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Abstract. To study the functions of heterogeneous nu- 
clear ribonucleoproteins (hnRNPs), we have character- 
ized nuclear polyadenylated RNA-binding (Nab) pro- 
teins from Saccharomyces cerevisiae. Nablp, Nab2p, 
and Nab3p were isolated by a method which uses UV 
light to cross-link proteins directly bound to poly(A) + 
RNA in vivo. We have previously characterized 
Nab2p, and demonstrated that it is structurally related 
to human hnRNPs. Here we report that Nablp is iden- 
tical to the Npl3p/Nop3p protein recently implicated 
in both nucleocytoplasmic protein shuttling and pre- 
rRNA processing, and characterize a new nuclear 
polyadenylated RNA-binding protein, Nab3p. The in- 
tranuclear distributions of the Nab proteins were ana- 

lyzed by three-dimensional immunofluorescence optical 
microscopy. All three Nab proteins are predominantly 
localized within the nucleoplasm in a pattern similar 
to the distribution of hnRNPs in human cells. The 
NAB3 gene is essential for cell viability and encodes 
an acidic ribonucleoprotein. Loss of Nab3p by growth 
of a GAL::nab3 mutant strain in glucose results in a 
decrease in the amount of mature ACT1, CYH2, and 
TP//mRNAs, a concomitant accumulation of unspliced 
ACTI pre-mRNA, and an increase in the ratio of un- 
spliced CYH2 pre-mRNA to mRNA. These results 
suggest that the Nab proteins may be required for 
packaging pre-mRNAs into ribonucleoprotein struc- 
tures amenable to efficient nuclear RNA processing. 

H 
ETEROGENEOUS nuclear RNAs (hnRNAs) t are the 
products of RNA polymerase II transcription, and 
include polyadenylated and nonpolyadenylated pre- 

mRNAs and mRNAs as well as several uncharacterized 
RNAs (Dreyfuss et al., 1993). An array of nuclear factors 
bind to hnRNAs during transcription, including heteroge- 
neous nuclear ribonucleoproteins (hnRNPs) and small nu- 
clear RNP (snRNP) particles (Amero et al., 1992; Matunis 
et al., 1993). Numerous studies have established the roles 
of snRNP particles in a variety of nuclear processes such as 
pre-mRNA splicing (Green, 1991; Guthrie, 1991; Ruby and 
Abelson, 1991; Baserga and Steitz, 1993). In contrast, the 
functions of hnRNPs have remained unclear. HnRNPs are 
nuclear RNA-binding proteins whose primary and stable 
RNA-binding site is hnRNA. Current ideas about the func- 
tional roles of hnRNPs in pre-mRNA processing have 

Address all correspondence to M. S. Swanson, Department of Immunology 
and Medical Microbiology and Center for Mammalian Genetics, University 
of Florida, College of Medicine, Gainesville, FL 32610-0266. Ph.: (904) 
392-3082. Fax: (314) 392-3133. 

1. Abbreviations used in thispaper: aa, amino acid; hnRNA and RNE het- 
erogeneous nuclear RNA and RNP; MBP, maltose-binding protein; Nab, 
nuclear polyadenylated RNA-binding; nt, nucleotide; rt, room temperature; 
snRNP, small nuclear RNP. 

evolved from a variety of in vitro biochemical analyses. 
These proposed functions include nearly all of the known 
steps in nuclear mRNA maturation such as pre-mRNA pack- 
aging (Chung and Wooley, 1986; Dreyfuss, 1986), constitu- 
tive and alternative splicing (Choi et al., 1986; Sierakowska 
et al., 1986; Mayeda and Krainer, 1992), polyadenylation 
(Wilusz and Shenk, 1990), and nucleocytoplasmic mRNA 
shuttling (Pifiol-Roma and Dreyfuss, 1992). 

Isolation of 30-40 S hnRNP monoparticles by mild treat- 
ment of vertebrate cell nucleoplasm with RNases followed 
by sucrose gradient sedimentation initially indicated that six 
"core" proteins (AI, A2, BI, B2, C1, and C2) were associated 
with hnRNPs in a nonsequence-specific manner (Chung and 
Wooley, 1986; Dreyfuss, 1986). These six proteins are abun- 
dant within the nucleus, and are associated with hnRNPs in 
a manner which makes them relatively resistant to digestion 
with RNases. These observations led to the suggestion that 
hnRNPs might package hnRNAs to generate "ribonucleo- 
somes" in a fashion analogous to the packaging of DNA by 
histories to form nucleosomes (Chung and Wooley, 1986). 
Subsequent work demonstrated that much larger hnRNP 
complexes (40 to I>200 S) can be isolated either by sucrose 
gradient sedimentation (Sperling et al., 1985; Spann et al., 
1989) or by immunopurification (Choi and Dreyfuss, 1984; 
Pifiol-Roma et al., 1988) if nucleoplasm is not treated with 
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RNases. Immunopurified hnRNP complexes are composed 
of more than twenty abundant hnRNA-binding proteins. In 
contrast to the ribonucleosome model, more recent in vitro 
analyses demonstrated that many of these hnRNPs bind to 
RNAs with sequence preference (Swanson and Dreyfuss, 
1988a, b), and different arrays of hnRNPs bind to different 
pre-mRNAs (Bennett et al., 1992b). Moreover, the amphib- 
ian hnRNP L protein (Pifiol-Roma et al., 1989) and several 
of the Drosophila hrp (hnRNP) proteins (Matunis et al., 
1993) associate with nascent RNA polymerase II transcripts 
in a transcript-specific manner. 

HnRNPs may also play an active role in the regulation of 
particular steps in the pre-mRNA processing pathway in ad- 
dition to their possible role in pre-mRNA packaging. Early 
studies indicated that the human hnRNP A, B, and C pro- 
teins may be essential factors for constitutive splicing (Choi 

et al., 1987; Sierakowska et al., 1986). However, hnRNPs 
do not appear to be components of prespliceosomes or 
spliceosomes assembled in vitro although they may function 
at an earlier step in the assembly pathway (Bennett et al., 
1992a). The observation that the relative concentrations of 
SF2/ASF and hnRNP A1 appear to influence splice site 
choice in vitro has led to a proposed role for hnRNPs in al- 
ternative or regulated pre-mRNA splicing (Mayeda and 
Krainer, 1992). Mutations in the conserved AG dinucleotide 
at the 3' acceptor splice site have been shown to influence the 
binding of the A1 protein to the 3' end of the intron indicating 
that this hnRNP may bind to subregions of pre-mRNAs 
in a sequence-specific manner (Swanson and Dreyfuss, 
1988b). SF2 has been recently shown to be an exonic splic- 
ing enhancer binding protein that binds to a purine-rich 
splicing enhancer in the last exon of bovine growth hormone 

