamic 
information can be crucial in planning for surgical interven-
tions and predicting clinical outcomes, such as in assessing 
collateral flow in stroke.5,6

One way of achieving vessel selectivity with ASL is 
using vessel‐encoded ASL (VE‐ASL),7 which is gener-
ally implemented as a variant of pseudo‐continuous ASL8 

and is the focus of this study. Similar encoding methods 
have also been proposed using pulsed ASL, and although 
pulsed ASL benefits from shorter labeling durations, vessel 
geometries often result in unintended tagging of multiple 
arteries.9 Compared with vessel‐selective ASL methods 
that label only 1 vessel at a time,10,11 VE‐ASL is more 
SNR‐efficient, as all acquired data inform all vessel‐selec-
tive images. The SNR of a decoded VE image is the same 
as for a non‐vessel‐encoded (non‐VE) image acquired at 
the same scan time for fully sampled data.7 The main draw-
back of VE‐ASL is longer acquisition times compared with 
non‐VE‐ASL. This is because N + 1 images are required 
to separate blood coming from N arteries compared with 
only a tag and a control image for non‐VE‐ASL. To achieve 
matched scan time with non‐VE acquisitions, the VE im-
ages have to be acquired with higher undersampling.

However, we hypothesized that VE‐ASL can be highly 
accelerated using nonlinear reconstruction methods. Two 
main reasons why dynamic VE‐ASL angiograms might be 
particularly well‐suited to undersampled reconstruction 
are related to the intrinsic properties of angiographic data. 
First, angiograms are spatially sparse. This can be exploited 
in a compressed‐sensing12,13 acquisition and reconstruc-
tion framework. Compared with non‐VE‐ASL angiograms, 
VE‐ASL images have higher relative sparsity, because 
approximately the same number of nonzero voxels are dis-
tributed across multiple vessel‐selective images. Because 
relative sparsity, along with image dimensionality and SNR, 
contribute to the performance of a compressed‐sensing 

F I G U R E  1  Model of imaging system used in simulations and reconstructions. y (purple box) represents the raw data that are a combination 
of noise (n, red box) and the object (x, green box) after being transformed by the imaging system (E, blue arrows), which consists of 3 parts (right 
to left): vessel‐encoding (VE), application of coil sensitivities, and an undersampled Fourier transform from physical space to k‐space
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reconstruction,14 we hypothesized that VE‐ASL angiograms 
could perform better than non‐VE angiograms in a spar-
sity‐constrained reconstruction. Second, at sufficiently high 
temporal resolution, the signal varies smoothly in time15 as 
the bolus of labeled blood passes through the arterial tree. 
This temporal smoothness can be exploited to further reg-
ularize the underdetermined image reconstruction problem. 
Although exploiting redundancy in the temporal domain 
is possible in the dynamic acquisitions provided by both 
VE‐ASL and non‐VE ASL, nondynamic methods like time‐
of‐flight angiography cannot benefit from this extra dimen-
sion of information.

In this study, we present an accelerated acquisition and 
reconstruction method for dynamic VE‐ASL angiography 
based on the enhanced spatial sparsity of vessel‐specific an-
giograms and the smoothness of their temporal evolution. We 
demonstrate that the proposed method produces VE‐ASL im-
ages of comparable quality to non‐VE‐ASL at matched scan 
duration at acceleration factors varying from R = 2 to R = 34, 
providing vessel‐specific information at no additional cost.

2 |  METHODS

2.1 | Modeling the imaging system
The imaging system (Figure 1) was modeled as a linear equa-
tion as follows:

where y is a vector containing the complex signal measured 
by all of the receive coils, with each entry representing  
1 point in k‐space in 1 coil. Noise, n, is a vector of com-
plex white noise. The imaged object, x, is a vector contain-
ing the complex magnetization of blood from each vessel 
component as well as the static tissue for every position in 
physical space. Its length is therefore the number of vox-
els by the number of time points by the number of vessel 
components (i.e., a 3‐vessel VE image would have 4 com-
ponents [3 vessels and static tissue] and a non‐VE image 
only 2 components [vessels and static tissue], thus making 
x twice as long in the VE case). In this work, a 3‐vessel 
VE image was used, separating blood originating from  
3 arteries: the right and left internal carotid arteries (RICA 
and LICA, respectively) and the basilar artery (BA). E is 
the linear encoding operator that models (1) the linear com-
bination of signal from blood and static tissue depending 
on the applied VE scheme, (2) the multiplication of spatial 
sensitivity profiles for each of the receive coils in the sys-
tem, and (3) the k‐space sampling transform.

Simulations of the imaging system and subsequent recon-
struction of both simulated and in vivo data were performed 
using MATLAB (Release 2017a; MathWorks, Natick, MA). 
The applied VE scheme of E was implemented directly as 

a matrix multiplication of either a 2 × 2 Hadamard matrix  
(1 image with labeled blood and 1 control image) for the non‐
VE case or a 4 × 4 Hadamard matrix for the VE case, as 
follows:

where RICA, LICA, and BA represent the signal from the blood 
coming from the respective arteries, and S represents the static 
tissue signal.

