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Abstract: The aim of this paper is to find the optimal mother wavelet function and wavelet decompo-
sition level when denoising the Doppler cardiogram (DCG), the heart signal obtained by the Doppler
radar sensor system. To select the best suited mother wavelet function and wavelet decomposition
level, this paper presents the quantitative analysis results. Both the optimal mother wavelet and
decomposition level are selected by evaluating signal-to-noise-ratio (SNR) efficiency of the denoised
signals obtained by using the wavelet thresholding method. A total of 115 potential functions from
six wavelet families were examined for the selection of the optimal mother wavelet function and
10 levels (1 to 10) were evaluated for the choice of the best decomposition level. According to the
experimental results, the most efficient selections of the mother wavelet function are “db9” and
“sym9” from Daubechies and Symlets families, and the most suitable decomposition level for the
used signal is seven. As the evaluation criterion in this study rates the efficiency of the denoising
process, it was found that a mother wavelet function longer than 22 is excessive. The experiment also
revealed that the decomposition level can be predictable based on the frequency features of the DCG
signal. The proposed selection of the mother wavelet function and the decomposition level could
reduce noise effectively so as to improve the quality of the DCG signal in information field.

Keywords: doppler cardiogram; wavelet transform; denoising; mother wavelet function; decomposi-
tion level; signal decomposition; signal-to-noise-ratio

1. Introduction

Cardiovascular diseases (CVDs) are the leading and rapidly increasing cause of death
in modern society. They caused 32.1% of annual global deaths in 2015 and the occurrence
is growing [1]. According to this trend, research on heartbeat detection and heart rate
variability analysis has been gaining increasing attention. As the basic method of the heart
signal recording, the electrocardiogram (ECG) test is used for measuring the electrophysio-
logical signal of the heart activity to diagnose symptoms of cardiovascular problems [2].
The ECG test can improve the diagnosis and therapy of the most prevalent cardiac diseases
if it does not interfere with daily activities [3]. However, some requirements of the ECG
test make subjects uncomfortable. For example, subjects are required to attach multiple
electrodes on their skin and remain in static state for quite some time [4]. In addition as
the abnormal heartbeat signal appears for a very short time, the ECG test could miss these
short and temporary symptoms because this test only records in limited circumstances.

Doppler radar sensors detect the electrophysiological signal of the heart and the
variation of blood vessel movement by differences of the electromagnetic signal that is
a few dozens of centimeters away from a subject [5–8]. Due to the non-contactable and
flexible measurement condition, as opposed to ECG sensing, the Doppler radar sensors are
studied for the alternative of ECG electrodes [9]. However, the noise occurs in the output
signal obtained by the radar sensors due to the limitation of the non-contact measurement.
Since the noise has a negative effect on data acquisition and processing, it leads to a
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decrease in information accuracy. Therefore, the method for signal denoising is essential
and a considerable amount of research related to denoising has been studied [10–14].
Among them, the noise reduction methods using the wavelet analysis are widely studied
not only for the radar signal but also for various multi-dimensional signals [15–20].

Noise reduction methods using the wavelet transform and thresholding can improve
the quality of the Doppler cardiogram (DCG) and overcome the limits of remote sensors.
To successfully enhance signal quality, the noise reduction technique should satisfy the
performance of removing the noise components and maintaining useful signal components.
In comparison to other noise removal methods such as average filtering or frequency
smoothing using the fast Fourier transform, the wavelet denoising method shows a supe-
rior performance for preserving the features of the original signal when removing noise
components. In particular, it is effective in regards to the problem of non-stationary signals
such as a heart signal, respiration signal, and ocular artifacts [21–25]. The multiresolution
decomposition of the wavelet transform makes it possible to maintain the original informa-
tion during the process of removing noise components. Meanwhile, since various scaling
factors and features of the wavelet functions are available, the optimal selection procedure
of the mother wavelet function is a significant step to the wavelet denoising method [26,27].
Traditionally, the mother wavelet function is selected to represent the characteristics of the
signal by empirical research [28,29]. Since this method does not provide the actual optimal
selection of the mother wavelet [30], studies of the mother wavelet selection for various
signals such as the electroencephalography (EEG) signal, vibration signal of turbine, human
voice signal, and many kinds of radar signal have been occurring [26,28,31–36]. However,
to the best of the author’s knowledge, studies on the optimal selection of the mother
wavelet function and the decomposition level for the denoising of the DCG signal are rarely
reported. Though selection of the mother wavelet function and the decomposition level on
other radar signals were presented [35,36], distinctive features of each kind of radar signal
require an individualized selection respectively, which is the motivation behind this study.