Table I. Yeast Strains and Plasmids 

Strain/Designation Genotype/Description Source 

Yeast Strains 
BJ926 

YJA501 
YSW101 
YSW102 
YSW102-1A 

YSW102-1B 
YSW109 

YSWI09-1A 

YSW109-1B 

Plasmids~ 
pNAB3.1 

pNAB3.3 

pNAB3.7 

pNAB3.12 

pNAB3.14 
pNAB3.15 

pNAB3.16 

pNAB3.18 

MATa/MATc~ prbl-l122/prbl-l122 prcl-407/prcl-407 
pep4-3/pep4-3 canl/canl gal2/gal2 hisl/HIS1 TRP1/trpl 

MATa/MATc¢ leu2A2/leu2A2 ura3-52/ura3-52 
YJAS01 NAB3/nab3A2::LEU2 
YSWl01 pURA3CEN4NAB3 (pNAB3.14) 
MATc~ leu2A2 ura3-52 nab3A2::LEU2 

pURA3CEN4NAB3 (pNAB3.14) 
MATa leu2A2 ura3-52 NAB3 
MAlit/MATa leu2A2/leu2A2 ura3-52/ura3-52 

NAB3/nab3A2: :LEU2 pURA3CEN6GALI,IONAB3 
(pNAB3.18) 

MATc~ leu2A2 ura3-52 nab3A2::LEU2 
pURA3CEN6GALI,IONAB3 (pNAB3.18) 

MATct leu2A2 ura3-52 NAB3 

1.9-kb EcoRI fragment (starting at nucleotide 408 of the NAB3 
gene) isolated by expression screening of a )~ gtl 1 genomic 
DNA library and subcloning into EcoRI cut pSP72 (Promega, 
Madison, WI). 

genomic 3.8-kb fragment containing the entire coding region of 
the NAB3 gene cloned into EcoRI cut pSP72. 

encodes amino acids 11%803 of the NAB3 protein fused in- 
frame to the maltose-binding protein generated by subcloning 
the EcoRI fragment from pNAB3.1 into EcoRI cut pMAL-c2 
(New England Biolabs, Beverly, MA). 

NAB3 knockout construct generated by subcloning the EcoRI 
fragment from pNAB3.3, which was blunt-ended, subcloned 
into PvuII/EcoRV cut pSP72, digested with HindIII, blunt- 
ended, and the blunt-ended 2.0-kb XhoI/SalI fragment, con- 
taining LEU2 from YEpI3, inserted. 

YCp50 8.0-kb clone containing the entire NAB3 gene. 
the NsiI fragment from pNAB3.14 was subcloned into PstI cut 

pSP73 (Promega). 
the XhoI/BamHI fragment from pNAB3.15 subcloned into 

XhoI/BamHI cut pRS314 (Sikorski and Hieter, 1989). 
the NciI/BamHI fragment from pNAB3.15 was blunt-ended and 

subcloned into Sinai cut pRD53 (EcoRI/BamHI fragment con- 
raining the GALI,IO promoter region subcloned into the SpeI/ 
BamHI site of pRS316 [Sikorski and Hieter, 1989], gift of 
R. J. Deshaies, University of California, San Francisco, CA). 

YGSC* 

Anderson et al., 1993b 
This study 

* Yeast Genetic Stock Center (Berkeley, CA) 
:~ NAB3 nucleotide numbers refer to Fig. 6. 
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(Sun et al., 1993). Therefore, it is possible that region and/or 
sequence-specific binding of these two types of pre-mRNA 
binding proteins modulates splice-site choice in vivo in con- 
junction with other trans-acting factors, including snRNP 
particles. Finally, although hnRNPs have been hypothesized 
to function in polyadenylation (Wilusz and Shenk, 1990) and 
nucleocytoplasmic shuttling of mRNAs (Pifiol and Dreyfuss, 
1992), there is no evidence for an essential role of hnRNPs 
in these functions. 

As an alternative to studying hnRNP function using in 
vitro assays, our goal has been to characterize hnRNP func- 
tions in an organism amenable to genetic manipulation. To 
this end, we have described the isolation of hnRNP-like pro- 
teins from S. cerevisiae, the nuclear polyadenylated RNA- 
binding (Nab) proteins (Anderson et al., 1993b). All of the 
Nab proteins are directly associated with nuclear poly(A) ÷ 
RNAs in vivo. Nab2p is essential for cell viability, and is re- 
quired for both correct polyadenylation of pre-mRNAs and 
mRNA export from the nucleus (Anderson et al., 1993b; 
Anderson, J. T., and M. S. Swanson, unpublished data). We 
now report the isolation and characterization of Nablp and 
Nab3p, and study the subnuclear distribution of all three Nab 
proteins by three-dimensional fluorescence optical micros- 
copy. Our studies show that both Nab2p and Nab3p are es- 
sential for growth in yeast, and are required for several dif- 
ferent steps in the biogenesis of mRNA within the nucleus. 

Materials and Methods 

Yeast Strains, Plasmids, and Genetic Manipulations 
Table I lists the yeast strains and plasmids used in this study. BJ926 was 
used for UV cross-linking, preparation of genomic DNA and poly- 
adenylated RNA, and cellular immunefluorescence. NAB3 disruptions were 
performed by transforming YJA501 with pNAB3.12 to generate YSW101 
(see Table I). Growth experiments in both galactose and glucose with the 
GAL::nab3 strain (YSW109-1A) and a sister haploid NAB3 strain (YSWl09- 
1B) were performed by growing overnight cultures in SG (YSW109-1A) or 
SG+Ura+Leu (YSW109-1B). Cultures were diluted to a starting ODe00 
(indicated in Fig. 9 A) in either SD (YSW109-1A) or SD+Ura+Leu 
(YSWI09-1B). At various times after shift into glucose, aliquots containing 
8 × 107 cells were centrifuged, resuspended in cold 10% trichloroacetic 
acid and disrupted by vigorous vortexing with glass beads, and precipitated 
proteins fractionated by SDS-PAGE (see below). Growth media for yeast 
were prepared as described (Rose et al., 1990), and all genetic manipula- 
tions were performed using standard techniques (Guthrie and Fink, 1991). 

Isolation of UV Cross-linked Polyadenylated 
RNA-RNP Complexes 
BJ926 yeast cells were grown in YPD, and UV cross-linking as well as isola- 
tion of polyadenylated RNPs were performed according to a previously de- 
scribed procedure (Anderson et al., 1993b). 