The coil sensitivities and their conjugate transposes 
were applied as point‐wise multiplication on the image and 
weighted combination of coils for the forward and adjoint 
transform, respectively. The transforms between nonuniform 
k‐space samples and image space were implemented using 
the nonuniform fast Fourier transform16 in the Michigan 
Image Reconstruction Toolbox.17 In our method, we used a 
golden‐angle radial trajectory.18

2.2 | Simulations
Two data sets were used as ground truths for numerical 
simulations. One was a numerical phantom and the other a 
fully sampled dynamic VE‐ASL angiogram from a previ-
ous study.4 The numerical phantom consisted of a single 
frame of a hand‐drawn “vessel‐like” image on a 96 × 96 
pixel grid. It consisted of 3 vessel components and a static 
tissue component. One vessel component occupied primar-
ily the left FOV, a mirror image of it occupied primarily 
the right FOV, and the third component occupied the lower 
space between the two. In 9 pixels, 2 vessel components 
overlapped. The vessel structure had voxel intensities rang-
ing from 0.54 to 1.00, and the static tissue component was a 
circle covering all of the “vessels,” with uniform intensity 
of 100.00. It was used to confirm that the initial hypoth-
esis (that increased relative sparsity improves the recon-
struction) holds in a simplified system. The non‐VE data 
had 14% nonzero values in the vessel image, whereas the 
VE data contained only 5% nonzero values in the 3 vessel 
images combined. These levels of sparsity are realistic for 
angiographic imaging at or just above the circle of Willis, 
as confirmed by the in vivo data acquisition presented in 
section 2.3 that had sparsity levels of 5.3% ± 0.7% for VE 
and 15.2% ± 2.2% for non‐VE. The noise was set to zero, 
and only 1 receive coil with uniform spatial sensitivity 
was modeled. The images were transformed into k‐space 
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data using the forward model described in section 2.1 
and reconstructed with 100%, 50%, 25%, 12.5%, 6.25%, 
and 3.125% of the number of samples needed to reach the 
Nyquist limit.

A real, high SNR dynamic angiogram was used to mimic 
the in vivo system as closely as possibly but with a well‐defined 
ground truth and controlled noise conditions. Coil sensitivities 
previously measured using a phantom in a 32‐channel head coil 
were included to generate multichannel ground truth data in 
the simulated acquisition. The coil sensitivity profiles used in 
reconstruction were, however, estimated from the undersam-
pled data directly, as explained further in section 2.4. Complex 
Gaussian noise was added in k‐space, and SNR was defined as

where rms(I) represents the RMS intensity of the noiseless  
k‐space measurements, and σ is the SD of the added noise 
signal. Three noise conditions were simulated: (1) no noise,  
(2) moderate noise (SNRk = 185.8), and (3) high noise (SNRk = 
92.9). These simulated data sets were subsequently undersam-
pled and reconstructed in the same manner as the in vivo data 
(see section 2.5). The high noise condition produced image SNR 
comparable to the in vivo image SNR (Supporting Information 
Figure S1) when reconstructed with a linear least‐squares 
reconstruction on fully sampled data.

2.3 | In vivo acquisition
Six healthy volunteers (all male, age range: 25 to 34, mean 
age: 29) were scanned on a 3T Magnetom Verio (Siemens 
Healthineers, Erlangen, Germany) MRI scanner using a  
32‐channel head coil, with a dynamic 2D golden‐angle radial 
VE‐ASL and non‐VE‐ASL sequence, similar to the imple-
mentation described in Okell.19 Data from 5 subjects were 
used for the main comparison of VE and non‐VE at matched 
scan times, and 1 subject was used to study the generaliz-
ability of the method at higher spatial resolution. All in vivo 
data were acquired under a technical development protocol 
approved by the local ethics committee.

Labeling was performed with pseudo‐continuous ASL 
using transverse gradients (Gxy) of alternating polarity ap-
plied between the RF pulses to modulate the inversion effi-
ciency across the labeling plane.7 The labeling plane was set 
just below the confluence of left and right vertebral arteries. 
For this study, the vertebral arteries were treated as a single 
artery to allow a 4‐cycle Hadamard encoding scheme to be 
performed. More distal labeling in which the vertebral arter-
ies merge to form the BA was not performed, to ensure arti-
facts associated with the labeling plane did not overlap with 
the imaging region.

A spoiled gradient‐echo readout was initiated (TR =  
11.73 ms, TE = 5.95 ms, flip angle = 7º) immediately 

(4)SNR
k
=

rms (I)

�noise

,

F I G U R E  2  The imaging sequence consisted of a presaturation module for background suppression, pseudo‐continuous ASL (pCASL) 
labeling, and a spoiled gradient‐echo readout in a radial golden‐angle (GA) trajectory. The continuous readout was separated into frames in 
reconstruction. Four different magnetization preparation modules were used to encode the left and right internal carotid arteries (RICA, yellow; 
LICA, cyan) and the 2 vertebral arteries, which were close together and therefore encoded as a single vessel, referred to as the basilar artery (BA, 
magenta). This color scheme will be used in all subsequent figures. Transverse gradients within the pseudo‐continuous ASL pulse train generate 
spatial modulations to create tag (blue shading) and control (red shading) regions across the labeling plane
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after the pseudo‐continuous ASL labeling pulse train  
(labeling duration: 1000 ms) (Figure 2). Each preparation 
was preceded by a presaturation module for background 
suppression, and 108 radial spokes were read out during 
the 1266.8‐ms‐long imaging period. These 108 spokes were 
split into 12 phases of 9 spokes in the reconstruction. The 
same set of 108 spokes were read out for each encoding 
before moving on to the next set of 108 spokes that were 
ordered, such that each phase of 9 spokes carried on the 
golden‐angle ordering from the previous shot that had fin-
ished, as described in Okell.19 The images for the 5 subjects 
used to compare VE against non‐VE at matched scan time 
were reconstructed with 1.1 × 1.1 × 50.0 mm spatial res-
olution (matrix size 192 × 192) and 105.57‐ms temporal 
resolution. The high‐resolution data set was acquired with 
0.68‐mm isotropic in‐plane resolution and a matrix size of 
320 × 320. A total of 34 ASL preparations were needed 
for each encoding to fully sample the 1.1‐mm2 resolution  
images, and 56 for the 0.68‐mm2 resolution images. The 
ASL preparation module was repeated every 2400 ms, so for 
34 shots and 4 encodings (VE) the total scan time to reach 
the Nyquist limit was 5 minutes 26 seconds, and for 2 encod-
ings (non‐VE) the total scan time was 2 minutes 43 seconds. 
For the high‐resolution VE data (56 shots, 4 encodings), the 
total scan time for R = 1 was 8 minutes 58 seconds.