In this study, the optimal selection of the mother wavelet function and the decom-
position level for the cardiac signal obtained by the Doppler radar sensors is proposed
with quantitative analysis results. The result of the denoising process is defined with the
signal-to-noise-ratio (SNR) efficiency of the denoised signal. The candidates for the optimal
mother wavelet function are composed of 115 functions from six different wavelet families
and the decomposition level has 10 candidates from 1 to 10. To determine the optimal
mother wavelet function and the optimal decomposition level, the denoising process is
repeated to examine all candidates and then all results are accumulated. The optimal
choice of the mother wavelet function and the decomposition level is selected among the
accumulated results which perform the highest SNR efficiency. The experiment is executed
in two steps to find out the optimal selection of the mother wavelet function and the
decomposition level. For the first step, the optimal mother wavelet function is determined
by using the arbitrary wavelet decomposition level. Then the optimal decomposition level
is obtained by using the optimal mother wavelet function which is selected at the first step.
In this study, the arbitrary decomposition level in the first step is predicted based on the
distribution of the signal components in the frequency domain. With these experiments, it
is found that the length of the mother wavelet function is one of the key determinants for
the optimal selection. The noisy signals were generated by adding white Gaussian noise to
the original signals. The DCG dataset has 28 recordings that have been recorded for 160 s
with a sampling frequency of 1000 Hz.

From the experimental results, it can be seen that the optimal mother wavelet func-
tion is found as db9 and sym9, and the optimal wavelet decomposition level is seven,
respectively. The main contributions of this study can be described as follows:

• The optimal selection of the mother wavelet function and the decomposition level for
the DCG (Doppler cardiogram) is introduced in this study;

• The optimal wavelet decomposition level is predicted based on the distribution of the
signal components in frequency domain;
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• The new criterion is suggested to evaluate both the denoising performance and the
denoising efficiency in once.

2. Materials and Methods
2.1. Wavelet Transform

The wavelet transform, a linear transformation with the mother wavelet function,
is an efficient signal analysis method for both time and frequency resolution [22,23,37].
The wavelet transform has advantages over traditional Fourier transforms for accurately
deconstructing and reconstructing finite, non-periodic, and non-stationary signals such as
DCG signals. The wavelet transform decomposes the input signal into detail coefficients
(cD) and approximation coefficients (cA) that can be defined as high frequency coefficients
(yhigh[n]) and low frequency coefficients (ylow[n]), respectively [38]. The frequency band
coefficients of the wavelet transform are expressed mathematically as follows [38]:

yhigh[n] =
∞

∑
i= −∞

s[i]h[2n− i], (1)

ylow[n] =
∞

∑
i= −∞

s[i]g[2n− i], (2)

where i is a sampling data point; n is the number of the sampling data; s[i] is the discrete
radar signal with noise; and g[2n− i] and h[2n− i] are low-pass and high-pass filters
that vary depending on the mother wavelet function [39]. With frequency filters, the
wavelet transform enables one to extract the particular frequency band from the original
signal [40,41]. Figure 1 shows the x level decomposition process into the approximation
coefficients cA and the detail coefficients cD of the N Hz signal:
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The wavelet function is composed with the scaled and translated copies of the scal-
ing function φ(x) and the mother wavelet function ψ(x) [26,38] which is a continuously
differentiable function with compact support. Since there are many different types of
mother wavelet functions, finding the optimal mother wavelet is essential for the best
performance not only in denoising but also in other signal processing. The coefficients
of the discrete wavelet transform represent the projection of the signal over a set of basis
functions generated as the translation and dilation of the mother wavelet function and the
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scaling function [42]. More specifically, the low-pass coefficients are related to the scaling
function and the high-pass coefficients are related to the mother wavelet function as in
Equations (3)–(5) [38]:

g(h) = (−1)nh(1− n), (3)

φ(x) = ∑
n

h(n)
√

2φ(2x− n), (4)

ψ(x) = ∑
n

g(n)
√

2φ(2x− n). (5)

The low-pass and high-pass filters are distinctive variables for each mother wavelet
function. Since the selection of the mother wavelet function and the decomposition level
affects the noise reduction performance, the suitable mother wavelet function and the
decomposition level could be optimizing the performance of the processing methods based
on the wavelet transform.

