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Krüppel-like factor 4 (KLF4), a member of the family of zinc-finger transcription factors,
is widely expressed in range of tissues that play multiple functions. Emerging evidence
suggest KLF4’s critical regulatory effect on the neurophysiological and neuropathological
processes of Alzheimer’s disease (AD), indicating that KLF4 might be a potential
therapeutic target of neurodegenerative diseases. In this review, we will summarize
relevant studies and illuminate the regulatory role of KLF4 in the neuroinflammation,
neuronal apoptosis, axon regeneration and iron accumulation to clarify KLF4’s status in
the pathogenesis of AD.
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INTRODUCTION

Kruppel-like factor 4 (KLF4) is a member of the family of zinc-finger transcription factor,which
is expressed in various human tissues. It is well known as one of the four factors of the induction
to pluripotent stem cells (iPSCs) (Ghaleb and Yang, 2017). KLF4 can regulate multiple important
biological processes such as neuroinflammation, oxidative stress, proliferation, differentiation, and
apoptosis (Kaushik et al., 2010; Mamonkin et al., 2013; Zhang et al., 2015; Miao et al., 2017; Xu
et al., 2017). Amounts of previous studies focused on KLF4’s role in cancer development and
progression (Karam et al., 2017; Yadav et al., 2018). KLF4 is a dual-function transcription factor,
which can exert its role as an oncogene or a tumor suppressor gene depending on the cancer type
or cancer stage (Evans and Liu, 2008). It can activate or inhibit transcription of genes involved
in cell proliferation, differentiation and apoptosis (Ding et al., 2015). KLF4 can collaborate with
other reprogramming factors to convert the somatic cells into iPSCs and inhibit the differentiation
of stem cells (Takahashi and Yamanaka, 2006; van Schaijik et al., 2018). This provides therapeutic
prospects for vascular diseases, immune diseases, anorexia and other diseases (Imbernon et al.,
2014; Liu Y. et al., 2015; Murgai et al., 2017). Moreover, KLF4 can play a widely regulatory role in the
central nervous system (CNS). Several studies indicate that KLF4 is linked to multiple neurological
disorders, including Alzheimer’s disease (AD), epilepsy, Parkinson’s disease, hydrocephalus and
schizophrenia (Qin et al., 2011; Xie et al., 2013; Han et al., 2015; Nishiguchi et al., 2015; Li L. et al.,
2017).

AD is one of the most common chronic neurodegenerative diseases, which leads to cognitive
and memory impairments, various mental symptoms and behavioral abnormality and progressive
dementia is the most common clinical feature (Jiang et al., 2018). The current confirmed
pathogenic factors of AD include the formation of senile plaques induced by abnormal amyloid-β
(Aβ) deposition and the neurofibrillary tangles or dystrophic neuritis induced by tau accumulation
(Querfurth and LaFerla, 2010; Shinohara et al., 2014). In addition, AD can be also affected by
genetic factors. However, the elicit pathogenesis is still obscure. The most prevalent drugs for
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AD treatment include neurotransmitter enhancers, anti-Amyloid
agents, neuroprotective peptides, and other drugs (Cacabelos,
2018). Notably, several studies have showed that KLF4 played
a significant role in the pathogenesis of AD. In this review,
we focus on the regulatory role of KLF4 in neuroinflammation,
neuronal apoptosis, axonal regeneration, and iron accumulation
to explain the association between KLF4 and the pathogenesis of
AD, which might provide insights into the cellular and molecular
mechanisms of neurodegenerative disorders.

THE BIOLOGICAL CHARACTERISTICS
OF KLF4

KLF4 is a zinc finger-containing nuclear protein, isolated from
NIH 3T3 library and located in the cell nucleus. It was
first identified and characterized by Shields et al. (1996). The
molecular mass of human KLF4 is 55kD and it is located on
the chromosome 9q31. KLF4 covers a 6.3 kb gene segment and
has five exons. Its cDNA coding region encodes a polypeptide
consisting of 470 amino acid residues (Yet et al., 1998; Ghaleb
and Yang, 2017). The carboxy terminus of KLF4 has a DNA
binding structure region containing three Cys2His2 (C2H2) type
zinc finger structures, which are formed by 81 highly conserved
amino acids. It regulates transcription by high affinity with
CACCC elements and GC-rich target gene DNA sequences
(Shields and Yang, 1998; Pearson et al., 2008). Most of the
DNA-binding sites of KLF4 are located within the zinc finger
region, including N-terminal transcription activation domain for
proteins interacting, C-terminal zinc finger structure for DNA
binding and transcription inhibition zone (Bieker, 2001). KLF4
is involved in regulating the expression of many endogenous
genes (Shields and Yang, 1998). There is a highly variable
transcriptional regulatory domain at the amino terminus of
KLF4. The amino acid residues located between the 91 and the
117 amino constitute a transcriptional activation domain, which
is rich in proline and serine, while a transcriptional repression
domain also exists. Therefore, KLF4 has two adverse effects:
activating and inhibiting gene transcription (Yet et al., 1998; Wei
et al., 2006).