The acceleration factor, R, was defined in relation to the 
fully Nyquist‐sampled acquisition time. An oversampled 
1.1‐mm2‐resolution data set (acquisition time 10 minutes  
53 seconds) for both the non‐VE (R = 0.25) and VE (R = 0.5)  
cases were acquired to be used as ground truth. Then, inde-
pendently acquired test data sets for both VE and non‐VE 
(total acquisition time 5 minutes 26 seconds each) were used 
to assess the reconstruction method. Before reconstructing, 
the test data were split into multiple subsets by grouping  
sequentially acquired spokes, such that the number of spokes 
in a group corresponded to a specific acceleration factor. For 
example, subset 1 at R = 2 would include the first 153 spokes 
in each frame (306 needed for R = 1), and subset 2 would 
include the following 153 spokes. The images were recon-
structed at 3 different levels of acceleration with matched 
scan time between non‐VE and VE: (1) high undersam-
pling: R = 34 for VE (maximum acceleration, as this used 
only 1 ASL preparation for each encoding) and R = 17 for 
non‐VE, scan time 10 seconds; (2) medium undersampling:  
R = 8.5 for VE and 4.25 for non‐VE, scan time 38 seconds; and  
(3) low undersampling: R = 2 for VE and R = 1 (no under-
sampling) for non‐VE, scan time 2 minutes 43 seconds.

2.4 | Preprocessing
Because decoding of the signals was handled with complex 
data, they were sensitive to phase errors. Therefore, for the in 
vivo data, phase correction was applied to account for B0 drift 

during the scan by minimizing the phase difference between 
the same spokes (kn) in different encodings (n = {0,1,2,3}) 
with a scalar phase correction factor (eiθn), as follows:

To minimize, θn is chosen to be arg(k0
Hkn).

Coil‐sensitivity calibration images were reconstructed 
by combining k‐space data across temporal frames 
to give 1 fully sampled or near fully sampled image.  
This was then used to estimate the relative coil‐sensitivity 
profiles for every point in space using the adaptive com-
bine method.20 These estimated coil‐sensitivity profiles 
were used for generating the encoding operator, E, as de-
fined in Equation 1, for each data set. To improve speed 
and reduce the memory burden of the reconstruction, the 
32 coil channels were compressed to 8 channels using sin-
gular value decomposition.21

2.5 | Reconstruction
Both the simulated and in vivo data were reconstructed using 
the same method. Image reconstruction was achieved by the 
optimization of a nonlinear cost function, as follows:

In the cost function, x is the unknown image (the vessel 
components and the static tissue at all time points concate-
nated), E is the image‐acquisition operator, ∇t is the finite‐
difference operator in the temporal domain, and y is the vector 
containing the raw k‐space data as defined in Equation 1.  
Here, the first term imposes data consistency of the recon-
struction, the second term imposes sparsity, and the third 
term enforces temporal smoothness. The values of λ1 and λ2 
weigh the importance of the regularizing terms against data 
consistency. This cost function was minimized using the fast 
iterative shrinkage thresholding algorithm22 using a Toeplitz 
embedding formulation to replace nonuniform fast Fourier 
transforms with fast Fourier transforms for reduced compu-
tation time.23

The regularization factors in Equation 5 were determined 
experimentally by a grid search across a range of potential 
values. The (λ1, λ2) search space was chosen to be wide 
enough to ensure it fully characterized the target optima.  
The value of λ1 was varied from 0 to 10−5 in steps of 10−6 
for all acceleration factors both in vivo and for the simulated 
data. For the high undersampling (R = 17 and 34), λ2 was 
varied from 0 to 6 in vivo, and 0 to 2 in simulations, in steps 
of 0.2. For the medium undersampling (R = 4.25 and 8.5), 
λ2 was varied 0 to 10 in steps of 1 for both the in vivo and 
simulation case. For the low undersampling (R = 1 and 2), it 
was varied in steps of 2 from 0 to 20.
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For the simulations, the combination of λ1 and λ2 with 
the highest correlation with the ground truth (as explained 
in section 2.6) for each acceleration factor and noise level 
was used. In vivo, the average performance across all sub-
jects and 8 subsets of data (except for the vessel‐encoded 
R = 2 and non‐vessel‐encoded R = 1 case, in which only 
2 subsets of data were acquired) were calculated and the 
regularization factors that produced the highest correlation 
score on average were chosen and used for further analysis. 
Subject‐specific optimal ranges of regularization factors, 
which resulted in less than 1% quality reduction from the 
subject‐specific optimum, were also calculated. This was 
done to confirm that the overall optimal combination of 
regularizing factors was reasonable for all subjects. The 
overlap of these subject‐specific optimal regularization 
ranges was also inspected to see how subject‐dependent the 
optimal regularization factors were.

2.6 | Analysis
All reconstructions were compared against the ground‐
truth images. For the simulations, the input image was used 

directly for comparison. For the in vivo data, the oversam-
pled acquisition was reconstructed with minimal regulariza-
tion applied for denoising (λ1 = 10−6, λ2 = 0) and used as 
ground truth.

For quantitative assessment of image quality, non‐ 
overlapping vessel‐specific masks (Supporting information  
Figure S2) were applied to both the reconstruction and the 
ground truth, as it was important that the quantitative assess-
ment focused on the relevant pixels in the sparse images to 
avoid bias due to artifacts (such as from eye motion). The 
masks were then applied to each frame of each vessel compo-
nent (or the total vessel component for non‐VE). The Pearson 
correlation coefficient (r) between the ground truth and re-
constructed pixel values across all time points within the 
masks were then calculated.