2.2. Doppler Cardiogram Signal Dataset and Recording Procedure

A total of 28 DCG signals from 11 subjects were examined in this study. The datasets
were recorded from healthy control subjects composed of 6 females and 5 males aged
24.08 ± 2.35 years (mean ± standard deviation). The subjects were recruited from the
Electronic Engineering department of Yeungnam University. The subjects have no history
of CVDs. Each signal data was recorded for 160 s and 1 k samples per second. The
measurement system was constructed with a Doppler radar sensor, which measured the
cardiogram of the subject at a distance of 30 cm. Table 1 shows the socio-demographic and
clinical data of the control subjects. Permission to use the DCG data was granted from
all subjects.

Table 1. Sociodemographic data of the control subjects (Age in years, mean± standard deviation, SD).

Demographic and Clinical Features Control

Number 11
Age 24.08 ± 2.35

Female/Male 6 F/5 M

The DCG signals were detected by using the radar sensor module with two discrete
patch antennas, which was implemented on an FR4 printed circuit board with a thickness
of 0.6 mm, as shown in Figure 2 [43]. A total of 5.8 GHz of signals were generated by a
voltage-controlled oscillator (HMC431LP4, Analog Devices) with an output power of 7.8 dBm
radiating from the transmitting antenna with a directivity of 4.0 dBi. The received signals
modulated by respiration and heartbeat were incident by using the receiving antenna, and
they are down-converted to baseband signals by using quadrature mixers with low-pass
filters with a cut-off frequency of 500 MHz. The overall noise figure in the receiver path was
calculated to approximately 1.9 dB. The baseband signals were collected on a PC by using
the data acquisition board with a sampling frequency of 1 kHz. Vital signs were obtained
by filtering the baseband signals with a high-order band-pass filter in the digital domain.
The multi-phase mixing in the radar module was used in the DC offset compensation in the
received signals to improve the accuracy of the phase demodulation in signal processing [43].
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Figure 2. A 5.8 GHz continuous-wave Doppler radar sensors for the measurement of vital signs [43].

Figure 3 shows the experimental setup for vital signs detection with a 5.8 GHz CW
Doppler radar. The vital signs detected by the radar, which is located at a distance of 30 cm
from the thorax of the subject and fixed on the bottom of the table above the subject, were
obtained by using the data acquisition board (NI USB-6366, National Instruments, Austin, TX,
USA) at a sampling rate of 1 kHz. A three-electrode ECG sensor (Vernier Software and Tech-
nology, Beaverton, OR, USA.), which was used as the reference sensor for heartbeat detection
of the radar, was obtained at a sampling rate of 200 Hz. Heartbeat signals simultaneously
obtained by the radar and ECG sensors were compared using NI LabVIEW and MATLAB
on a computer. The vital signals of 11 subjects (5 males and 6 females in their 20 s) lying on
the bed were continuously measured for 160 s. The movement of the subjects were limited to
minimize the effect of the noise generated by motion on the ECG and radar sensors.
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Though the ECG signals were not used in this study, ECG and DCG signals were measured
from each subject once due to the structure of the sensor system. The corresponding matches of
the ECG and DCG were obtained as a dataset for the future work of cardiogram analysis.
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2.3. Evalution Measures

In this section, the optimal choice will be derived based on the quantitative exper-
imental results. Since the SNR is one of the measures that evaluates the denoising per-
formance [44,45], the following performance indexes were used to evaluate the denoised
signal with j and k.

