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Abstract: This study investigates the microstructure, residual stress state, and the corresponding
magnetic anisotropy of the ship structure samples made of S235 steel after uniaxial tensile deformation.
A non-destructive magnetic technique based on Barkhausen noise is employed for fast and reliable
monitoring of samples exposed to the variable degrees of plastic straining. It was found that the
progressively developed plastic straining of the matrix results in an alteration of the easy axis of
magnetization, stress anisotropy (expressed in residual stresses state) as well as the corresponding
Barkhausen noise emission. Moreover, remarkable non-homogeneity can be found within the
plastically strained region, especially when the localized plastic straining takes place.
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1. Introduction

The development and promotion of green transport solutions has resulted in an increased
demand for shipbuilding. New design solutions, increasing demands for reliability, efficiency,
and cost-effectiveness of ships, require new ways of ensuring these attributes [1]. Among the most serious
structural problems of the structural design are fatigue damage and corrosion. External influences
on ship structures (waves, cargo, etc.), as well as civil structures, cause constant structural stress,
which results in the accumulation of fatigue damage in ship structures [2].

Furthermore, the corrosion extent in seagoing ships and civil structures, as a result of an
aggressive environment, can negatively affect their effective cross sectional areas and contribute to
their over-stressing. Rupture of bodies can occur as a result of highly developed plastic straining.
Breakdown in a certain region of shipbuilding or civil structures can also redistribute the exerted
load and increase the true stress into the neighboring regions [3]. Over-stressing (or rupture) in
the localized region could initiate an unexpected collapse. For this reason, several techniques
have been developed for assessment of the corrosion or/and fatigue extent and the associated
over-stressing [4–6]. Wang et al. [7] developed the model approach for assessment of the corrosion extent
in steel structures. Over-stressing is usually connected with plastic straining and the corresponding
alteration of microstructure. The main mechanism contributing to the plastic straining is the increased
dislocation density and the corresponding increase in the matrix hardness. However, there should
be a distinction between homogenous plastic strain and necking, when the exerted loading energy is
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localized in a narrow region. Non-homogenous plastic straining (necking) alters the incoming rupture
of a body and represents the final phase of over-stressing. Suitable non-destructive, fast, and portable
testing methods employed for such a purpose could be beneficial in order to reveal the critical regions
of shipbuilding and civil constructions.

The main parts of shipbuilding and civil constructions are made of conventional steels. These steels
are entirely composed of ferromagnetic ferrite or ferrite-pearlite grains, and magnetic methods can be
employed for the aforementioned purpose. Magnetic Barkhausen noise (MBN) is a physical process
involving irreversible, and discontinuous, domain walls’ (DWs) motion when the external magnetic
field alternates with time. Various lattice defects preclude DWs in their position and their sudden jumps
occur as soon as the strength of the magnetic field attains the critical threshold equal to the pinning
strength of the pinning sites [8,9]. It is believed that MBN would be nearly zero in a completely perfect
lattice, and increasing density of lattice imperfections would increase MBN. However, beyond the
certain threshold MBN would decrease along with increasing density of lattice imperfections. It is
considered that MBN drops down when the density of lattice imperfections (expressed in many
terms) increases in the case of conventional ferrite steels (such as S235), since we are far beyond the
aforementioned threshold. MBN could increase along with increasing density of lattice imperfections
only in the case when the remarkable crystallographic texture and the corresponding DWs alignment
takes place and dominates. MBN can be affected by stress. Tensile stress increases the number of the
produced electromagnetic pulses during DWs motion, whereas compressive stress tends to decrease
MBN [10]. This behavior is due to the alignment of DWs, which is a function of the stress state, as has
been explained in previous publications [11,12]. On the other hand, the microstructure also strongly
affects MBN. Lattice defects in conventional ferrite steels, more or less, contribute to a decrease in
MBN. Expressed in other words, an increasing density of lattice defects means lower MBN. DWs in
motion interfere with these lattice defects. For this reason, MBN is sensitive to the microstructural
alterations since the MBN signal contains information about collisions of DWs with lattice defects
such as dislocation cells [13–15], the size and distribution of precipitates [15,16], the density of grain
boundaries, and/or non-ferromagnetic phases [6,17]. However, their superimposed contribution to the
MBN is usually difficult to unwrap.