When comparing non‐VE against VE, the correlation co-
efficients, r, for each vessel mask were Fisher‐transformed to 
a z‐score to make the distributions of correlation coefficients 
more Gaussian. This then allowed Student t tests to be per-
formed to determine statistical significance at a 98.3% con-
fidence interval (95% with added Bonferroni correction for 
multiple comparisons of the 3 vessel components).

F I G U R E  3  Numerical phantom simulations. Below 25% Nyquist sampling, the quality of the non‐vessel‐encoded (non‐VE) reconstruction 
decreases rapidly. For VE, this only occurs at twice the undersampling factor. The dashed line shows a shifted copy of the VE line, to illustrate 
the reconstruction quality of a 3‐vessel VE angiogram at the same acquisition time as the non‐VE. The corresponding time‐matched images (top 
row) are linked via dashed arrows. Reconstruction quality is quantified using the correlation coefficient between voxels in the reconstructed image 
and the ground truth (100% sampling). A version with the inverted grayscale contrast for direct comparison is available in Supporting Information 
Figure S3
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3 |  RESULTS

3.1 | Effect of increased relative sparsity in 
numerical phantom
In the numerical phantom, where the only difference between 
non‐VE and VE was the ratio of nonzero to zero voxels, the 
VE data were reconstructed more robustly at higher under-
sampling factors than non‐VE (Figure 3). The VE and non‐VE 
data could be reconstructed essentially perfectly at low under-
sampling factors, but for less than 25% of Nyquist sampling, 
the reconstruction of the sparser VE simulation outperformed 
the non‐VE version, achieving approximately matched perfor-
mance for twice the undersampling factor, negating the factor 
of 2 time penalty that would be needed to perform 3‐vessel VE 
instead of non‐VE angiography. Qualitatively, increased blur-
ring and streaking artifacts were observed in the non‐VE case.

3.2 | Simulations on real data
Similar results to the numerical phantom were observed in 
the real data simulations (Figure 4). With no added noise, the 

VE and non‐VE reconstruction quality was high (r > 0.99) at 
all acceleration factors, and no difference was found between 
VE and non‐VE. With added noise and simulated matched 
scan times (equal SNR, but twice the undersampling for VE), 
VE was reconstructed marginally, but significantly, better  
(P < .01) than non‐VE for low and medium acceleration fac-
tors in both medium‐noise and high‐noise conditions. At high  
acceleration factors, the results varied more and VE performed 
better than non‐VE in some vessels but worse in others, and 
for some there was no statistically significant difference.

3.3 | In vivo optimal regularization factors
The optimal regularization factors for the in vivo reconstruc-
tions did not vary considerably among different subjects, and 
their optimal ranges (within 1% of the optimum) had con-
siderable overlap at all acceleration factors, and the group 
optimum was within the subject‐specific optimal ranges for 
both VE and non‐VE (Supporting Information Figure S4).

The effect of varying the regularization factor within 
the overall optimal range was varied sensitivity and 

F I G U R E  4  Reconstruction quality in simulations with medium noise (A) and high noise (B). Each scatter point represents the Fisher‐
transformed correlation coefficient calculated in a mask (RICA, yellow; LICA, cyan; BA, magenta) for 1 reconstruction. Statistical significance 
between the time‐matched non‐VE and VE groups is represented by a star if VE had a higher correlation coefficient and a triangle if non‐VE did
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specificity (i.e., reduced noise against the cost of losing 
visibility of small vessels). An example of this tradeoff is 
shown in Figure 5. For the sake of comparing VE with 
non‐VE reconstructions in an unbiased way, the group op-
timum regularization factors for each acquisition method 
were used for all further analyses. The optimal regular-
ization factors for each acceleration factor and subject or 
noise level are summarized in Supporting Information 
Table S1.

Both regularization terms improved the overall reconstruc-
tion quality in all cases. Average correlation coefficients for 
the in vivo data were improved 4.6%‐55.2% by having a non-
zero λ2, 2.3%‐8.9% by having a nonzero λ1, and 15.3%‐98.7% 
by having both regularization factors be nonzero. Similarly, 
in simulations with nonzero noise, a 1.0%‐13.0% improve-
ment was observed for nonzero λ2, 0.1%‐10.0% improvement 
for nonzero λ1, and 2.2%‐88.3% improvement by having both 
regularization factors be nonzero. Visually, the value of hav-
ing both regularizing terms is shown in a sample reconstruc-
tion in Figure 6, with nonzero λ2 causing better delineation 
of the vessels, and nonzero λ1 reducing noise and noise‐like 
artifacts.

F I G U R E  5  The same raw data set (1 of the in vivo vessel‐encoded R = 34 subsets) reconstructed with 3 different combinations of 
regularization factors: minimal regularization, and therefore more noise (A); optimal regularization based on the average correlation coefficient (B); 
and maximal regularization, resulting in a heavily denoised reconstruction (C). (D) shows the average correlation coefficient across all subjects at 
each combination of regularization factors. The black border in (D) represents the area where the reconstruction was within 1% of optimum, and the 
“x”s denote the regularization factors used for (A), (B), and (C)

F I G U R E  6  An example of the R = 34 VE‐ASL reconstruction 
(temporal average) with no regularization (A), only the L2 temporal 
smoothness constraint (B), only the L1 sparsity constraint (C), and both 
regularizing terms included (D). The L2 term sharpens the vessels, and 
the L1 term denoises the background. Both regularizing terms improve 
the overall reconstruction quality
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3.4 | Comparison of VE and non‐VE at 
matched scan time
Generally, no statistically significant difference in image qual-
ity was found between VE and scan time–matched non‐VE 
images in vivo despite VE requiring a factor of 2 higher under-
sampling. A single exception was the high‐acceleration RICA, 
where the non‐VE correlation coefficients were marginally 
higher (P < .01). The in vivo results are displayed in Figure 7.