Polyclonal and Monoclonal Antibody Preparation 

Folyclonal antisera reactive against Nablp, Nab2p, and Nab3p were elicited 
by injecting BALB/c mice with UV light cross-linked polyadenylated RNPs 
as described previously (Anderson et al., 1993a, b). The 1FA monoclonal 
antibody against Nablp was isolated by fusing spleen cells from one of the 
mice injected with total cross-linked polyadenylated RNPs with SP2/O my- 
eloma cells as described (Anderson et al., 1993b). The resulting hybrid- 
omas were screened by both immunoblotting against cross-linked RNPs and 
cellular immunofluorescence to detect antibodies reactive against nuclear 
poly(A) + RNA-binding proteins. The 2F12 monoclonal antibody against 
Nab3p was prepared by injecting BALB/c mice three times with 1 #g per 
injection of a Nab3p-maltose-binding protein (MBP) fusion protein con- 
taining 80% of Nab3p (prepared using pNAB3.7; Table I). 

Nablp Isolation and Protein Sequencing 

Repeated attempts to clone the NAB/gene by expression screening of both 
yeast genomic DNA and eDNA libraries using either polyclonal antisera 
reactive against total crosslinked poly(A) + RNPs or the 1FA monoclonal 
antibody were unsuccessful. Nablp was therefore directly purified by 
affinity chromatography using the 1E4 anti-Nablp monoclonal antibody, 
and subjected to protein microsequencing. Briefly, the IE4 monoclonal anti- 
body was first purified on Protein G-agerose and then covalently coupled 
using dimethyl pimelimidate (Immunopure Protein G IgG Orientation Kit; 
Pierce Chemical Co., Rockford, IL). Nablp was purified from 7-10 mi of 
yeast splicing extract (Cheng et ai., 1990), which had been previously 
shown to contain relatively high levels of Nablp by immunoblotting analysis 
(Wilson, S. M., J. T. Anderson, and M. S. Swanson, unpublished data). 
During preparation of the splicing extract, and/or during affinity chroma- 
tography, smaller Nablp polypeptides of 50-55 kD, which were still reactive 
against IE4, were detectable. Since protein mierosequencing initially deter- 
mined that the amino terminus of fuU-length Nablp was blocked, the 
two Nablp putative proteolysis products of 50 and 55 kD were subjected 
to NH2-terminal sequencing (model 473A; Applied Biosystems, Foster 
City, CA). 

NAB3 Gene Isolation and DNA Sequencing 

The NAB3 gene was isolated as an expression clone from ~gtll genomic 
library (Snyder et al., 1987) using a 1:300 dilution of the anti-cross-linked 
polyadenylated RNP antisera described above. The entire NAB3 gene was 
isolated on an 8.0-kb clone from YCp50 genomic library (Yeast Genetic 
Stock Center, Berkeley, CA) using a 700-bp HindIH/ScaI fragment from 
pNAB3.1 (Table I). DNA sequences were determined for both strands of 
chromosomal fragments cloned into pSP'/2/73 using SP6/T7, or gene- 
specific, oligonucleotide primers (Anderson et al., 1993b). DNA and pro- 
rein sequence information was analyzed using The University of Wisconsin 
Genetics Computer Group programs, and database searches were accom- 
plished by using the BLAST network service at the National Center for Bio- 
technology Information (Altschul et al., 1990). 

Genomic DNA and Polyadenylated RNA Blot Analyses 
High molecular weight yeast genomic DNAs were isolated and fractionated 
in a 0.8% agarose gel as previously described (Anderson et al., 1993b). 
Both DNAs and RNAs were transferred by capillary blotting to Hybond-N + 
(Amersham Corp., Arlington Heights, IL), and hybridization performed for 
12-14 h at 65°C in a hybridization oven (model 1000; Robbins Scientific 
Corp., Sunnyvale, CA) in 0.25 M Na2HPO4 (pH7.5)/7% SDS/1 mM 
EDTA/1% BSA. Blots were washed three times in 2x  SSC(lx SSC is 
0.15 M NaCI plus 0.015 M sodium citrate [pH7.0])/0.1% SDS at room tem- 
perature (RT) for 15 rain and twice in 0.5x SSC/0.1% SDS at 65°C for 15 
min. The genomic blot hybridization probe was PvuI~EcoRI fragment 
(nucteotides [nt] 1750 to 2553; see Fig. 6) from NAB3. Polyadenylated 
RNAs were prepared from BJ926, fractionated on a i .2% glyoxal agarose 
gel, and transferred to Hybond-N + (Amersharn Corp.). Hybridizations and 
washes were performed as described above. Hybridization probes for 
Northern analysis were: (a) ACT/, either representing the complete intron 
(nt 663 to 955) or the intron plus second exon (nt 663 to 1396) (Gallwitz 
and Sures, 1980; Ng and Abelson, 1980); (b) CY/-/2, either for the intron 
(nt 61 to 507) or for the full-length gene (nt 65 to 1065) (Kaufer et ai., 
1983); and (c) TP//, for the full-length gene (nt 971 to 2017) (Alber and 
Kawasaki, 1982). 

Gel Electrophoresis and Immunoblotting 
Proteins were resolved by SDS-PAGE using 12.5% (final acrylamide con- 
centration) separation gels (Anderson et al., 1993b). After electrophoresis, 
proteins were transferred to nitrocellulose using a semi-dry electroblotter 
(Bio-Rad Laboratories, Hercules, CA) for 30 min at 15V. Immunoblotting 
was performed as described (Anderson et al., 1993b) using a 1:500 dilution 
of 1FA (anti-Nablp), a 1:250 dilution of 2F12 (anti-Nab3p), a 1:2,000 dilu- 
tion of 2B1 (anti-Pub2p), and a 1:5,000 dilution of horseradish peroxi- 
dase-conjugated sheep anti-mouse secondary antibody. Reactive antigens 
were visualized by enhanced chemiluminescence (Amersham Corp.) using 
a film exposure of 1-30 s. 

In Vitro Splicing 
Cell extracts competent for in vitro splicing of pre-mRNAs were prepared 
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from BJ2168 cells as described previously (Lin et al., 1985). Splicing reac- 
tions were performed with [32P]GTP-labeled actin pre-mRNAs prepared 
using I"7 polymerase by transcription ofa plasmid (constructed by A. Zaug, 
University of Colorado, Boulder, CO) containing a modified ACT/ gene 
(Lin et al., 1985; Schwer and Guthrie, 1991). Splicing products were 
resolved on 6% sequencing gels, and visualized by autoradiography. 

Depletion of Nab3p from whole cell extracts was accomplished by pass- 
ing extracts in 10 mM Hepes (pH 7.0)/1.5 mM MgCld200 mM KCI/0.5 
mM DTT through a 2 ml 2F12 affinity column at 4°C followed by dialysis 
for 3 h against 20 mM Hepes (pH 7.0)/0.2 mM EDTA/0.5 mM DTT/50 mM 
KCI/20% (vol/voi) glycerol. The 2F12 affinity matrix was prepared by first 
purifying 2F12 from ascites fluid on a protein G-agarose column followed 
by covalent cross-linking of the IgG-protein G complex with dimethyl 
pimelimidatc (Irnmunopure Protein O IgG Orientation Kit; Pierce Chemi- 
cal Co.). The amount of Nab3p in undepletcd and depleted extracts was as- 
sayed by immunoblotting. For immunoinhibition studies, 2F12 was purified 
on a protein G column, eluted with 0.1 M glycine-HCl (pH 2.8), immedi- 
ately neutralized, and dialyzed against PBS. Cell extracts (4 t~l) were treated 
for I0 min at 4"C with either I, 5 or 10/zg of purified 2F12 before adding 
labeled precursor RNA as described previously (Schwer and Guthrie, 
1991). 