Plastic straining significantly alters the stress state (expressed in terms of residual stresses), as well
as the microstructure (especially dislocation density and the corresponding microhardness). For this
reason, MBN could be a suitable technique for assessment of S235 steel over-stressing. The pilot study
focused on this topic has been already reported [18]. This paper reported about comparison between
the loaded (in-situ) and unloaded samples. This study deals with the influence of the progressively
developed plastic straining on the MBN emission, which is correlated with residual stresses and
dislocation density expressed in terms of microhardness.

2. Materials and Methods

S235 steel samples (hardness 182 ± 11 HV0.5, yield strength 305 MPa, ultimate strength 390 MPa,
and elongation at break 41.3%, hot rolled—as received), as illustrated in Figure 1, were subjected to
uniaxial tensile loading by the use of an Instron 5985 (Instron, Norwood, MA, USA). The direction of
the tensile stressing corresponds with the rolling direction (RD). The transverse direction is referred
to as TD. Chemical composition of S235 is indicated in Table 1. The samples were investigated after
loading (in the unloaded state). Samples were subjected to the predefined plastic straining, as shown
in Figure 2 and Table 2. The as-received microstructure of the S235 steel is entirely composed of
ferrite grains and neighboring small pearlite islands (see Figure 3). MBN, XRD (X-ray diffraction),
and microhardness measurements were carried out in the sample center as well as in the predefined
points, as shown in Figure 1 (indicated by blue lines—the distance between the neighboring points was
kept a constant 5 mm). The preliminary phase of experiments revealed that the evolution of sample
state is symmetrical along the length with respect to the sample center.
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Table 1. Chemical composition of S235 steel in wt.%.

Fe C Mn Si P S

balance 0.22 1.6 0.05 0.05 0.05

Table 2. Engineering stress σ, true stress σtrue, and T, W, L values for the different elastic and
plastic strains.

Parameter Elastic
Deformation

Plastic Deformations

Homogenous Plastic Straining
Non-Homogenous
(Localized) Plastic

Straining—Necking

ε, % 2.5 5 10 15 20 25 30 35 40
T, mm 7.84 7.78 7.65 7.48 7.30 7.13 6.84 6.45 5.66
W, mm 12.41 12.30 12.06 11.84 11.44 11.31 10.81 10.27 8.96
L, mm 49.80 50.40 52.00 53.80 56.03 57.93 59.67 61.38 63.61
σ, MPa 156 284 349 376 388 392 391 381 350
σtrue, MPa 156 289 368 413 452 475 515 560 672

Notes: Strain ε represents the ratio between the sample elongation ∆L = L − L0 and initial length L0 (ε = ∆L/L0).
Engineering stress σ is calculated by the use of the nominal cross sectional area of the samples as that measured
before samples loading. True stress σtrue is calculated by the use of the true cross sectional area of the samples
(T ×W) measured after samples loading.
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Figure 2. Stress–strain (engineering) curve of S235 steel, deformation speed 1 mm·min−1 (strain rate
0.33 × 10−3).
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Figure 3. Ferrite matrix (white) with limited volume of pearlite islands (dark), as received.

Plastic deformation tends to reduce the cross sectional area (expressed in terms W × T, see Figure 1)
and makes the samples longer (expressed in term L, see Figure 1). For this reason, the sample’s
dimensions after loading were measured by the use of a caliper measure (precision ± 0.01 mm) in the
sample center. The measured values of L, W, and T are shown in Table 2. This table also compares
engineering σ and true stress σtrue calculated by the use of T and W values. T and W values were
found to be nearly constant within the whole L after the homogenous plastic straining. On the other
hand, T and W values refer to the dimensions of the neck (indicated by a red color in Figure 1) when
the non-homogenous plastic straining takes place. The distance between the neighboring positions
(indicated by blue color in Figure 1) was kept constant at 5 mm and drawn after the sample unloading.
Due to elongation of the region defined by L during tensile test the number of positions within this
region increased from 5 (for the lower strains) to 6 as soon as the strains exceeded 20%. It is also worth
to mention that MBN technique indicated altered state of the sample in the region in which the radius
R5 occurs (see Figure 1) and beyond the region defined by L distance (outside the thinned region)
as well.

The true interpretation of MBN signals is associated with the investigation of the interrelated
relationships among the MBN, residual stresses, and microstructure. For this reason, the non-destructive
XRD measurements, conventional destructive metallographic observations (light microscopy),
and microhardness readings were also carried out. Microstructural observations were carried out in
the sample’s center in the RD direction with respect to their length, as well as width. The specimens of
the length 20 mm were cut by the use of a Struers Secotom-50 (Struers Inc., Cleveland, OH, USA) and
routinely prepared for metallographic observations (hot molded, ground, polished, and etched by 3%
Nital for 10 s).