During the embryonic development, KLF4 was higher
expressed in the late stage of embryonic development. While
in mature tissues and organs, KLF4 is mainly expressed in
the gastrointestinal tract, oral cavity, skin epidermis, vascular
endothelium and kidney, and is less expressed in the brain (Segre
et al., 1999; Ghaleb et al., 2011; Liu et al., 2013; Chen et al.,
2015; He et al., 2015; Bin et al., 2016). It is thought to play
significant role in regulating cell proliferation and differentiation.
Besides, KLF4 can also regulate cell cycle. KLF4 can activate P21
in a P53-dependent manner (Zhang et al., 2000). In addition,
It was found that KLF4 (–/–) cells entered senescence phase
earlier than KLF4 (+/+) cells, which can be explained by the less
antioxidant gene expression and higher reactive oxygen species
(ROS) level in KLF4 (–/–) cells. ROS can increase p53 and p21
expression and subsequently promote the DNA damage (Liu C.
et al., 2015). It was found that PRMT5 can elevate the KLF4
expression in protein levels. PRMT5 was reported to increase

the transcription of p21 and decrease the expression of bax via
inhibiting KLF4 ubiquitylation (Hu et al., 2015). Furthermore,
numerous studies have demonstrated that KLF4 is involved in
regulation of apoptosis of neurons (Kong et al., 2016; Cui et al.,
2017; Song et al., 2018). Physiological regulatory role of KLF4
that we have known are still little and further investigations are
needed.

ROLE OF KLF4 IN AD

It is well established that AD is mainly characterized by memory
and cognitive impairments and executive dysfunction (Goedert
and Spillantini, 2006). Many studies have demonstrated that
neuronal apoptosis and synaptic dysfunction are pathological
basis of the decline of cognitive function (Caccamo et al., 2017;
Guo et al., 2017; Yoon et al., 2018). The accumulated damage
of Aβ deposition, oxidative stress and iron accumulation can
lead to neuronal dysfunction and apoptosis of AD patients.
Several studies have shown that KLF4’s regulatory role appears
to be crucial in CNS. Considering that KLF4 was reported
to regulate neuronal apoptosis, synaptic regeneration, oxidative
stress and neuroinflammation, the relationship between KLF4
and the pathogenesis of AD might be a potential novel target for
AD treatment.

Role of KLF4 in Neuroinflammation
Amounts of clinical studies have shown that Aβ can aggregate
and is the main component of the extracellular deposits of the
brain tissue of AD patients, which can impair the surrounding
synapses and neurons, and lead to neuronal death. Abnormal
secretion or excessive production of Aβ leads to pathological
changes of AD, so Aβ deposition is the core link of AD (Rajmohan
and Reddy, 2017). In addition, studies have shown that excessive
Aβ deposition can stimulate glial cells to secrete ROS and other
influencing factors, leading to oxidative stress. It was known that
oxidative stress can stimulate the production of Aβ. Therefore,
Aβ and oxidative stress can interact with each other and affect
the progression of AD (Cheignon et al., 2018).

KLF4 was reported as a potential modulator and has a
great effect on inflammation by mediating macrophages and
endothelial cells (Figure 1) (Yoshida et al., 2014; Kapoor
et al., 2015; Yang et al., 2018). In the CNS, excessive
and chronic inflammatory reactions can cause damage of
neuron and neurogliocyte. It was recently demonstrated that
the KLF4 expression positively correlated with Aβ42-induced
neuroinflammation. In microglial BV2 cells, oligomeric Aβ42
can increase KLF4 expression, which is mediated by activated
P53 (Li L. et al., 2017). Under inflammatory conditions, such
as Aβ accumulation, the release of pro-inflammatory cytokines
may be stimulated in the generation of AD (Griffin and Barger,
2010). Neurotoxicity potency and pro-inflammatory potency
of soluble Aβ42 oligomers is relatively higher than insoluble
fiber deposit (Selkoe, 1991; Weinberg et al., 2018). Silence
of KLF4 is able to restore Aβ42-mediated neuroinflammation,
and overexpression of KLF4 can exacerbate Aβ42-mediated
neuroinflammation (Li L. et al., 2017). Aβ accumulation induces
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FIGURE 1 | Schematicillustration of KLF4 related signaling pathways. This figure highlights the role of KLF4 in neuroprotection and axon regeneration. The arrows in
the figure indicate activation or promotion, and the straight lines indicate related inhibition. KLF4, Kruppel-like factor 4; STAT3, Signal transducer and activator of
transcription 3; JAK, Janus Kinase; SOCS3, Suppressor of cytokine signaling 3; HCP1, heme carrier protein 1; ERK5, mitogen-activated protein [MAP] kinase 5.