Three-dimensional Cellular Immunofluorescence 

Preparation of BJ926 yeast cells for both direct and indirect cellular im- 
munofluorescence was performed as described previously (Anderson et al., 
1993a,b). For indirect cellular immunofluorescence, monoclonal antibod- 
ies were diluted in 3% BSA/PBS at 1:500 (1E4, 3F2, and A66), 1:250 
(2F12), and 1:5,000 (1(31). Antigen-antibody complexes were detected 
using a 1:10 dilution of afffinity-purified/subclass-specific goat anti-mouse 
secondary antibodies conjugated with either fluorescein (FITC), rhodamine 
(RITC), or Texas Red (Southern Biotechnology Associates, Inc., Birming- 
ham, AL) (Anderson et al., 1993a). 

Three-dimensional fluorescence optical microscopy datasets were col- 
lected and analyzed as previously described using instrumentation in the 
Optical Microscopy Suite of the Center for Structural Biology at the Univer- 
sity of Florida (Galnesville, FL) as well as in the laboratories ofJ. W. Sedat 
and D. A. Agard of the Howard Hughes Medical Institute at the University 
of California-San Francisco (HHMI-UCSF, San Francisco, CA) (Anderson 
et al., 1993a). The microscope at the University of Florida essentially 
duplicates the original microscope at HHMI-UCSE and was assembled by 
Applied Precision, Inc. (Seattle, WA). 

Resul ts  

Nablp and Nab3p Are Associated with Nuclear 
Polyadenylated RNAs In Vivo 

We recently described the isolation and characterization of 
a novel yeast nuclear pre-mRNA-binding protein, Nab2p 
(Anderson et al., 1993b). Nab2p was identified as a ribonu- 
cleoprotein that is localized to the nucleus, and which read- 
ily cross-links to polyadenylated RNAs when cells are ex- 
posed to UV light. Since our goal was to study the functions 
of  pre-mRNA/mRNA-binding proteins in nuclear RNA pro- 
cessing, and the types of  protein-protein and protein-RNA 
interactions which are important for these functions, addi- 
tional Nab proteins isolated during this initial study were 
chosen for further characterization. 

As previously described for NAB2, the NAB3 gene was 
isolated by screening a )~gt11 genomic expression library 
with polyclonal antisera raised against cross-linked poly(A) + 
RNA-RNP complexes. Briefly, genomic clones which en- 
coded fusion proteins reactive with antisera against these 
cross-linked complexes were purified, plated at high density, 
and the fusion proteins transferred to nitrocellulose filters 
during induction with isopropyl-/3-D-thiogaiactopyranoside 
(IPTG). These filters were then used to affinity purify those 
antibodies reactive against each fusion protein (Snyder et al., 

1987). The affinity-selected antibodies were assayed to de- 
termine which clones encoded proteins which not only 
crosslinked to poly(A) ÷ RNA in vivo, but were also local- 
ized to the nucleus by indirect cellular immunofluorescence. 
The NAB3 gene was subcloned into a MBP-fusion protein ex- 
pression vector, and the Nab3p-MBP fusion protein used to 
immunize mice for the preparation of the anti-Nab3p mono- 
clonal antibody 2F12. 

As an alternative to direct gene isolation by expression 
screening using polyclonai antisera and production of mono- 
clonal antibodies against Nab-MBP fusion proteins, one of 
the mice injected with cross-linked RNA-RNP complexes 
was used to directly prepare a bank of  hybridomas (see 
Materials and Methods). The supernatants from these clones 
were then screened by indirect cellular immunofluorescence 
to detect antibodies which specifically reacted against nu- 
clear proteins. The 1E4 monoclonal antibody against Nablp 
was prepared from one of  these clones. 

The 2F12 monoclonal antibody against Nab3p recognized 
a protein which migrated at ,o120 kD by SDS-PAGE, and 
that cross-linked to poly(A) ÷ RNAs in vivo (Fig. 1, NAB3). 
The 1E4 monoclonal antibody reacted against a 60 kD yeast 
nuclear protein, Nablp, that also crosslinked efficiently to 
poly(A) ÷ RNAs in vivo (Fig. 1, NAB/). In contrast to these 
two Nab proteins, Pub2p, which is a 60 S large ribosomal 
subunit protein that cross-links to a non-poly(A) ÷ RNA 
(Anderson et al., 1993a), did not detectably cross-link to 
poly (A) ÷ RNAs (Fig. 1, PUB2). 

The intracellular distributions of all three Nab proteins 
were investigated by three-dimensional fluorescence optical 
microscopy. Comparison of  the distribution of  Nablp (Fig. 
2 a) with chromosomal DNA, as detected by DAPI staining 
(Fig. 2 b), and the cytoplasmic polyadenylate tall-binding 
protein (Fig. 2 c, Pablp) demonstrated that Nablp was pri- 
marily detectable within the nucleus. The intranuclear dis- 

Figure 1. Nablp and Nab3p are associated with polyadenylated 
RNAs in vivo. Immunoblot analysis of total cell extracts (total 
lanes) or purified polyadenylated RNA-RNP crosslinked com- 
plexes (cross-linked lanes). Blots were probed with monoclonal an- 
tibodies against Nab3p, Nablp, and Pub2p. 
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Figure 2. Nablp, Nab2p, and Nab3p are all localized to the nucleus. The subcellular distributions of all three Nab proteins were determined 
by three-dimensional fluorescence optical microscopy using monoclonal antibodies against Nablp (a), Nab2p (d), and Nab3p (g). Also 
shown for each set of cells is the distribution of DNA, visualized with DAPI (b, e, and h), and the cytoplasmic polyadenylate tail-binding 
protein, Pablp (c and f )  for the Nablp and Nab2p data sets. The distribution of Pablp is not shown for the Nab3p data set (g and h) since 
the intense cytoplasmic fluorescence for the very abundant Pablp protein contributes to the much weaker cytoplasmic signal for Nab3p. 
Antigens were localized using afffinity-purified and subclass-specific secondary antibodies conjugated with either rhodamine or Texas red 
(Nab proteins) or fluorescein (Pablp). Bar, 4/zm. 