SNRj, k = 10log10
∑N

i=1 s2[i]

∑N
i=1

∣∣∣s[i] − ŝj, k[i]
∣∣∣ , (6)

η(k) = log10((sl − l(m[k]))× l(m[k])), (7)

e f f (j, k) =
SNRj,k

η(k)
(8)

where ŝj,k[i] and SNRj, k in (10) denote the denoised signal and the SNR when the decom-
posed level is j and the wavelet function index is k. The η(k) (11) is the execution complexity
of the wavelet transform in case the wavelet function index is k. The η(k) is defined as
the common logarithm value of the number of multiplication operations required for the
wavelet transform that can be obtained by the length of the signal sl and the length of the
mother wavelet function l(m[k]). For the denoising process, the higher SNR value shows
that a better performance and lower execution complexity represents higher efficiency [46].
Therefore, the new criterion e f f (j, k) (12) is proposed in this study to evaluate denoising
performance efficiency.

3. Experiment
3.1. Additive White Gaussian Noise

Additive white Gaussian noise is the fundamental noise model in the information
signal processing with three important characteristics manifested in its term. First, additive
means the way in which noise joins in the signal. The noisy signal sN [n] is generated by
adding the noise components N[n] to the original signal s[n] [47]. This process is described
in Figure 4 and the mathematical expression is described as below:

sN [n] = s[n] + N[n]. (9)Sensors 2021, 21, x FOR PEER REVIEW 7 of 17 
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Second, white denotes the power spectrum density of the noise is a constant value
across the frequency range and the noise exists at almost every frequency [48]. Finally,
Gaussian represents that the distribution of the noise is the Gaussian random process. The
additive white Gaussian noise consists of normal distribution in the time domain and
independent and identical distribution (i.i.d) in the frequency domain [49]. In this study,
the additive white Gaussian noise components follow the distribution of N(0, σ), which is
copied to the electromagnetic noise distribution of the original signal. Since the distribution
is identical, the generated noisy signal sN [n] can represent comparable features with the
real world noisy signal [50]. In the experiment, the white Gaussian noise is added to each



Sensors 2021, 21, 1851 7 of 17

original DCG signal with a SNR of 10 dB by the signal processing tool that is provided
from Mathworks MATLAB.

3.2. Denoising Process with Wavelet Transform and Thresholding

To improve the quality of the noisy signal, the denoising process should hold the real
data factors and remove the additive noise components [27]. In the previous studies, the
noise reduction methods are generally based on the model simulation or spectral analysis,
in which it is difficult to keep the complicated features of the signal [27,51–53]. On the
other hand, the wavelet decomposition thresholding method can control the noisy signal to
maintain the original signal components and separate the noise components more precisely.
In this study, the denoising method is composed of three steps as follows [54,55]:

1. Wavelet Decomposition Select the decomposition level j and the mother wavelet
function m[k]. Produce the wavelet coefficients through discrete wavelet transform
with these two factors.

2. Thresholding Set the threshold value, which is calculated by the wavelet coefficients.
Threshold the decomposed wavelet coefficients.

3. Wavelet Reconstruction Reconstruct the wavelet coefficients after thresholding using
j and m[k].

Figure 4 describes the whole denoising process as a block diagram with an illustration
of the three steps of the denoising method. j denotes the decomposition level of 1 to 10, m[k]
is the mother wavelet function, and k is the function index from 1 to 115. Meanwhile, at the
thresholding step, the soft thresholding is used for its superior thresholding performance
to the hard thresholding [56]. There are various threshold methods for noise elimination
such as Empirical Bayes [57], Block James–Stein [58], False Discovery Rate [59], Minimax
Estimation [60], Stein’s Unbiased Risk Estimate [61], and Universal Threshold [62,63]. As
the threshold method affects the denoising performance, studies on the powerful threshold
determination method are kept reported [64,65]. In this study, the Universal Threshold is
selected for its simple operation and powerful performance. The mathematical expressions
for the soft thresholding are described in Equations (10)–(12) [51]:

ys(c) =
{

sgn(c)·(|c| − TU),
0,

|c| > TU
|c| ≤ TU

}
, (10)

TU = σ̂
√

2log(N), (11)

σ̂ = MAD/0.6745, (12)

where c is the wavelet coefficient of the decomposed noisy signal [65,66] and TU is the
universal threshold value proposed by Donoho and Johnstone [51,67]. N is the number of
samples in the signal and MAD is the median absolute deviation of the wavelet coefficients.
The meaning of σ̂ is the estimate of the standard deviation of the noise. Following these
equations, the threshold value is produced with the median value of the wavelet coefficients
and the number of the sampling ratio in the signal.