Microhardness (HV0.5) was measured by the use of an Innova Test 400TM device (Innovatest,
Maastricht, The Netherlands)—loading force 500 g for 10 s. Microhardness values were obtained by
the average of three repetitive measurements at the nine different points along the sample length, as
illustrated in Figure 1 (blue lines).

Residual stresses were determined from XRD patterns measured by a Proto iXRD Combo
diffractometer (Proto manufacturing Ltd., Oldcastle, ON, Canada)—CrKα radiation, the effective
penetration depth ~5 µm, scanning angle ± 39◦, and Bragg angle 156.4◦. The residual stresses were
calculated from shifts of the 211 reflection. The Winholtz and Cohen method and X-ray elastic constants
1/2s2 = 5.75 TPa−1, s1 = −1.25 TPa−1 were used for residual stress determination. Residual stresses were
determined from the diffraction patterns by calculating the strain from the diffraction peak positions.
X-ray diffraction measures the distance between crystallographic planes. This distance is obtained
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from the diffraction angle 2θ and the known X-ray wavelength using Bragg’s Law. Residual stresses
were measured in the RD as well as the TD directions for the predefined plastic strains. Nine different
points along the sample were measured, as illustrated in Figure 1 (blue lines).

MBN was measured after unloading by the use of a RollScan 350 (Stresstech, Jyväskylä, Finland)
in the RD as well as TD directions. MBN emission was measured for the predefined plastic strains.
Nine different points along the sample were investigated, as illustrated in Figure 1 (blue lines).
The high frequency MBN signal was measured by the S1-18-12-01 sensor with a sine waveform
generator (magnetizing voltage 3.5 V and frequency 175 Hz, frequency range of MBN emission from 20
up to 700 kHz, sampling frequency 6.7 MHz, estimated MBN sensing area about 4 mm2, estimated skin
depth in the range from 200 ÷ 300 µm [19,20]) and processed using MicroScan 600 software (Stresstech,
Jyväskylä, Finland). Magnetizing voltage is the amplitude of voltage (of the sine waveform) on the
exciting magnets during the sample magnetizing. This voltage corresponds to the magnetizing current
in the sample of amplitude 62 mA. MBN represents the effective (rms) value of the MBN emission.
The peak position (PP) and the number of MBN pulses were also extracted from the raw MBN signal.
PP refers to the strength of the magnetic field in which the MBN envelope attains the maximum.
Number of MBN pulses was measured by MicroScan software when each detected pulse exceeding
the threshold was counted (the floating threshold applied). A brief sketch of the experimental set-up is
illustrated in Figure 4. The example of MBN signal measured in RD for ε = 2.5% is shown in Figure 5.
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Figure 5. Magnetic Barkhausen noise (MBN) signal measured in rolling direction (RD) for ε = 2.5%.
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3. Experimental Results

3.1. Light Microscopy and Microhardness

The microstructure of S235 corresponds to the chemical composition indicated in Table 1. Due to
the low volume of carbon, the steel matrix is mostly composed of ferrite grains (appearing white in
Figure 6) and small neighboring pearlite islands of limited size (appearing black in Figure 6). The ferrite
grains are equiaxed and their remarkable elongation, due to severe plastic deformation, is apparent for
the highest plastic strains only (see Figure 6). Typical preferential orientation in the RD is a result of
the elongation of grains along the exerted load, which is asymmetrical (uniaxial tensile stress). It can
also be reported that the remarkable preferential elongation becomes more apparent as soon as the
homogenous plastic straining is replaced by the localized one (as soon as the plastic strain exceeds
25%). Apart from the predominant ferrite, the minor phase—pearlite—also undergoes preferential
plastic straining in the RD. The microstructure for the localized plastic strains was observed in the
position of the produced neck.
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Apart from the preferential elongation of the S235 steel matrix, plastic deformation also alters the
dislocation density and the corresponding microhardness. Plastic straining in S235 occurs due to the
opposition of neighboring dislocations. The free path of dislocation motion is followed by its interference
with other dislocations (dislocation cells) and their intersections. Therefore, increasing dislocation
density also increases the shear stress due to increasing opposition from the dislocation generated in the
previous phase of plastic deformation. This mechanism increases the tensile stress necessary to develop
the higher ε, as Figure 1 demonstrates. This mechanism is also valid for the non-homogenous phase
of plastic straining. The engineering stress shows a remarkable decrease in σ in Figure 1. However,
the true stress σtrue (calculated on the basis of T, W values indicated in Table 2) clearly demonstrates
progressive growth within the whole range of plastic deformation.