tribution of Nab2p (Fig. 2 d) was also compared with chro- 
mosomal DNA (Fig. 2 e) and Pablp (Fig. 2 f ) ,  and was very 
similar to Nablp indicating that these proteins have a similar 
distribution within the yeast nucleus. Finally, Nab3p also ap- 
peared to be predominantly nuclear (Fig. 2, g and h). Weak 
cytoplasmic staining was also detectable for both Nab2p and 

Nab3p. Immunoblot analysis indicated that Nab3p was ap- 
proximately tenfold less abundant than Nablp (Wilson, 
S. M., J. T. Anderson, and M. S. Swanson, unpublished 
data), which prohibited double-staining with anti-Pablp an- 
tibodies due to the extremely strong cytoplasmic Pablp im- 
munofluorescence signal. 
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A variety of studies using both light and electron micros- 
copy have demonstrated that the nucleolus occupies a dis- 
crete crescent-shaped subregion within the yeast nucleus 
(Sillevis Smitt et al., 1973; Aris and Blobel, 1988). Since 
it was conceivable that the Nab proteins might also function 
in nucleolar pre-rRNA metabolism, their intranuclear distri- 
bution was compared to an abundant nucleolar protein, 
Noplp (Aris and Blobel, 1988). Noplp, which is also re- 
ferred to as yeast fibrillarin, is one of the proteins associated 
with U3 snRNP involved in nucleolar pre-rRNA processing, 
and has been shown to be localized throughout the nucleolus 
(Aris and Blobel, 1988). Comparison of the nuclear distri- 
butions of Nablp (Fig. 3 a), Nab2p (Fig. 3 d), Nab3p (Fig. 
3 g) with the intranucleolar localization of Noplp (Figs. 3, 
b, e, and h, compare the distribution of Noplp with DAPI 
staining) suggested that the Nab and Nop proteins were 
localized differently within the nucleus. In cells doubly 
stained for Nablp/Noplp (Fig. 3 c), Nab2p/Noplp (Fig. 3f) ,  
and Nab3p/Noplp (Fig. 3 i), the nuclear area occupied by 
the Nab proteins (red staining) appeared to be predomi- 
nantly separate from the Noplp nucleolar region (green 
staining) although apparent colocalization was detectable 
(yellow staining). To extend this observation, three-dimen- 
sional reconstructions of the subnuclear localization of 
Nab2p and Noplp were produced using both volume- and 
surface-rendering methods (Paddy et al., 1990). These anal- 
yses indicated that the distribution of Noplp was highly retic- 
ulated and interwoven with Nab2p staining along the sur- 
faces where the two proteins were juxtaposed (Paddy, M. R., 
unpublished data). None of the Nab proteins specifically 
colocalized with Noplp, indicating that it is unlikely they are 
appreciably distributed within the nucleolus. In summary, 
the RNA cross-linking and intracellular distribution studies 
demonstrate that Nablp, Nab2p, and Nab3p axe authentic nu- 
clear polyadenylated RNA-binding proteins. 

Nablp Is Identical to Npi3p/Nop3p 

Repeated attempts, using several different protocols, to iso- 
late the gene encoding Nablp by immunoscreening two 
different hgtll genomic expression libraries, as well as a 
hZAP eDNA expression library (Anderson et al., 1993b), 
were unsuccessful. We therefore decided to first purify the 
Nablp protein by affinity chromatography using the 1FA 
monoclonal antibody, determine the amino acid sequence of 
several different peptides by protein microsequencing, and 
isolate the NAB1 gene by hybridization with degenerate oli- 
gonucleotides if the protein had not been previously charac- 
terized. Preliminary studies indicated that the amino terminus 
of the full-length 60-kD protein was blocked. Fortunately, 
the isolation of Nablp from yeast splicing extracts (Cheng et 
al., 1990) resulted in partial proteolysis products of 50 and 
55 kD which were recognized by 1E4. NH2-terminal se- 
quencing of both of these peptides (Fig. 4, bold underlines) 
demonstrated that Nablp was identical to the previously 
characterized Npl3p/Nop3p protein (Bossie et al., 1992; 
Russell and Tollervey, 1992). Npl3p/Nop3p has been sug- 
gested to be both a factor involved in nuclear import of pro- 
teins (Bossie et al., 1992), and a nucleolar protein that plays 
a role in pre-rRNA processing (Russell and Tollervey, 1992). 
Our results demonstrated that Nablp was bound to nuclear 
poly(A) + RNA in vivo and was primarily localized within 
nonnucleolar regions of the nucleus suggesting that it may 
function in pre-mRNA processing. 

Nab 3p Is An  Acidic Nuclear Ribonucleoprotein 
with an RNA-binding Domain Related to the hnRNP 
C Proteins 

The full-length NAB3 gene (Fig. 5 A) was isolated from 
a YCp50 genomic DNA library by hybridization using 
pNAB3.1 (Table I). NAB3 appeared to be a single-copy gene 

Figure 3. The subnuclear dis- 
tribution of the Nab proteins 
is significantly different from 
fibrillarin, a major nueleolar 
protein. Three-dimensional 
fluorescence optical micros- 
copy was performed as de- 
scribed in the legend to Fig. 2. 
The distribution of the Nablp 
(a), Nab2p (d), and Nab3p (g) 
proteins are shown in red. 
Also shown are two compo- 
nent iramunofluorescence im- 
ages comparing the distribu- 
tion of DNA by DAPI staining 
(blue) with Noplp (green) (b, 
e, and h), and the distribution 
of the Nablp (c), Nab2p (f), 
and Nab3p (i) proteins in red 
with Noplp in green. Bar, 
4/~m. 
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l MKEVK I ~GFAFVEFEEAESAAKA I EEVHGKSFANQPLQVVYSK~PAKRY 200 
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~ GGFRGRGGFRGGFRGG 3 0 0  
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Figure 4. Nablp is identical to Npl3p/Nop3p. Nablp was isolated 
by affinity chromatography using the 1FA monoclonal antibody and 
peptides, probably resulting from proteolysis during isolation, were 
subjected to protein microsequencing. The amino termini of these 
two polypeptides (labeled 55 and 50 kD) were sequenced, and de- 
termined to be identical to the published sequences of Nop3p (Rus- 
sell and Tollervey, 1992) and Npl3p (Bossie et al., 1992). Indicated 
on the previously published Np13p/Nop3p sequence are the two 
RNA-binding motifs, the ribonucleoprotein consensus sequence 
RNA-binding domain (CS-RBD) and the RGG box, and a region 
at the amino terminus rich in glutamine and proline (Q/P). 

by genomic blot analysis (Fig. 5 B), and produced a 3.0-kb 
poly (A) ÷ RNA (Fig. 5 C). The deduced amino acid se- 
quence determined from NAB3 indicated an extremely acidic 
protein (pI = 4.22) of 802 amino acids with a calculated mo- 
lecular weight of 90,468 (Fig. 6). Although Nab3p migrated 
at an estimated molecular weight of ~120,000 by SDS-PAGE 
(Fig. 1), both the Nablp/Nop3p/Npl3p (Russell and Toller- 
vey, 1992; Bossie et al., 1992) and Nab2p (Anderson et 
al., 1993b) proteins, and a majority of hnRNPs from 
metazoan cells (Dreyfuss et al., 1993), migrate aberrantly 
by SDS-PAGE. 

