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ABSTRACT

Summary: We present a format for efficient storage of multiple
tracks of numeric data anchored to a genome. The format allows
fast random access to hundreds of gigabytes of data, while retaining
a small disk space footprint. We have also developed utilities to load
data into this format. We show that retrieving data from this format
is more than 2900 times faster than a naive approach using wiggle
files.
Availability and Implementation: Reference implementation in
Python and C components available at http://noble.gs.washington.edu/
proj/genomedata/ under the GNU General Public License.
Contact: william-noble@uw.edu
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1 INTRODUCTION
The advent of functional genomics assays based on next-generation
sequencing (Brunner et al., 2009; Hesselberth et al., 2009; Park,
2009; Wold and Myers, 2008) finally allows the high-throughput
acquisition of data at 1-bp resolution across entire genomes.
Processing this information, however, provides a challenge for
several orders of magnitude beyond that of previous genomic
analyses and demands new techniques for efficient operation. We
introduce the Genomedata format for genome-scale numerical data,
which uses an HDF5 (Hierarchical Data Format; http://hdfgroup.
org/HDF5/) container for efficient, random access to huge genomic
datasets. We also provide a Python interface to this format.

Traditional data interchange formats such as the
wiggle (http://genome.ucsc.edu/goldenPath/help/wiggle.html)
and bedGraph (http://genome.ucsc.edu/goldenPath/help/bedgraph.
html) formats provide excellent means of disseminating genome-
wide datasets but suffer from several disadvantages in the repeated
processing of this data. Storing numerical data as ASCII text is
inefficient and impedes random access to the data. This problem
becomes even more apparent when processing the data in scripting
languages such as Python and R, which provide high-performance
methods for bulk numerical operations on arrays, but no method for
reading in data in interchange formats quickly. It is also necessary
to validate this data before use, checking that there is exactly one
data point per position and that data are not defined outside the
boundaries of the underlying sequence. Genomedata provides an
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intermediate format and off-loads the frustrations of parsing and
validating the data from an analysis programmer. It provides the
conveniences of an application programming interface for reading
a binary file format, akin to the programmatic access to sequence
and alignment data provided by BAM (Li et al., 2009) and BioHDF
(Mason et al., 2010), while being suited for dense numeric data
such as bigWig (Rhead et al., 2010).

In many workflows, Genomedata allows the user to parse, validate
and convert the data into a binary format once, eliminating the
computational expense of doing this repeatedly. The data are stored
as 32-bit IEEE floating point numbers to allow minimal processing
when loading into memory. Not a number entries are used where
data are missing or unassigned. HDF5 transparently breaks the data
into chunks aligned with data columns, so that it minimizes work
during loading. Genomedata compresses these chunks when stored
on disk to save space, especially when values are repeated within a
column, but in a way that still facilitates efficient random access. We
also store some metadata in the archive such that simple summary
statistics may be accessed quickly.

To ease the memory requirements of subsequent analysis,
Genomedata may optionally break chromosomes into
‘supercontigs,’ which avoid the allocation of empty space in
the observation matrix at large assembly gaps (by default,
>100 000 bp). This is not necessary for efficient performance on
disk, but it is convenient for programmers who wish to process the
whole genome.

The reference implementation includes several programs for
loading data. The software requires Python 2.5.1, HDF5 1.8 and
PyTables 2.1.

2 USING GENOMEDATA
Genomedata supplies command-line utilities that make it easy to
create archives and load data. The genomedata-load command
loads the genome sequence and a number of tracks in wiggle, BED
or bedGraph formats, and stores metadata that allow one to rapidly
calculate summary statistics such as minimum, maximum, mean
or SD. The package also contains utilities to complete only parts
of the loading process so that one may load tracks for different
chromosomes in parallel.

It is easy to access data in a Genomedata archive using the
supplied Python interface. A programmer may retrieve a matrix of
data by specifying individual coordinate ranges to the Genomedata
interface. Alternatively, one can iterate through the entire dataset
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chromosome by chromosome. Programmers can accomplish tasks
such as reporting the average data value in a number of tracks for
specified genomic regions easily, allowing a greater focus on more
interesting areas of analysis.

3 PERFORMANCE
Genomedata can quickly load large amounts of data. We measured
the time to load a Genomedata archive with the complete human
genome sequence (build NCBI36) and from one to 11 ChIP-
seq data tracks on a 2.33-GHz Intel Xeon E5345 processor, and
performed a linear regression on the timing results with the statistical
computing environment R. This yielded a model with the coefficient
of determination R2 =0.98, where loading the sequence and other
constant overhead took 5.0±2.5×103 s, and each track took an
additional 7.5±0.4×103 s.

One may retrieve functional genomics data from Genomedata
archives much more quickly than the text-based formats commonly
used for this data. We measured the time to retrieve data from a
whole-genome 1-bp-resolution DNase-seq data track at each of a
randomly generated list of genomic positions using a method that
accessed the original gzip-compressed wiggle file and two different
methods that access a Genomedata archive loaded from that file
(Fig. 1). The offline (sequential access) wiggle algorithm first sorts
the list and then iterates through the original wiggle files until it finds
the specified positions. The offline Genomedata algorithm works in a
similar way, but iterates through a Genomedata archive instead. The
online (random access) Genomedata algorithm retrieves the data at
each position in the random order specified by the list. We repeated
this process with nine different list sizes to examine the dependence
of retrieval time on the number of positions.

Because the offline algorithms read data sequentially rather than
randomly, their run times are mostly independent of the number
of genomic positions. After creation of the Genomedata archive,
the offline Genomedata algorithm ran 2900 times faster than the
comparable offline wiggle approach, suggesting a considerable
advantage for the use of Genomedata when repeatedly accessing
a dataset. Even when including the one-time cost of creating
the archive (4 h), the Genomedata approach still ran 10 times
faster, because we wrote the Genomedata track loader in C. The
advantage for an online Genomedata approach is even greater when
retrieving fewer than ∼10 000 positions at once. Genomedata is
especially suited for whole-genome, dense datasets, so it has less
of a comparative advantage in cases of sparse datasets with data at
only a limited number of genomic positions. Genomedata should
still perform as well, however, in an absolute sense.

Not only does using Genomedata improve performance, but
it also makes programming against this type of data easier,
resulting in less boilerplate code for data retrieval. According to
SLOCCount (http://www.dwheeler.com/sloccount/), which counts
the physical source lines of code in a program, it took 70 source lines
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Fig. 1. Scatter plot of the time to retrieve data from a list of random genomic
positions against the number of positions for different algorithms. Each point
represents the average run time of the last three of four sequential trials (to
eliminate caching effects) with a specific algorithm and a particular list of
random positions. We used three different random lists of nine different sizes
on three different algorithms, resulting in 81 plotted data points. The wiggle
(circles) and offline Genomedata (crosses) algorithms ran in approximately
constant time for greater than 100 positions, averaging 140 000 s (39 h)
and 48 s, respectively. The online Genomedata algorithm (triangles) ran in
approximately linear time for greater than 1000 random positions, averaging
1.7 ms per random access.

of code to implement the wiggle method, while only 44 (37% fewer)
to implement the offline Genomedata method and 16 (77% fewer)
to implement the online Genomedata method.
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