Qualitatively, the VE images also looked comparable with 
the non‐VE images acquired at the same acquisition time (ex-
ample shown in Figure 7; reconstructions of the other subjects 
are available in Supporting Information Figures S5‐S9). At high 
R, a loss of faint features compared with the ground truth was 
apparent for both non‐VE and VE, and some subsets included 
artifacts potentially caused by motion. Animations of the dy-
namic blood flow are available in the Supporting Information 
Videos S1‐S5. Supporting Information Videos S6‐S10 show the 
same data but with applied inflow subtraction,24 to show inflow 
instead of outflow of the bolus for better visualization .

The temporal dynamics were also well conserved across 
acceleration factors. The signal was generally well‐preserved 
in the late frames at moderate acceleration factors, but at the 
highest acceleration factors some residual aliasing was also 
present in the later frames (Figure 8) for both the non‐VE and 
VE images. Figure 9 shows the temporal profile of the signal 
averaged in two 3 × 3 voxel regions in proximal and distal 
vessels in a sample subject. In the distal vessel, the SNR is 
lower and the temporal signal is noisier even in the ground‐
truth case. The temporal regularization smooths the signal 
but preserves overall shape.

3.5 | High‐resolution images
In under a minute (R = 9.3, scan time 58 seconds), very 
high‐quality images could be acquired at high resolution 
(Figure 10). The regularization factors used to create this 
image were on the lower end of the 1% optimal region (λ1 =  
0.000002, λ2 = 2.0), as higher regularization factors  
removed many of the fainter vessels to prioritize noise 
removal.

4 |  DISCUSSION AND 
CONCLUSIONS

In this study we have shown that the additional sparsity pro-
vided by VE allows us to generate vessel‐selective dynamic 
angiograms in the same time required for conventional ASL 
angiography without a loss of image quality. The proposed 
reconstruction method does not rely on a specific type of la-
beling and could be used with pulsed ASL preparations as 
well as the pseudo‐continuous ASL approach studied here.

4.1 | Role of relative sparsity in compressed 
sensing and VE‐ASL
As hypothesized, the simple simulation experiment showed 
that relative sparsity (proportion of nonzero voxels to total 
number of voxels reconstructed) can drive a L1‐regularized 
reconstruction. This agrees with the underlying theory of 
compressed sensing.14 How much relative sparsity drives the 
reconstruction quality compared with other factors such as 

F I G U R E  7  In vivo reconstructions: fully sampled non‐VE versus R = 2 VE (A); moderate acceleration (R = 4.25 non‐VE versus R = 8.5 
VE) (B); and high acceleration (R = 17 non‐VE versus R = 34 VE) (C). The bottom row shows a single example of the reconstruction quality for 1 
subset in 1 subject for time‐averaged VE and non‐VE. The reconstructions of other subjects can be found in Supporting Information Figures S2‐S6. 
A version with the inverted grayscale contrast for direct comparison is available in Supporting Information Figure S10
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SNR, and the spatial distribution of nonzero voxels, are top-
ics worth further consideration. The theoretical and practical 
limitations of this method in gaining extra information “for 
free” in a system in which relative sparsity increases should 
be explored further, beyond this initial feasibility study.

One potential extension is applying this method to VE‐ASL 
with labeling above the circle of Willis, which would require 
more encodings because there are more vessel branches, but 
each decoded image would be sparser, allowing for potentially 
higher acceleration. However, practical issues, such as achieving 

F I G U R E  8  Temporal dynamics in an example subject at varying acceleration factors for a non‐VE acquisition (A) and a VE acquisition (B). 
The early time point is frame 1, the mid‐timepoint is frame 6, and the late time point is frame 12. A version with the inverted grayscale contrast for 
direct comparison is available in Supporting Information Figure S11. Animations can be found in the Supporting Information Videos S1‐S5, and 
versions with the inflow are visualized in Supporting Information Videos S6‐S10

F I G U R E  9  Temporal profile in 2 regions of interest, in a proximal vessel (A,C) and in a distal vessel (B,D), with blood supply from 
the RICA in 1 subject. The error bars indicate the SD of the signal measured from reconstructions of different subsets of the raw data at each 
acceleration factor
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an ideal Hadamard encoding for more complicated vessel geom-
etries, might limit the improvements that the increased sparsity 
alone buys. A strategy for optimizing encodings for complex 
geometries has, however, been proposed previously.25

To further aid reconstruction, the nonsparse nature of the 
static tissue needs to be considered. Although good images 
of the static tissue signal are not necessary from a clinical 
perspective, the static tissue component needs to be recon-
structed well, to correctly decode the blood signal. In this 
work, the static tissue signal was treated just like the blood 
signals in reconstruction. However, further improvements 
could be achieved by applying a sparsifying transform, such 
as the wavelet transform or spatial total variation constraints, 
as it is not intrinsically sparse in image space like the blood 
vessels. In similar work on non‐VE pulsed ASL angiography, 
wavelet regularization on the control image was reported to 
improve vessel delineation.26 By transforming the static tis-
sue to a sparser domain, it should allow for better reconstruc-
tion in a compressed‐sensing framework.

4.2 | Regularization in the temporal domain
In the same vein as increasing the spatial dimensionality by 
increasing the number of vessels encoded, the dynamic ac-
quisition also allows us to take advantage of structure and 
redundancy in the temporal domain. In this work, the L2 
norm of temporal finite differences was used to regularize 
the reconstruction. It greatly improved the reconstruction re-
sults beyond the L1 spatial sparsity alone. We observed that 
the introduction of the temporal regularization in particular 
improved spatial delineation, which could be explained by 
the sharing of k‐space information across time frames. In 
previous studies, temporal constraints have been enforced 
by using sliding‐window acquisitions27 or with compressed 
sensing using L1 constraints in temporal total variation 
frameworks,28 or in the temporal frequency domain.29 These 
approaches can, however, have unwanted effects such as in-
creased blurring for the sliding‐window method, temporal 

stair‐casing artifacts for total variation,30 or artificially intro-
duced periodic behavior in the temporal frequency domain. 
Model‐based nonlinear reconstruction is another option that 
has been explored in perfusion ASL,31 and whether any of 
these approaches could improve reconstruction for VE‐ASL 
angiography could be studied further.