Nab3p possesses three recognizable protein structural mo- 
tifs (Fig. 6). The amino terminus is extremely acidic, and 
contains a run of 37 aspartic and glutamic acid residues in- 
terrupted by only a single asparagine (Fig. 6, amino acids 
[aa] 101-137). This aspartic/glutamic acid-rich region is 
reminiscent of an acidic region of nucleolin (Lapeyre et al., 
1987). Near the middle of Nab3p is a single ribonucleopro- 
tein consensus sequence RBD (Fig. 6, aa 322-401), a motif 
that defines a large family of RNA-binding proteins (Bandzi- 
ulis et al., 1989; Keene and Query, 1991). Finally, the car- 
boxy terminal region is rich in glutamine and proline 
residues (Fig. 6, aa 568-785) similar to a putative RNA- 
binding protein involved in spermatogenesis in Drosophila 
(Karsch-Mizrachi and Haynes, 1993). 

Comparison of the primary structures of the three Nab 
proteins indicated that the only motif which they had in com- 
mon was a region rich in glutamine and proline residues, 
which varies considerably in sequence between these pro- 
teins (Fig. 7 A). Distinct features of the Q/P-rich region 
within the three Nab proteins are four repeats of APQE in 
Nablp (Bossie et al., 1992; Russell and Tollervey, 1992), a 
Nab2p tetrapeptide repeat of QQQP that is variable in length 
from two to nine repeats between yeast strains (Anderson et 
al., 1993b), and long consecutive runs of both glutamine and 
proline (P,-sQ3-~6) in Nab3p. The Nab proteins also possess 

Figure 5. Characterization of the NAB3 gene. (A) Restriction map 
of the 4.3-kb genomic clone (pNAB3.15) containing the NAB3 
gene. The arrow within the open box marked NAB3 indicates the 
direction of transcription. (B) Genomic DNA blot analysis using 
the PvulI/EcoRI 800-bp restriction fragment as a hybridization 
probe. The presence of a single band in genomic DNA digested 
with four different restriction enzymes indicates that the NAB3 gene 
is single copy. (C) Polyadenylated RNAs were isolated, and frac- 
tionated by glyoxal gel electrophoresis, blotted onto a nylon mem- 
brane and probed as described in B. 

different combinations of RNA-binding motifs with Nablp 
containing one RBD and several RGG boxes, Nab2p an RGG 
box and seven repeats of a C3H motif, and Nab3p a single 
RBD. This RBD within Nab3p is most closely related to the 
single RBD of the hnRNP C1/C2 proteins from Xenopus 
(38% identical residues) and human (36% identity) (Fig. 7 
B). The frog and human hnRNP C proteins are also acidic 
ribonucleoproteins (Swanson et al., 1987; Preugschat and 
Wold, 1988). 

NAB3 Encodes a Protein Essential for Cell Growth 

Previous work has demonstrated that expression o f  the 
NAB1/NOP3 and NAB2 genes is required for cell growth 
(Russell and Tollervey, 1992; Anderson et al., 1993b). To 
determine if NAB3 was also required for cell viability, a 
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Figure 6. DNA and deduced amino acid sequence of NAB3. The 
genomic DNA sequence from NciI to EcoRI (Fig. 5 A) is shown. 
Open boxes highlight three protein structural motifs within Nab3p 
including the acidic aspartic/glutarnic acid (D/E) region, the ribo- 
nucleoprotein consensus sequence RNA-binding domain (RBD), 
and a glutamine/proline-rich (Q/P) region near the carboxyl termi- 
nus. The underlined sequences within the RBD correspond to 
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Figure 7. Protein structural motifs in the Nab proteins. (A) A com- 
parison of the RNA-binding motifs and auxiliary domains of Nablp, 
Nab2p, and Nab3p. In Nablp, the auxiliary domain is characterized 
by a glutamine/proline (Q/P)-rich region consisting of four repeats 
of alanine-proline-glutamine-glutarnic acid (APQE), and the RNA- 
binding motifs are a single ribonucleoprotein consenses sequence 
RNA-binding domain (RBD) and an RGG box region. In Nab2p, 
the Q/P-rich region consists of a variable length repeat of three 
glutamines and a proline (Q~P) while two RNA-binding domains 
are present, an RGG box region and a motif related to the zinc 
finger nucleic acid binding motif (C3H). Two auxiliary domains 
exist in Nab3p, a Q/P-rich domain composed of variable repeats 
of adjacent prolines and glutamines (PI-sQ3-16) and an aspartic/ 
glutamic-rich (D/E) region, and a single RNA-binding motif (RBD). 
(B) The RBD from Nab3p is compared to that of the hnRNP C pro- 
teins. Also shown is the consensus RBD (Bandziulis et al., 1989). 

NAB3 null allele was created by replacing +060% of the 
NAB3 protein encoding region with the selectable marker 
LEU2 (Fig. 8 A). This construct was used to transform 
YJA501 to generate a leucine prototroph, YSWl01 (Table I). 
Genomic blot analysis demonstrated that one of the NAB3 al- 
leles had been transplaced with the nab3::LEU2 allele (Fig. 
8 B). Sporulation of YSWl01, followed by tetrad analysis, 
resulted in 50 out of 54 tetrads with two viable and 2 nonvia- 
ble spores (Fig. 9 C). All viable spores were leucine auxo- 
trophs. To determine if the growth defect in the nab3::LEU2 
cells could be complemented, YSW101 was transformed 
with pNAB3.14, a YCp50 clone carrying the entire NAB3 
gene and U A 3  as a selectable marker, to create YSWl02. 
Sporulation of YSW102, and analysis of 16 tetrads gave four 
with four viable spores, four with three viable and one non- 
viable, and eight with two viable and two nonviable. Of the 
15 spores which were Ura+/Leu +, none were able to grow 
in the presence of 5-fluoro-orotic acid that is selectively toxic 
to cells expressing URA3. We conclude from these studies 
that expression of NAB3 is essential for cell growth. 