activation of astrocytes and microglia (Rodríguez et al., 2016).
Activated astrocytes can enhance the neuroinflammation by
releasing pro-inflammatory factors such as IL-1, IL-6, and TNF-
α (Rubio-Perez and Morillas-Ruiz, 2012; Doméné et al., 2016).
The vicious cycle of inflammatory responses eventually leads to
dysfunction and neuronal apoptosis.

KLF4 plays a crucial role in regulating pro-inflammatory
signals. In glial cells, gemfibrozil-induced KLF4 activation
increases suppressor of cytokine signal 3 (SOCS3) via PI3-kinase-
AKT pathway (Ghosh and Pahan, 2012). The SiRNA-mediated
knockdown of KLF4 could attenuate the level of SOCS in astroglia
and microglia of mice, which could subsequently affect the
expression of inflammatory gene (Kaushik et al., 2010; Ghosh
and Pahan, 2012). In addition, SOCS deletion can promote
the survival of injured neurons and promote axon regeneration
(Smith et al., 2009; Sun et al., 2011). And KLF4 positively regulates
the production of IL-1β or other pro-inflammatory markers.
It positively regulates cyclooxygenase-2 (Cox-2) and negatively
regulates inducible nitric oxide synthase (iNOS) (Kaushik et al.,
2013). In addition, KLF4 is an important regulatory factor for
monocyte differentiation and a potential target for immune
regulation (Alder et al., 2008). Therefore, KLF4 might promote
neuroinflammation by regulating these negative regulators.

It is worth mentioning that in Parkinson’s disease model, KLF4
can promote MPP+-induced oxidative stress and neurotoxicity,
and then increase neuronal apoptosis and delay the cell
proliferation (Chen et al., 2013). Oxidative stress is an imbalance
between peroxidation and antioxidation. Free radicals can cause
changes in different macromolecules, leading to cell damage, cell
aging and tissue damage (Parajuli et al., 2013; Nie et al., 2015).

Oxidative stress can aggravate early inflammation and Aβ

production and then aggravate AD (Cai et al., 2011). Therefore,
KLF4 may be involved in oxidative stress in AD.

These findings imply KLF4 a key role in mediating
neuroinflammation by activating the microglia and the
consequently release of pro-inflammatory cytokines. It has
potential to enhance neuroinflammation. So far, many studies
on the pathogenesis of AD have focused on neuroinflammation.
As a potential target for immune regulation, KLF4 can promote
the inflammatory responses of microglia via affecting related
negative regulators, which has a great effect on the development
of AD.

Role of KLF4 in Apoptosis
Neurodegenerative changes include gradual loss of neurons
and synapses in the representative brain regions, such as the
cerebral cortex, hippocampus and other subcortical regions. The
functional impairments of CNS induced by neuronal loss are
permanent (Citron, 2010). Sustained oxidative stress can lead to
neuronal apoptosis (Wu et al., 2010). A large number of studies
have confirmed that AD is closely related to oxidative stress
(Lee et al., 2012; Yui et al., 2015). It was found that chronic
oxidative stress can enhance the expression of Phospholipase A2
group 3 (Pla2g3) in astrocytes and disrupt the balance of Aβ, and
consequently lead to the development of AD (Yui et al., 2015).