4.3 | Tuning the regularization factors
Among the 5 volunteers scanned in vivo, the difference in 
optimal regularization factors was marginal and there was 
considerable overlap among their optimal regions. This sug-
gests that once the reconstruction has been optimized for 
an acceleration factor and imaging protocol, it is robust, 
although to test this rigorously a cross‐validation approach 
must be used on a larger number of subjects. Because the 
optimal regularization factors depend on the properties of the 
actual data (inherent sparsity and temporal smoothness), we 
have to be careful with extending this conclusion to patients 
and other populations. There was some variability in head 
size and angle of imaging slab, and 2 of the volunteers ex-
hibited considerable mixing of RICA and BA blood due to an 
asymmetrical circle of Willis configuration, but patients with 
arteriovenous malformations could have considerably lower 
image domain sparsity due to the presence of additional ab-
normal vessels that can affect optimal regularization factors 
considerably. Further studies in appropriate patient groups 
are required to determine how generalizable this result is.

In this study, the Pearson’s correlation coefficient, r, was 
used to objectively optimize the regularization parameters and 
define the quality of the reconstruction. We found the Pearson’s 
correlation coefficient to be a robust metric that corresponded 
well with visual perception of image quality, which was not 
the case for other metrics that were tested in preliminary 
work. Normalized RMS error is a straightforward metric but it 
does not correspond well with perceptual quality, as reported 
in Akasaka et al.32 The structural similarity index33 that was 
developed specifically to correspond with visual perception 

F I G U R E  1 0  (A) High‐resolution image from oversampled VE scan (R = 0.7). (B) Highly accelerated scan (R = 9.3)
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worked well within a data set to tune the parameters, but was 
not suitable to compare different data sets, as it was sensitive 
to the absolute scaling of the signal. Often, the SNR is reported 
as a summary metric for image quality, but it was also found to 
be unsuitable for this type of reconstruction, as the nonlinear 
nature of the reconstruction method can cause high SNR when 
the image quality is poor, by both attenuating the signal (high 
bias) and removing all noise (low variance). The masking im-
proved robustness, as otherwise the result was driven primarily 
by large areas with no signal and regions containing artifacts 
such as eye motion. Tuning could also be done manually by 
experts to balance specificity (i.e., noise removal) and sensi-
tivity (preservation of faint signals) for optimal clinical utility.

4.4 | Feasibility of accelerating VE and  
non‐VE ASL
These results demonstrate the feasibility of acquiring VE im-
ages without increasing the scan time compared with fully sam-
pled non‐VE angiography. Similar image quality was obtained 
with R = 2 VE and R = 1 non‐VE imaging in vivo. Further 
reductions in scan time have also been shown to be possible, 
both for non‐VE and VE‐ASL, with matched image quality.  
At the highest acceleration factor (R = 17 for non‐VE and 34  
for VE), the main features were still visible with scan times as 
short as 10 seconds, although some loss of faint features and arti-
facts were observed. The required image quality will depend on 
the clinical application of the technique. For example, if the scan 
is acquired to add information about mixing of blood from dif-
ferent sources to other angiographic images, a highly accelerated 
scan of lower quality might be sufficient, whereas if it were used 
diagnostically on its own, moderate acceleration factors might 
be more appropriate (as shown in the high‐resolution data set).

In simulation, the correlation coefficient, r, was consis-
tently higher for VE at low and medium R, indicating not 
only equivalent but also slightly improved performance of VE 
over non‐VE at matched scan time. However, although statis-
tically significant, this difference was small compared with 
the effect of increasing or decreasing scan time or varying 
the SNR. At high R, the performance results varied between 
being in favor of VE and non‐VE, and differences in the qual-
itative assessment of the image quality were small. This did 
not contradict the overall conclusion of this study that VE and 
non‐VE images of similar quality can be achieved at matched 
scan times, even at the highest acceleration factor.

Similarly, in vivo, the nonsignificant results at low and 
medium R indicate similar performance level. One potential 
reason why non‐VE achieved significantly higher correlation 
coefficients in the RICA at high R is that 2 of the 5 subjects 
exhibited mixing of blood supply on the right side. Mixing 
provides higher SNR for the non‐VE reconstruction, as the 
signal from multiple origins are added together rather than 
split into 2 vessel components.

For many clinical applications, it would be desirable to 
extend this technique to 3D. The main reason why 2D im-
aging of a single slab was chosen for this feasibility study 
was to be able to acquire ground‐truth images in reasonable 
scan times. The extension to 3D is straightforward, using a 
3D golden angle radial sampling scheme.34 However, to fully 
sample VE‐ASL in 3D at the same resolution would take well 
over 8 hours, so no fully sampled ground truth could have 
been acquired for quantitative assessment. Extending to 3D 
will increase the relative sparsity further and should therefore 
allow for higher acceleration.

In conclusion, the lack of any meaningfully image‐quality  
differences between VE and non‐VE data at matched scan 
times indicates that vessel‐selective information can be  
acquired in this way with no cost of scan time or image qual-
ity, despite the higher undersampling factors required. High‐ 
resolution VE angiograms can also be reconstructed from 
less than a minute of scanning data, reducing the scan time 
by approximately an order of magnitude (R = 9.3).

CONFLICT OF INTEREST

Dr. Okell is an author of US patent applications relating to a 
maximum a posteriori Bayesian analysis approach for vessel‐
encoded data (exclusively licensed to Siemens Healthcare) 
and a combined angiography and perfusion using radial 
imaging and ASL technique, which is similar to the pulse  
sequence used in this study.