Loss of Nab3p Affects Pre-mRNA Processing 

Pre-mRNA splicing requires that various snRNPs bind to 

RNP1 and RNP2 (Bandziulis et al., 1989)o These sequence data are 
available from EMBL/GenBank/DDBJ under accession number 
U05314. 
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Figure 8. NAB3 is essential for cell viability. (A) The one-step trans- 
placement of the NAB3 gene with LEU2 is illustrated. (B) Genomic 
DNA was isolated from either YJA501 or the leucine prototroph, 
YSWl01, digested with EcoRI, and hybridized with the PvuII/ 
EcoRI restriction fragment highlighted by the black box in A. (C) 
An example of the segregation pattern of dissected tetrads from 
YSWl01. The YPD plate shown was incubated for 3 d, however the 
segregation pattern remained the same after 10 d of growth at 30°C. 
Replica plating demonstrated that all growing haploids were leucine 
auxotrophs. 

pre-mRNAs in a defined order (Green, 1991; Guthrie, 1991; 
Ruby and Abelson, 1991; Rymond and Rosbash, 1992; 
Baserga and Steitz, 1993). In yeast, this snRNP addition 
pathway was elegantly characterized in vivo by depletion of 
individual snRNPs using GAL-regulated expression of vari- 
ous snRNA genes (for review see Rymond and Rosbash, 
1992). We therefore investigated the function of Nab3p by 
subcloning the NAB3 gene into pRD53, a CEN6URA3- 
GALI,IO vector which allows for regulated expression. 
Growth of YSWl09 in galactose induces an '~fivefold in- 
crease in Nab3p with no apparent effect on growth rate (Wil- 
son, S. M., J. T. Anderson, and M. S. Swanson, unpublished 
data). In contrast, repression of GAL::nab3 expression by 
growth of haploid strain YSWl09-1A in glucose resulted in 
a gradual loss of Nab3p with a subsequent loss of growth rate 
(Fig. 9, A and B). Nab3p was barely detectable after 24 h 
of growth in glucose, and cell division of YSW109-1A had 
ceased. The effects of Nab3p loss on the steady state levels 
of both pre-mRNAs and mRNAs were examined by Northern 

blot analysis for both unspliced (triose phosphate isomerase, 
TP//) and spliced (actin, ACT1 and ribosomal protein L29, 
CYH2) pre-mRNAs (Fig. 9 C). Loss of mRNAs produced 
from both unspliced and spliced pre-mRNAs paralleled the 
disappearance of Nab3p. In contrast, unspliced ACT/pre- 
mRNA accumulated as Nab3p was depleted (Fig. 9 C, ACT/ 
intron). However, the ACT1 pre-mRNA accumulation visual- 
ized at 24 h in GAL::nab3 cells was less than that observed 
in a temperature-sensitive strain known to be defective in 
pre-mRNA splicing, prp2-1 (Fig. 9 C, autoradiography for 
GAL::nab3 was approximately four times longer than for 
prp2-1). Prp2p is an RNA-dependent ATPase required 
for the first transesterification reaction (Kim and Lin, 1993). 
Although unspliced CYH2 pre-mRNA did not accumulate, 
the ratio of unspliced pre-mRNA to mature mRNA signifi- 
cantly increased between 0 and 24 h following shift to glu- 
cose (approximately 15-fold by PhosphorImager quanti- 
tation). 

The accumulation of ACT/pre-mRNAs during incubation 
of GAL::nab3 cells in glucose suggested that Nab3p may be 
an essential factor for pre-mRNA splicing. In collaboration 
with Christian Siebel and Christine Guthrie (University 
of California, San Francisco, CA), the ability of Nab3p- 
depleted extracts to splice a labeled actin precursor RNA in 
vitro was tested. Cell extracts were either depleted of Nab3p 
by affinity chromatography on a 2F12 (anti-Nab3p) mono- 
clonal antibody column or extracts were directly treated with 
varying concentrations of purified 2F12 (see Materials and 
Methods). Either immunodepletion or immunoinhibition led 
to nearly complete degradation of actin precursor RNAs. 
This result suggests that Nab3p might be required for pre- 
mRNA stability in vitro although the effect on stability might 
be indirect (Siebel, C. W,, C. Guthrie, and M. S. Swanson, 
unpublished data). Nevertheless, the extensive precursor 
RNA degradation precluded a determination of whether 
Nab3p was involved in pre-mRNA splicing in vitro. 

Previous work has demonstrated that cells carrying the 
prp2-1 allele accumulate both ACT/and CYH2 pre-mRNAs 
at the nonpermissive temperature (Vijayraghavan et al., 
1989; Forrester et al, 1992). In contrast, cells possessing 
mutant alleles of PRP20 accumulate unspliced AC// pre- 
mRNA and larger extended transcripts, but show a dramatic 
decrease of unspliced CYH2 pre-mRNA (Vijayraghavan et 
al., 1989; Forrester et al., 1992). Although the Prp20p is 
structurally similar to the human RCC1 protein involved in 
chromosome condensation, its function in vivo is unclear 
since mutations in PRP20 cause a variety of defects in 
mRNA biogenesis including transcriptional initiation, 3' end 
formation and nucleocytoplasmic mRNA export (Aebi et al., 
1990; Forrester et al., 1992; Amberg et al., 1993). However, 
since depletion of Nab3p also resulted in accumulation of 
AC//, but a loss of CYH2, pre-mRNAs, we determined if loss 
of Nab3p resulted in other defects in the mRNA processing 
pathway. As opposed to prp20 mutants, loss of Nab3p had 
no detectable effect on the distribution of polyadenylated 
RNA between the nucleus and cytoplasm or on poly(A) tail 
length in vivo, and did not result in the generation of 
significant levels of extended CUP1 or CYH2 transcripts 
(Wilson, S. M., J. T. Anderson, and M. S. Swanson, unpub- 
lished data). In summary, these results suggested that Nab3p 
function is required for efficient splicing in vivo, but does not 
appear to play an essential role in either 3' end formation or 
nucleocytoplasmic mRNA shuttling. 
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Figure 9. Evidence that Nab3p is re- 
quired for pre-mRNA splicing in 
yeast. (A) Growth curves of the GAL:: 
nab3 strain YSW109-1A and YSW109- 
113, a haploid possessing a wild-type 
NAB3 allele. Growth is shown by 
OD~0 with indicated times after shift 
of both YSW109-1A and YSWl09-1B 
to glucose.' (B) An immunoblot of to- 
tal cell extract from YSWl09-1A iso- 
lated after various times following 
shift to glucose. The immunoblot was 
probed with 2F12, against Nab3p, and 
2B1, a monoelonal antibody against 
Pub2p, as a control for the amount of 
protein loaded per lane. Two polypep- 
tides react with the 2F12 monoelonal 
antibody against Nab3p. The lower spe- 
cies probably results from proteolysis 
during isolation since it is variable in 
intensity between experiments. (C) 
RNA blot analyses of total cellular 
RNA from YSWl09-1A, the haploid 
strain containing the GAL::nab3 al- 
lele, are shown at various times after 
shift to glucose. Blots were probed 
with genomic fragments from both un- 
spliced and spliced genes. These Inobes 
included triose phosphate isomerase 

(TP/]), exon and intron regions of actin (ACT]), the actin intron alone (AC~ intron), and exon and intron regions of the ribosomal gene 
L29 (CYH2). Also shown is an RNA blot probed with the ACT/intron probe in which total cellular RNAs were isolated from theprp2-1 
thermal-sensitive strain grown at either 24°C or after shift to 37°C for 45 win. The film exposure time for theprp2-! blot was four times 
less than for GAL::nab3. o, GAL::nab3; O, NAB3. 