Many studies have demonstrated that KLF4 plays an important
role in inhibiting the development of oxidative stress (Shi
et al., 2014; Liu C. et al., 2015). It was found that KLF4 can
promote the cells apoptosis induced by H2O2, this action is
likely to be caused by increased bax expression and decreased
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bcl-2 expression (Li et al., 2010). Quercetin could reduce KLF4
expression in human neuroblastoma SH-SY5Y cells, and increase
the expression of bcl-2/bax ratio. Furthermore, Quercetin can
moderate the apoptosis rate of SH-5YSY cell and reduce caspase-
3 enzyme activity (Xi et al., 2012). A recent study investigated
the neuroprotective effect of mitogen-activated protein (MAP)
kinase 5 (ERK5) against oxidative stress. Activation of ERK5
can partially reduce H2O2-induced hippocampal neurons death
and increase the NGF- and PC-induced neuroprotection (Su
et al., 2014). Nils et al. used a mutant of MEK5 (MEK5D) to
study the ERK5-activated transcription and functional responses
in human endothelial cells, and identified KLF4 was a novel
downstream ERK5 target (Ohnesorge et al., 2010). It was
found that overexpression of KLF4 can suppress TNF-mediated
inflammatory responses and reduce leukocyte adhesion and
basal cell apoptosis. These results confirm that KLF4 has anti-
inflammatory and anti-apoptotic properties (Ohnesorge et al.,
2010). Subsequent experiments have demonstrated that the
disappearance of cerebral cavernous malformation 1 (CCM1)
in endothelial cells activates ERK5 via MEKK3-MEK5 signal
pathway and increases KLF4 expression (Cuttano et al., 2016).
ERK5 plays a mediating role in preconditioning (PC) and nerve
growth factor (NGF) up-regulated the expression of KLF4 (Su
et al., 2014). In addition, RNAi-mediated knocking-down of
KLF4 can also reduce NGF- or PC-induced neuroprotection.
Overexpression of KLF4 leads to higher bcl-2/bax ratio in H2O2-
stressed cells (Su et al., 2014). Over-expressed KLF4 accelerates
changes in bcl-2 and bax by combining with its corresponding
promoter (Li et al., 2010). ERK5/KLF4 cascade may act as a
pivot in various pathways which protect neurons from oxidative
stress-induced death (Su et al., 2014).

Oxidative stress has been considered to be closely related
to many degenerative diseases. KLF4 plays significant roles in
maintaining genomic stability in oxidative stress. KLF4 and ERK5
act together to protect neurons from oxidative stress-induced
apoptosis. Therefore,KLF4 may act as a therapeutic target to act
against oxidative stress when it activated. It has been reported
that statin drugs can activate ERK5, leading to the expression
of KLF4 and its dependent genes (Ohnesorge et al., 2010), but
the mechanism remains unclear, and KLF4 related upstream and
downstream target genes are less studied in oxidative stress, there
is a need for further study.

Role of KLF4 in Axon Regeneration
Early axon loss is a common feature of neurodegenerative
diseases. Synaptic loss and transport impairment in AD can
cause cognitive impairments (Holtzman et al., 2011; Coleman,
2013). The degree of declarative memory damage is related to
the synaptic density in the hippocampus and cortex. Soluble
Aβ oligomers reduce glutamate uptake and promote synaptic
dysfunction, disrupting synaptic plasticity (Li et al., 2009).
Therefore, it is particularly important to study how to repair the
axons in the CNS. In retinal ganglion cells, axons have a strong
ability to grow and regenerate during early development, but in
the CNS of adult mammals, axons lose their regeneration capacity
and the neurons may graduate to die or atrophy (Goldberg and
Barres, 2000; Goldberg et al., 2002).

KLF4 plays an important role in inhibiting axon growth.
In embryonic RGCs, overexpression of KLF4 can reduce the
percentage of neurite elongation, the length of axons and
dendrites, and the neurite branching. Besides, it was found that
the overexpression of KLF4 can reduce long-term postnatal axon
growth rates but failed to reduce short-term axon growth rates
(Moore et al., 2009; Steketee et al., 2014). Later studies have
found that the axon bundles of KLF4–cKO mice were thicker than
control mice (Fang et al., 2016). In addition, removal of KLF4
expression during development can increase the reproductive
potential of adult RGCs. In addition, KLF4 lacking the c-terminal
DNA binding domain had no effect on the axon growth. There
was no impact on the survival of cells after retinal ganglion cells
were injured if the KLF4 was knocking-out (Moore et al., 2009).

KLF4 can also affect the axonal regeneration. A recent
study reported that the decrease of KLF4 expression in adult
retinal ganglion cells promoted axon regeneration through
JAK-STAT3 pathway (Qin et al., 2013). KLF4 increased the
phosphorylation of STAT3, and regulated the axon growth
via JAK-STAT signaling (Qin and Zhang, 2012). Under the
treatment of cytokines, members of STAT family of proteins
are phosphorylated at the carboxy-terminal tyrosine and serine
sites within the cell to form a stable dimer. This modification
enhances transcription of cell-associated genes (Yuan et al.,
2005). The interaction between KLF4 and STAT3 on cytokine-
induced phosphorylation of tyrosin705 inhibits the expression
of STAT3 by inhibiting the binding of STAT3 to DNA (Qin
et al., 2013). KLF4 knockdown obviously improves axon’s
regeneration in retinal ganglion cells after injury of optic nerve,
and prevents the nerve from injury after mild brain injury. The
actions are mediated by a decrease in p-p53 and an increase
in pSTAT3 levels. KLF4 positively regulates neuronal apoptosis
via the p53 and JAK-STAT3 pathways, and KLF4 negatively
regulates axonal repair via the JAK-STAT3 pathway (Cui et al.,
2017).