3.3. The Process of the Optimal Selection of the Mother Wavelet Function and the
Decomposition Level

As the decomposition level and mother wavelet function have various candidates, the
optimal selection not only evaluates a superior performance of denoising but also rates the
execution efficiency to reduce unnecessary calculation. Table 2 and Figure 5 described the
process of the optimal selection. First, the denoising process is repeated to accumulate the
evaluation results for all candidates. Then, the optimal decomposition level and wavelet
function index are obtained by finding the arguments of the maxima from the accumulated
results. In Figure 5, j∗ denotes the optimal decomposition level and m[k∗] denotes the optimal
mother wavelet function, where k∗ is the function index of the optimal mother wavelet.
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Table 2. The table of algorithm step for the analysis process of the optimal selection.

Algorithm Step

• Accumulate the denoising result using 115 mother wavelet functions and decomposition
level 7 (prediction).

• Find out the most efficient mother wavelet function m[k∗].

• Accumulate the denoising result using the optimal mother wavelet function m[k∗] and
10 decomposition levels.

• Find out the most efficient wavelet decomposition level j∗.

• Set the optimal selection of the mother wavelet function m[k∗] and the wavelet
decomposition level j∗.
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4. Result
4.1. Wavelet Decomposition Level Prediction

To determine the optimal mother wavelet function, the arbitrary decomposition level
should be estimated. In this study, the decomposition level is estimated based on the
dominant frequency range of the original signal. At the data analysis step, the original
DCG signal has the dominant frequency band at 0 to 5 Hz. The approximation coefficients
of the decomposition level seven obtain a frequency band of about 0 to 4 Hz, depending on
the frequency decomposition rule [68]. Tables 3–8 show the evaluation criterion e f f (j, k)
values for the candidates of the wavelet families at decomposition levels 3 to 8. According
to Tables 3–8, it can be shown that each wavelet family has the maximum e f f (j, k) at seven.
Thus, the estimated optimal decomposition level is set to seven.
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Table 3. The e f f (j, k) value of the Coiflets family (wavelet length 18–30).

3 4 5 6 7 8

18 3.5903 4.0369 4.4724 4.9091 5.0815 3.7178
24 3.5252 3.9538 4.3936 4.8243 5.1840 3.6898
30 3.4757 3.8981 4.3334 4.7615 5.1429 3.6670

Table 4. The e f f (j, k) value of the Daubechies family (wavelet length 18–22).

3 4 5 6 7 8

18 3.5902 4.0328 4.4719 4.9322 5.2873 3.7658
20 3.5671 4.0081 4.4414 4.8843 5.2838 3.7557
22 3.5439 3.9737 4.4199 4.8498 5.2496 3.7590

Table 5. The e f f (j, k) value of the Fejer–Korovkin family (wavelet length 18–22).

3 4 5 6 7 8

18 3.5910 4.0327 4.4659 4.8763 4.9468 3.8317
22 3.5438 3.9782 4.4147 4.8194 4.9721 3.8463

Table 6. The e f f (j, k) value of the Biorthogonal Spline family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5894 4.0377 4.4704 4.9072 5.1879 3.7663
20 3.5521 3.9645 4.3828 4.7759 4.8445 3.8774

Table 7. The e f f (j, k) value of the Reverse Biorthogonal Spline family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5867 4.0361 4.4688 4.9040 5.1384 3.4258
20 3.5602 3.9910 4.4374 4.8952 4.9568 3.0319

Table 8. The e f f (j, k) value of the Symlets family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5914 4.0267 4.4733 4.9256 5.3099 3.7781
20 3.5657 4.0102 4.4428 4.8765 5.2783 3.7603
22 3.5450 3.9741 4.4176 4.8723 5.2523 3.7297