Discussion 

We have isolated and characterized a family of nuclear pre- 
mRNA/mRNA binding proteins that appear to be required 
for several steps in the pre-mRNA processing pathway. The 
three Nab proteins described here are indistinguishable from 
metazoan hnRNPs by several criteria: (a) they efficiently 
cross-link to polyadenylated RNAs in vivo; (b) they are 
localized within the nucleus with a predominantly non- 
nucleolar distribution; (c) their RNA-binding motifs and 
auxiliary domains are structurally related to hnRNPs from 

a variety of vertebrate and invertebrate cells; and (d) in- 
dividual Nab proteins are required for particular steps in the 
pre-mRNA processing pathway in vivo including splicing, 
polyadenylation, and nucleocytoplasmic export of mRNA. 

An important question which remains unanswered is why 
we have not been able to isolate yeast proteins structurally 
related to the abundant metazoan A/B proteins that have 
been characterized in a variety of vertebrate and invertebrate 
ceils (Dreyfuss et al., 1993). One possibility is that our isola- 
tion procedure, which depends on UV light-induced cross- 
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linking of RNA-binding proteins to polyadenylated RNAs, 
may have failed to detect this group of yeast RNA-binding 
proteins. However, we have not been successful in isolating 
a distinct 30-40 S monoparticle from yeast nucleoplasm by 
sucrose gradient sedimentation under a variety of ex- 
perimental conditions, supporting the idea that this type of 
hnRNP A/B-rich nuclear particle may not exist in Sac- 
charomyces cerevisiae (Oberdorf, A. M., and M. S. Swan- 
son, unpublished data). Alternatively, the A/B group of pro- 
teins may function in a nuclear activity which is not common 
between higher eukaryotic ceils and S. cerevisiae. One of the 
most prominent differences in the pre-mRNA processing 
pathway between metazoan and S. cerevisiae cells is that 
only 2-5 % of the characterized nuclear-encoded genes of 
budding yeast possess introns, and there are no examples of 
alternatively spliced pre-mRNAs (Rymond and Rosbash, 
1992). Since the relative concentrations of SF2/ASF and the 
hnRNP A1 protein have been shown to regulate splice site 
choice in vitro (Mayeda and Krainer, 1992; Sun et al., 
1993), the abundant A/B proteins may be a specialized sub- 
group of hnRNPs in metazoan cells that function as alterna- 
tive splicing factors. 

What are the cellular functions of the Nab proteins? Nablp 
possesses several types of RNA-binding motifs, and is bound 
to nuclear polyadenylated RNAs in vivo. Nablp has been 
previously characterized as Npl3p (Bossie et al., 1992) and 
Nop3p (Russell and Tollervey, 1992). Whether NPL3/NOP3 
is an essential gene for cell growth appears to be highly de- 
pendent on yeast strain background. NPL3 was identified 
during a screen for mutants able to grow on glycerol as a re- 
sult of a defect in the import pathway of proteins into the nu- 
cleus (Bossie et al., 1992). These mutants grew because they 
no longer exclusively imported chimeric proteins, composed 
of the SV-40 large T antigen nuclear localization sequence 
fused to the mitochondrial Fm~ATPase, into the nucleus. 
Our data do not direCtly address the possibility that Nablp 
is involved in the import of proteins into the nucleus. Since 
a metazoan hnRNP has been shown to shuttle between the 
nucleus and cytoplasm (Pifiol-Roma and Dreyfuss, 1992), it 
is possible that Nablp performs multiple functions in both 
RNA processing within the nucleus and protein import into 
the nucleus. NOP3 was isolated during a low stringency hy- 
bridization screen using a region of NOP1 which encodes a 
conserved RNA-binding motif, the GAR domain or RGG 
box (Russell and Tollervey, 1992). Growth of a GAL::nop3 
strain on glucose results in the loss of Nop3p and subsequent 
impairment of both nucleolar pre-rRNA processing and the 
production of cytoplasmic ribosomes. Our analysis of the 
subnuclear distribution of Nablp by three-dimensional opti- 
cal microscopy indicates that the vast majority of this protein 
is not localized within the nucleolus. However, this observa- 
tion does not rule out the possibility that Nablp is an integral 
component of the pre-rRNA processing machinery. To ex- 
plain the various effects of NPL3/NOP3 mutations, we postu- 
late that the primary and essential function of Nablp is in the 
processing of RNA polymerase II transcripts. If Nablp is re- 
quired for pre-fiaRNA processing then loss of Nablp function 
might ultimately lead to loss of mRNAs that encode proteins 
required for a wide array of cellular functions including pre- 
rRNA processing and import of proteins into the nucleus. 

We have recently discovered that Nab2p is required for 
both the regulation of poly(A) tail length and nucleocyto- 

We have recently discovered that Nab2p is required for 
both the regulation of poly(A) tail length and nucleocyto- 
plasmic export of mRNAs in vivo (Anderson, J. T., and 
M. S. Swanson, unpublished data). In contrast, Nab3p ap- 
pears to be required for efficient splicing of both ACT/and 
CYtt2 pre-mRNAs in vivo, but plays no detectable role in 
polyadenylation or nucleocytoplasmic transport of mRNAs. 
Several observations are consistent with the idea that Nab3p 
plays a role in pre-mRNA splicing. Nab3p is a nuclear poly- 
adenylated RNA-binding protein in vivo whose depletion 
correlates with an accumulation of unspliced pre-mRNA. 
Second, the relative amount of Nab3p in cells is significantly 
lower than either Nablp or Nab2p. This lower abundance is 
consistent with a factor which may be involved in pre-mRNA 
splicing because a limited number of nuclear genes produce 
transcripts that are spliced. However, we favor the hypothesis 
that Nab3p functions at some other level in the pre-mRNA 
processing pathway and indirectly influences pre-mRNA 
splicing efficiency. For instance, if Nab2p and Nab3p bind 
to different regions within nascent transcripts to form dis- 
tinct chromatin-associated RNP complexes removal of one 
of these proteins might have profound, but differential, 
effects on subsequent processing events. The surprising 
finding that loss of Nab3p influences pre-mRNA levels 
within the nucleus while loss of Nab2p results in alterations 
in both poly(A) tail length and nucleocytoplasmic export of 
mRNAs is consistent with this idea. 
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