DATA AVAILABILITY STATEMENT

The underlying data for all quantitative results can be pub-
licly accessed in the Oxford University Research Archive via 
the following persistent identifier: http://dx.doi.org/10.5287/
bodle ian:MP00N dYOY.

ORCID

S. Sophie Schauman   https://orcid.org/0000-0002-3744-2553 
Mark Chiew   https://orcid.org/0000-0001-6272-8783 
Thomas W. Okell   https://orcid.org/0000-0001-8258-0659 

REFERENCES

 1. Kaufmann TJ, Huston J, Mandrekar JN, Schleck CD, Thielen KR, 
Kallmes DF. Complications of diagnostic cerebral angiogra-
phy: evaluation of 19,826 consecutive patients. Radiology. 
2007;243:812–819.

 2. Grobner T. Gadolinium—a specific trigger for the development 
of nephrogenic fibrosing dermopathy and nephrogenic systemic 
fibrosis? Nephrol Dial Transplant. 2006;21:1104–1108.

 3. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High 
signal intensity in the dentate nucleus and globus pallidus on 

http://dx.doi.org/10.5287/bodleian:MP00NdYOY
http://dx.doi.org/10.5287/bodleian:MP00NdYOY
https://orcid.org/0000-0002-3744-2553
https://orcid.org/0000-0002-3744-2553
https://orcid.org/0000-0001-6272-8783
https://orcid.org/0000-0001-6272-8783
https://orcid.org/0000-0001-8258-0659
https://orcid.org/0000-0001-8258-0659


904 |   SCHAUMAN et Al.

unenhanced T1‐weighted MR images: relationship with increas-
ing cumulative dose of a gadolinium‐based contrast material. 
Radiology. 2014;270:834–841.

 4. Okell TW, Schmitt P, Bi X, et al. Optimization of 4D vessel‐ 
selective arterial spin labeling angiography using balanced 
steady‐state free precession and vessel‐encoding. NMR Biomed. 
2016;29:776–786.

 5. Bang OY, Goyal M, Liebeskind DS. Collateral circulation in isch-
emic stroke: assessment tools and therapeutic strategies. Stroke. 
2015;46:3302–3309.

 6. Warmuth C, Ruping M, Forschler A, et al. Dynamic spin label-
ing angiography in extracranial carotid artery stenosis. Am J 
Neuroradiol. 2005;26:1035–1043.

 7. Wong EC. Vessel‐encoded arterial spin‐labeling using pseudocon-
tinuous tagging. Magn Reson Med. 2007;58:1086–1091.

 8. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow 
driven inversion for arterial spin labeling using pulsed radiofre-
quency and gradient fields. Magn Reson Med. 2008;60:1488–1497.

 9. Zimine I, Petersen ET, Golay X. Dual vessel arterial spin label-
ing scheme for regional perfusion imaging. Magn Reson Med. 
2006;56:1140–1144.

 10. Helle M, Norris DG, Rüfer S, Alfke K, Jansen O, van Osch M. 
Superselective pseudocontinuous arterial spin labeling. Magn 
Reson Med. 2010;64:777–786.

 11. Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Modified 
pulsed continuous arterial spin labeling for labeling of a single ar-
tery. Magn Reson Med. 2010;64:975–982.

 12. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of 
compressed sensing for rapid MR imaging. Magn Reson Med. 
2007;58:1182–1195.

 13. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 
2006;52:1289–1306.

 14. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact 
signal reconstruction from highly incomplete frequency informa-
tion. IEEE Trans Inf Theory. 2006;52:489–509.

 15. Okell TW, Chappell MA, Schulz UG, Jezzard P. A kinetic model 
for vessel‐encoded dynamic angiography with arterial spin label-
ing. Magn Reson Med. 2012;68:969–979.

 16. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms 
using min‐max interpolation. IEEE Trans Signal Process. 
2003;51:560–574.

 17. Fessler JA. Michigan Image Reconstruction Toolbox. https ://web.
eecs.umich.edu/~fessl er/code/. Accessed on February 26, 2018.

 18. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. 
An optimal radial profile order based on the golden ratio for time‐ 
resolved MRI. IEEE Trans Med Imaging. 2007;26:68–76.

 19. Okell TW. Combined angiography and perfusion using radial imag-
ing and arterial spin labeling. Magn Reson Med. 2019;81:182–194.

 20. Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of 
phased array MR imagery. Magn Reson Med. 2000;43:682–690.

 21. Buehrer M, Pruessmann KP, Boesiger P, Kozerke S. Array 
compression for MRI with large coil arrays. Magn Reson Med. 
2007;57:1131–1139.

 22. Beck A, Teboulle M. A fast iterative shrinkage‐thresholding 
algorithm for linear inverse problems. SIAM J Imaging Sci. 
2009;2:183–202.

 23. Fessler JA, Lee S, Olafsson VT, Shi HR, Noll DC. Toeplitz‐
based iterative image reconstruction for MRI with correction 
for magnetic field inhomogeneity. IEEE Trans Signal Process. 
2005;53:3393–3402.

 24. Kopeinigg D, Bammer R. Time‐Resolved Angiography using 
InfLow Subtraction (TRAILS): time‐resolved angiography. Magn 
Reson Med. 2014;72:669–678.

 25. Berry E, Jezzard P, Okell TW. An optimized encoding scheme 
for planning vessel‐encoded pseudocontinuous arterial spin label-
ing: optimized encoding scheme for VEASL. Magn Reson Med. 
2015;74:1248–1256.

 26. Zhou Z, Han F, Yu S, et al. Accelerated noncontrast‐enhanced 
4‐dimensional intracranial MR angiography using golden‐angle 
stack‐of‐stars trajectory and compressed sensing with magnitude 
subtraction. Magn Reson Med. 2018;79:867–878.

 27. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time‐
resolved contrast‐enhanced imaging with isotropic resolution and 
broad coverage using an undersampled 3D projection trajectory. 
Magn Reson Med. 2002;48:297–305.