Increasing dislocation density can be expressed in terms of microhardness, as measured for
various plastic strains as well as positions along the sample length (see Figure 7). Microhardness for
the sample loaded in the elastic region (ε = 2.5%) corresponds to the bulk microhardness, since the
elastic regime does not initiate any dislocation slip; therefore, dislocation density remains untouched.
As soon as the yield strength is exceeded, the microhardness increases within length L and grows
progressively, along with the degree of the homogenous plastic straining. Figure 7 also illustrates
that the microhardness is kept nearly constant (in the region of homogenous plastic straining) with
respect to the length L and drops down to the bulk microhardness at a distance of 25 mm. It can
also be reported that the progressive growth of the microhardness in the region of homogenous
plastic straining is only moderate, whereas a quite steep increase can be found for the highest plastic
stains (ε = 35% and 40%, also see Figure 8). Despite the visible decrease in engineering stresses in
the phase of non-homogenous plastic straining (indicated in Figure 2), the microhardness increases,
since the microhardness is more a function of true stresses in the necked zone, which increases, as
Figure 8 clearly demonstrates. Figure 5 also shows that the microhardness drops down for ε = 35%
and 40%, with respect to the sample length, to the microhardness more or less corresponding to the
microhardness developed during the region of homogenous plastic straining and finally falls down to
the bulk microhardness along with the further increase in the distance from the sample center. It is also
clear that the decrease to the bulk microhardness for ε = 35% and 40% is delayed since the position
at the distance 25 mm from the sample center becomes positioned within the L region due to the
remarkable elongation of the samples (see also the L values indicated in Table 2). The high hardness
in the sample center for ε = 35% and 40% corresponds to the position of the necking and the steep
increase in microhardness is due to the remarkable concentration of exerted energy in this narrow
zone, as compared with the homogenous regime, where this energy is more or less homogenously
distributed within the L region.
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3.2. XRD Measurements

Figure 9 illustrates that the tensile stresses during loading tend to shift the residual stresses towards
the stress free state for the highest ε in the region of homogenous plastic straining. Residual stresses
are also altered for the elastic regime of loading (ε = 2.5%). Increasing true stresses progressively
drops down tensile stresses followed by an increasing magnitude of compressive stresses for the
non-homogenous plastic straining (Figure 10). As compared with the evolution of HV0.5, the residual
stress profiles exhibit progressive growth towards the bulk tensile stress, of about 180 MPa, along the
increasing distance from the sample center. Furthermore, the maximum compressive stresses for
ε = 30%, 35%, and 40% were not found at the exact sample center, but in the neighboring region.
Figure 11 illustrates that the correlation in TD was not observed with respect to ε as well as with the
distance along the sample center.
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3.3. MBN Analysis