4.2. Most Efficient Mother Wavelet Selection

In this section, the analytic results of the denoising performance using 115 wavelet
functions are presented. The examined wavelet functions are selected from the six wavelet
families including Coiflets (coif1-coif5), Daubechies (db1-db45), Fejer–Korovkin (fk4-fk22),
Biorthogonal Spline (bior1.1-bior6.8), Reverse Biorthogonal Spline (rbio1.1-rbio6.8), and
Symlets (sym2-sym30) [69,70]. The length of the wavelet varies by the number of the
mother wavelet function name in range of 2 (db1, coif1, etc.) to 90 (db45), only even
numbers. Traditionally, the optimal mother wavelet for noise reduction should satisfy the
properties of orthogonality, symmetry, regularity, similarity of the shape with the signal,
and so on [29,49,71]. According to the experiment result, however, the wavelet length
of the mother wavelet function was the key determinant for the noise elimination of the
DCG signal. The blue plot of the Figure 6 shows that the SNRj, k of the denoised signal
increases with the wavelet length of the mother wavelet function and is saturated at a
wavelet length of 18. Although the values of the SNRj, k from the wavelet length of 22
to 90 are similar, execution complexity keeping up with the wavelet length makes the
longer wavelet function excessive. As the evaluation criterion e f f (j, k) includes both
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the denoising performance SNRj, k and the execution complexity η(k), the most efficient
wavelet length can be selected as 18 from the red plot of Figure 6. Not only does the
execution efficiency become worse but the required length of the signal also increases when
the wavelet length grows.
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However, the wavelet length is not the only feature that represents the characteristic of
the mother wavelet function. Though few numbers of the wavelet functions share the same
wavelet length, the basis functions and basic features are distinctive. Therefore, even with the
same wavelet length, the denoising performance e f f (j, k) will vary depending on the basis
function of the mother wavelet function. At a wavelet length of 16, “db8” and “sym8” scored
5.28 and 5.31 which are higher than other wavelets and the average performance of a wavelet
length of 16 is 4.92 (Figure 7a). In the case a wavelet length of 18, “db9” and “sym9” perform
better again (Figure 7b). For a wavelet length of 20 (Figure 7c), “db“ and “sym” are always
the optimal wavelet functions. On the contrary with the Daubechies and Symlets families, the
function from the Biorthogonal family shows the lowest performance at all three graphs.
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4.3. Optimal Decomposition Level

To optimize the performance of the denoising method using the wavelet transform
and thresholding, determining the proper decomposition level is also necessary. However,
the optimal decomposition level was first estimated in Section 4.1 based on the dominant
frequency range and the sampling ratio of the signal. In this subsection, we will cover the
results of the quantitative analysis for the optimal decomposition level. Figure 8 represents
e f f (j, k) of the denoised signal. The decomposition level in range from 1 to 10 is denoted
as the x-axis, the e f f (j, k) from the optimal mother wavelet “db9” is indicated as the y-axis.
Figure 9 shows the e f f (j, k) of the six wavelet families at decomposition level 1 to 10. Each
wavelet function is fixed to a wavelet length of 18, which is the most efficient wavelet
length obtained in the previous subsection. Through the experimental result analysis of
Figures 8 and 9, the denoising process with decomposition level seven achieves the best
performance among all candidates but a higher decomposition level apparently gives less
e f f (j, k) performance. Although Figure 9 shows that the “bior” graph has a maximum
value at level six, still the maximum e f f (j, k) of the “bior” family is far less than the
maximum e f f (j, k) of other families, the wavelet functions from the “bior” family are
out of consideration in this study. This incident happens when the wavelet length of the
mother wavelet function is too short for the length of the input signal.
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The approximation coefficients at the optimal decomposition level is cA7, which
are composed of a partial signal whose frequency range is approximately 0~4 Hz. This
frequency range is the subset of the dominant frequency band (0~5 Hz) of the original
signal. Therefore, the decomposition level, which can extract the dominant frequency band
of the original signal at approximation coefficients, is the optimal decomposition level for
signal denoising. To prove this, the same denoising process was performed to the DCG
signals with different sampling ratios. The DCG signals with a sampling frequency of 1000
Hz were sampled to different sampling ratios to provide identical DCG characteristics
but different frequency features. The e f f (j, k) values of these sampled signals with four
different sampling ratios (500 Hz, 250 Hz, 125 Hz, and 62 Hz) are described in Figure 10. As
shown in Figure 10a, in case of a sampling ratio of 500 Hz, the most effective decomposition
level lowered 1 step to level 6 as the sampling ratio decreased to half of the original. At this
time, the denoising performance also decreased. Likewise, the plot of the signal with the
sampling frequency of 125 Hz in Figure 10c represents that the optimal decomposition level
is four, which is three levels lower than the original. Moreover, the maximum e f f (j, k)
of the denoised signal decreases as the sampling ratio falls off (Figure 11). To summarize,
the optimal decomposition level is determined by the dominant frequency band and the
sampling ratio of the original signal. It is also shown that the sampling frequency of the
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signal affects to the denoising performance because the higher sampling rate can obtain
more useful information components than the signal with a lower sampling rate.
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5. Discussions