 28. Feng L, Grimm R, Block KT, et al. Golden‐angle radial sparse par-
allel MRI: combination of compressed sensing, parallel imaging, 
and golden‐angle radial sampling for fast and flexible dynamic 
volumetric MRI: iGRASP: Iterative Golden‐Angle RAdial Sparse 
Parallel MRI. Magn Reson Med. 2014;72:707–717.

 29. Lustig M, Santos JM, Donoho DL. k‐t SPARSE: high frame rate 
dynamic MRI exploiting spatio‐temporal sparsity. In: Proceedings 
of the 14th Annual Meeting of ISMRM, Seattle, Washington, 2006. 
Abstract 2420.

 30. Zhang J, Liu S, Xiong R, Ma S, Zhao D. Improved total variation 
based image compressive sensing recovery by nonlocal regular-
ization. In: Proceedings of the IEEE International Symposium on 
Circuits and Systems (ISCAS2013), Beijing, 2013. pp 2836–2839.

 31. Zhao L, Fielden SW, Feng X, Wintermark M, Mugler JP, Meyer 
CH. Rapid 3D dynamic arterial spin labeling with a sparse model‐
based image reconstruction. NeuroImage. 2015;121:205–216.

 32. Akasaka T, Fujimoto K, Yamamoto T, et al. Optimization of regu-
larization parameters in compressed sensing of magnetic resonance 
angiography: can statistical image metrics mimic radiologists’ per-
ception? PLoS ONE. 2016;11:e0146548.

 33. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality as-
sessment: from error visibility to structural similarity. IEEE Trans 
Image Process. 2004;13:600–612.

 34. Chan RW, Ramsay EA, Cunningham CH, Plewes DB. Temporal 
stability of adaptive 3D radial MRI using multidimensional golden 
means. Magn Reson Med. 2009;61:354–363.

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Image SNR comparison between the in vivo 
acquisitions and the simulations in a fully sampled nonregu-
larized reconstruction
FIGURE S2 Subject‐specific masks used in the assessment 
of image reconstruction. Where blood supply was mixed, the 
most intense vessel component in the ground‐truth image was 
chosen
FIGURE S3 Inverted grayscale version of Figure 3 for more 
direct comparison of image quality, but with the vessel‐ 
specific information lost
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FIGURE S4 Optimal regularization factors (marked with 
red “x”) were within the optimal area (within 1% of opti-
mum) for every subject. The color represents how many 
subjects had optimal reconstruction at each combination of 
regularization factors
FIGURE S5 Time‐averaged in vivo reconstruction of sub-
ject 1. The top row shows the VE reconstruction with blood 
originating in the RICA in yellow, LICA in cyan, and BA 
in magenta, at varying acceleration factors. The bottom row 
shows the time‐matched non‐VE images
FIGURE S6 Time‐averaged in vivo reconstruction of sub-
ject 2. The top row shows the VE reconstruction with blood 
originating in the RICA in yellow, LICA in cyan, and BA 
in magenta, at varying acceleration factors. The bottom row 
shows the time‐matched non‐VE images
FIGURE S7 Time‐averaged in vivo reconstruction of sub-
ject 3. The top row shows the VE reconstruction with blood 
originating in the RICA in yellow, LICA in cyan, and BA 
in magenta, at varying acceleration factors. The bottom row 
shows the time‐matched non‐VE images
FIGURE S8 Time‐averaged in vivo reconstruction of sub-
ject 4. The top row shows the VE reconstruction with blood 
originating in the RICA in yellow, LICA in cyan, and BA 
in magenta, at varying acceleration factors. The bottom row 
shows the time‐matched non‐VE images
FIGURE S9 Time‐averaged in vivo reconstruction of sub-
ject 5. The top row shows the VE reconstruction with blood 
originating in the RICA in yellow, LICA in cyan, and BA 
in magenta, at varying acceleration factors. The bottom row 
shows the time‐matched non‐VE images
FIGURE S10 Inverted grayscale version of Figure 7 for 
more direct comparison of image quality, but with the vessel‐
specific information lost
FIGURE S11 Inverted grayscale version of Figure 8 for 
more direct comparison of image quality, but with the vessel‐
specific information lost
TABLE S1 Optimal regularization factors for in vivo (A) and 
simulation (B)

VIDEO S1 Time course of the dynamic angiograms of 
subject 1: VE reconstruction in the top row, and scan time–
matched non‐VE in the bottom row
VIDEO S2 Time course of the dynamic angiograms of 
subject 2: VE reconstruction in the top row, and scan time–
matched non‐VE in the bottom row
VIDEO S3 Time course of the dynamic angiograms of 
subject 2: VE reconstruction in the top row, and scan time–
matched non‐VE in the bottom row
VIDEO S4 Time course of the dynamic angiograms of 
subject 4: VE reconstruction in the top row, and scan time–
matched non‐VE in the bottom row
VIDEO S5 Time course of the dynamic angiograms of 
subject 5: VE reconstruction in the top row, and scan time–
matched non‐VE in the bottom row
VIDEO S6 Inflow subtracted time course of the dynamic an-
giograms of subject 1: VE reconstruction in the top row, and 
scan time–matched non‐VE in the bottom row
VIDEO S7 Inflow subtracted time course of the dynamic an-
giograms of subject 2: VE reconstruction in the top row, and 
scan time–matched non‐VE in the bottom row
VIDEO S8 Inflow subtracted time course of the dynamic an-
giograms of subject 3: VE reconstruction in the top row, and 
scan time–matched non‐VE in the bottom row
VIDEO S9 Inflow subtracted time course of the dynamic an-
giograms of subject 4: VE reconstruction in the top row, and 
scan time–matched non‐VE in the bottom row
VIDEO S10 Inflow subtracted time course of the dynamic 
angiograms of subject 5: VE reconstruction in the top row, 
and scan time–matched non‐VE in the bottom row
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