Increasing dislocation density, expressed in terms of microhardness, as well as the progressive shift
of residual stresses towards the compressive region, contributes to the decreasing MBN. It is well known
that tensile stresses align DWs into the direction of these stresses (this alignment increases magnitude
of MBN pulses and the effective value of MBN signal), whereas compressive stresses tend to align
DWs in the direction perpendicular to the stress [10], which in turn, decreases the magnitude of MBN
pulses. Brief illustration of this phenomenon was reported by Karpuschewski et al. [21]. Such behavior
occurs when the energy of magnetocrystalline anisotropy is more than magnetoelastic energy [9]
(the energy of magnetocrystalline anisotropy is a function of magnetocrystalline anisotropy, whereas the
magnetoelastic energy is a function of the isotropic magnetostriction). Increasing dislocation density
increases the opposition against the DWs motion. On one hand, dislocation tangles, as pinning sites,
preclude the DWs irreversible motion [14,22–24]. As soon as the pinning strength of dislocations is
exceeded and DWs motion is initiated, the dislocations make shorter the free path of DWs motion,
which in turn, also decreases MBN. The particular contributions of the microhardness and residual
stresses to the MBN decrease is difficult to unwrap; however, due to their superimposing effect,
MBN versus ε drops down progressively, especially in the sample center. The distribution of MBN
along with the increasing distance from the sample center is less straightforward. As soon as the
necking takes place, the drop down to bulk MBN for the highest plastic strains is delayed with respect to
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the sample length, as compared with medium or low ε. Expressed in other words, higher number of the
measured points (of constant distance 5 mm) fall into thinned region (defined by L) due to the sample
larger elongation. Therefore, MBN increases towards the MBN typical for bulk later with respect of the
distance from the sample center. Figure 12 also shows that MBN for ε = 5% and 10% is more than that
for the sample loaded in the elastic regime (ε = 2.5%). This behavior has already been explained in
terms the non-homogeneity of plastic deformation. Kleber and Vincent [13], as well as Feaugas [25],
reported that the intergranular stresses first appear beyond the yielding when the grains, which are
of favorable orientation (against the direction of exerted load) are plastically deformed, whereas the
others are only elastically deformed. This non-homogeneity from grain to grain predominates in the
regions of low ε and, remarkably, contributes to the higher MBN as compared to the surface loaded in
the elastic regime. As soon as the intragranular stresses become prevalent and spatial heterogeneity of
dislocation distribution occurs, MBN versus ε drops down after unloading. It is worth mentioning
that the shape factor contributes to the decrease in MBN for ε = 40% as well, since the necked region in
this case is not flat but U-shaped.Materials 2020, 13, x FOR PEER REVIEW 11 of 18 
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Evolution of MBN in the TD differs from that in the RD (see Figure 13). MBN grows in the
initial phases beyond the yielding followed by early saturation for more developed ε. The region L,
undergoing plastic deformation, exhibits higher MBN that those lying outside of this region. It can
also be found that above ε = 15%, MBN in the TD are more than in the RD. Expressed in other words,
the easy axis of magnetization tends to shift from the RD to TD for more developed ε.
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Apart from MBN, MBN envelops and the corresponding PP versus ε are altered as well.
Figure 14 shows that MBN and the corresponding height that the MBN envelopes grow for
ε = 10% as compared with ε = 2.5%, followed by a remarkable decrease for the more developed
ε. Moreover, these envelopes are shifted towards the stronger magnetic fields in the RD,
as Figures 14 and 15a depict. Such an increase is due to increasing opposition of dislocation cells,
which hinder DWs’ motion, as well as the contribution of compressive stresses [10,14,23]. As soon as
the yielding takes place, PP in the RD increases steeply as opposed to the TD. PP in the RD decreases
along the increasing distance from the sample center. However, the sensitivity of PP against ε is quite
weak. On the other hand, PP in the TD exhibits no sensitivity as a function of either ε or sample length
(see Figure 15b).Materials 2020, 13, x FOR PEER REVIEW 12 of 18 
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Figure 15. Peak point (PP) versus ε. (a) PP versus ε, RD; (b) versus ε, TD.

Figure 16 illustrates that the MBN pulse height distribution versus ε is strongly altered.
Their magnitude progressively decreases with ε at the expense of increasing number (see also Figure 17).
However, the progressive increase in MBN pulse numbers is more apparent for the RD as compared
to the TD. Figure 16 also shows that the stronger pulses can be found for the RD and the low ε
(as compared with the TD, see Figure 16a). However, this relationship is inverse for the higher ε
(see Figure 16b) as a result of the aforementioned shift of the easy axis of magnetization from the RD
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to TD. The number of MBN pulses decreases along with the sample length, and this decrease is less
manifest for the TD.

The effective value (rms) of MBN is driven by the synergistic effect of MBN pulses number n and
their magnitude Xi, as follows:

rms =

√√√√√
1
n

n∑
i=1

X2
i (1)

Decreasing MBN versus ε indicates that the increasing number of MBN pulses takes only a minor
role and their reduced magnitude predominates. It is considered that the increasing number of MBN
pulses at the expense of their reduced magnitude is driven by dislocation cells. These cells produce
sub-grain boundaries in the grain interior and tend to refine the DWs alignment. DWs at 180◦ tend to
be denser at the expense of their reduced length, and the increasing density of 90◦ oriented DWs are
pinned by grain and sub-grain boundaries.
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Figure 16. Distribution of MBN pulses height. (a) ε = 2.5%; (b) ε = 40%.
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Figure 17. Number of MBN pulses versus ε. (a) RD; (b) TD.