In this study, the denoising process using wavelet decomposition and thresholding
method is performed to improve the quality of the DCG signal. Although there are many
studies of the denoising process using the wavelet function [35,72–74], to the best of the
author’s knowledge, previous studies have yet to provide the optimal mother wavelet
selection for the DCG signal. The purpose of this study is proposing the optimal selection
of the mother wavelet function and the decomposition level for the DCG signal to optimize
the performance of the denoising process.

Xu et al. [35] and Srivastava et al. [36] proposed the selection of the mother wavelet
function and the decomposition level of the object radar signal, respectively. However the
proposed mother wavelet function and decomposition level for their object radar signal
performed less powerfully on the DCG signal than the proposed selection from this study
(Table 9). As a consequence, the optimal mother wavelet function and the decomposition
level should be selected identically by analyzing the characteristics of the object signal.

Table 9. The table for the comparison of the SNRj, k performance between the Xu et al., Srivastava
et al., and proposed selection.

Proposed Selection Xu et al. Selection
[35]

Srivastava et al.
Selection [36]

SNRj,k/dB 35.726 27.191 33.153
Wavelet db9 db4 coif 3

level 7 4 6

The denoising process with the optimal selection for the DCG signal enhanced the
quality of the DCG signals in the information field. As the DCG signals can be obtained in
a more flexible condition than the ECG signals, the improvement of the DCG signals could
enhance the diagnosis of the CVDs.

6. Conclusions

The wavelet decomposition thresholding is a powerful denoising method. The perfor-
mance of the denoising method can be optimized by using the optimal set of the mother
wavelet function and the decomposition level. For the DCG signal, this study suggested
the optimal selection of the mother wavelet function and the decomposition level based
on the signal analysis. To select the optimal mother wavelet function, the wavelet length
of the mother wavelet function is an important element. In this study, the length of the
examined signal was 160,000, with a 1000 Hz sampling rate signal recorded for 160 s and
the most efficient wavelet length was 18. There are six wavelet families with wavelet length
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18; “db9”, “sym9”, “coif3”, “fk18”, “bior”, and “rbio”. Most of these six functions recorded
superior performance to other functions with a different wavelet length and “db9” and
“sym9” were selected for the optimal mother wavelet functions among all 115 wavelet
candidates. The optimal decomposition level for the DCG signal was determined as seven,
which shows that the estimation of the decomposition level based on the length of the
signal was precise.

Since the noise reduction method based on the wavelet decomposition and the thresh-
olding with optimal parameters successfully removes the noise from the DCG signal, the
quality of the heart rate signal obtained by Doppler radar sensors was improved in the
information field. Therefore, analyzing a DCG signal using artificial neural networks for
the diagnosis of CVDs is conducted as the aim of the future work following to this study.

The major findings in this study is denoted as follows:

• The wavelet length of the mother wavelet function was the important element for the
selection of the most efficient mother wavelet. The longer mother wavelet function
did not provide a better denoising performance. As the longer wavelet function
requires more performance complexity, the optimal wavelet length for the performance
efficiency should be considered;

• The optimal decomposition level was determined by the sampling frequency and
dominant frequency range of the original signal. The level that could decompose the
dominant frequency range from the signal was the optimal decomposition level. For
this reason, the optimal decomposition level could be predicted based on the signal
analysis in the frequency domain. The appropriate decomposition level produced a
modest threshold value for noise removal;

• The higher the sampling frequency of the DCG signal, the more powerful the perfor-
mance of the denoising process. The higher sampling frequency enabled the signal to
obtain more useful components.
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