4. Discussion

It is clear that MBN is a function of residual stress as well as the superimposing microstructure
(altered dislocation density). Figure 18 demonstrates that MBN shows a steep decrease versus HV0.5
due to interference of the DWs with dislocation cells, which pin DWs in their position, as well as
reducing their free path of motion. On the other hand, this evolution tends to become moderate for
the ε = 40% (in the center of the sample). Furthermore, the aforementioned DWs refinement also
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contributes to MBN. Figure 19 depicts the contribution of residual stresses to MBN, which proves
the well-known relationship when compressive stresses tend to decrease the magnitude of MBN
pulses and vice versa. Comparing Figures 7, 9 and 12, it can be seen that the correlation of MBN
versus microhardness is stronger as compared with the correlation of MBN versus residual stress.
The MBN and HV0.5 remain nearly constant versus sample length in the homogenous phase of plastic
straining, whereas the residual stress profiles exhibit a progressive shift towards the bulk tensile
stresses. Furthermore, the stress profiles for the RD exhibit the maximum outside the sample center,
whereas MBN and microhardness do not.Materials 2020, 13, x FOR PEER REVIEW 14 of 18 
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Figure 18. MBN versus HV0.5, RD.
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Figure 19. MBN versus residual stresses, RD.

The results of residual stress measurements show that these stresses in the near-surface region
are shifted towards compressive stresses along with increasing plastic straining in RD (see Figure 9).
It is considered that the compressive tensile stresses (for example for ε = 40%) produced by
plastic straining are balanced (rearranged) by tensile stresses in the deeper layers (and vice versa).
However, these stresses in the deeper regions are not affecting MBN due to limited skin depth of MBN
(about 200 ÷ 300 µm). Despite the remarkable difference between XRD and MBN sensing depths,
these techniques still can be considered as the near-surface techniques especially with respect of
the sample thickness, which varies from 7.84 to 5.66 mm (see Table 2). Finally, it should be noticed
that the contribution of residual stresses into evolution of MBN is limited (minor) and evolution of
microstructure usually predominates in the case of Fe alloys [16,18,24]. Bozoroth [26] also found that
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the influence of lattice defects in iron-alloys usually predominates over the stress state. The Néel [27]
equation can be applied for the assessment of the stress state and microstructure contribution to the
coercive force as follows:

Hc = K1 × α+ K2 × v (2)

where α is the volume fraction of inclusions and v is the fraction of the material that is subjected to a
large disturbing stress. Néel [27] calculated that K1 for iron is 360 and K2 is only 2.1, which indicates
that the pre-magnetization process is more microstructurally sensitive, and the contribution of the
stress state is limited.

Figure 20 illustrates that the correlation of MBN in the TD versus HV0.5, as well as residual stress,
is missing, and this direction is not suitable for the assessment of the sample state (expressed in terms
of microhardness and stress state) exposed to the developed ε.
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Figure 20. Correlations for MBN, TD. (a) MBN versus HV0.5; (b) MBN versus residual stresses.

The evolution of PP versus HV0.5 exhibits quite a wide range of PP corresponding to the nearly
untouched microhardness (as compared with the bulk, Figure 21). As soon as the plastic straining
takes place and the dislocation density is altered, PP increases versus HV0.5 (due to the higher pinning
strength of dislocation cells against DWs [14,23,24]), but this relationship saturates for the highest
HV0.5. In addition, the correlation between PP and residual stresses (Figure 22) demonstrates quite
poor sensitivity, since the relationship between residual stresses and PP in the region of compressive
stresses up to approx. tensile stress of 75 MP, is too flat. The neighboring region of tensile stresses
exhibits strongly varying PP values. Furthermore, Figure 23 depicts the missing correlation of PP
versus HV0.5 (Figure 23a) as well as PP versus residual stresses (Figure 23b) in the TD. For these
reasons, PP as a parameter extracted from the MBN signal cannot be employed for the assessment of
the degree of the sample’s over-stressing on the unloaded bodies made of S235 steel.
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5. Conclusions

The results of this study can be summarized as follows:

1. Low MBN alerts incoming rupture of S235 steel;
2. Distribution of MBN along the sample length is non-homogenous in the region of localized plastic

strain, and the lowest MBN values can be found at the position of necking;
3. A more or less homogenous distribution of MBN is typical for homogenous plastic strains;
4. Due to the preferential elongation of the matrix during loading, the RD direction exhibits higher

values as comparted with the TD; however, the easy axis of magnetization tends to turn into the
TD for the higher ε;

5. MBN is a function of residual stresses as well as microhardness in the RD;
6. Sensitivity of PP against developed ε is lower as compared with MBN, and the correlation of PP

versus HV0.5, as well as residual stress, is weak.

Finally, MBN could be considered as a promising method for non-destructive monitoring of ship
and other components made of S235 steel with respect of their over-stressing and/or incoming rupture.
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