Therefore, we hypothesized that in AD, axonal regeneration
can be accomplished by altering the expression of KLF4 or
altering intracellular related signaling pathways, and controlling
AD progression by reducing missing axons or reducing axonal
dysfunction. However, how to use the KLF4 transcription factor
in potential therapeutics still needs further exploration.

Role of KLF4 in Iron Accumulation
Iron is widely found in biological systems, iron-related
metalloproteinases play a key role in transporting oxygen,
transferring electrons, and catalyzing biochemical reactions
(Aisen et al., 2001). However, any excess of iron beyond
the normal physiological range can damage human health
(Adlard and Bush, 2006). Studies have found that iron
content in the hippocampus is negatively correlated with the
performance of memory tests (Ding et al., 2009). Increased
iron load in the brain accelerates the formation of Aβ plaques
and hyperphosphorylated tau tangles, while also enhancing
oxidative stress (Peters et al., 2015). Iron, which has a high
degree of permeability, promotes nerve growth and cell-to-cell
connections during brain development (Dallman and Spirito,
1977).
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A recent study demonstrated that physiological stress caused
activation of the KLF4-HCP1 signaling pathway and increased
heme uptake (Li H. et al., 2017). Heme accounts for 95% of
the functional iron in the human body. It is one of the main
components of heme oxygenase (Hooda et al., 2014; Kurucz et al.,
2018). Increasing the activity of oxygenase-1 can delay oxidation
of the aging brain (Verdile et al., 2015; Serini and Calviello, 2016;
Kurucz et al., 2018). This has a relief effect on AD. Physiological
stress induces glucocorticoid level rise, glucocorticoid increases
heme carrier protein 1 (HCP1) expression via KLF4, and then
HCP1 promotes heme uptake (Li H. et al., 2017). Glucocorticoid
and KLF4 regulate anti-inflammatory genes together, and cells
with low glucocorticoid content cannot fully induce KLF4
expression (Sevilla et al., 2015). KLF4-induced increase in heme
intake leads to iron accumulation in the brain. Iron promotes
the release of ROS (Tronel et al., 2013). Iron element enhances
brain oxidative stress in rats under psychological stress (Yu
et al., 2011). Therefore, HCP1 may be regulated by KLF4
and glucocorticoid together. Increasing HCP1 enhances heme
uptake, which leads directly to iron accumulation in the brain,
exacerbates oxidation, increases apoptosis or dysfunction and
worsens brain damage.

It is generally accepted that the memory and learning disability
are the main symptoms of AD. A large number of clinical data
have shown that Aβ plaque load and iron accumulation response
to the development of learning and cognitive dysfunction in
AD (van Bergen et al., 2018). Recently published data has
suggested that, high-dose iron increases Aβ deposition and
attenuates learning and memory in mice (Guo et al., 2013).
Clinical studies have shown that iron-containing microglia is
found in the hippocampus of AD patients under magnetic
resonance imaging (Zeineh et al., 2015). Microglia acquires
iron from transferring or non-transferring, extracellular and
intracellular sources (McCarthy et al., 2018). Selective and
sustained KLF4 expression can be induced in the nucleus
and cytoplasm of ischemic hippocampal reactive astrocytes
(Park et al., 2014). Studies have shown that KLF4 acts as a
transcriptional repressor. It down-regulates the expression of
ELK-3, and then ELK-3 inhibits the expression of HO-1 (Tsoyi
et al., 2015). Heme oxygenase-1 (HO-1) is a stress protein that
degrades heme into bilirubin, free iron, and carbon monoxide.
Up-regulation of HO-1 in astrocytes can lead to abnormal iron
deposition and mitochondrial dysfunction in the brain, leading
to decreased cognitive ability (Schipper, 1999, 2004). Therefore,
KLF4 may be involved in the process of iron accumulation in
astrocytes, exacerbating oxidation in AD and aggravating brain
damage.

CONCLUSION

KLF4 is commonly known to play a pivotal role in regulating
cell proliferation, apoptosis, and differentiation. Previous studies
have focused on the regulation of KLF4 in several important
neurophysiological processes, including neuroinflammation,
neuroprotection and synaptic regeneration. Recently, KLF4 has
been found to play an important role in the pathogenesis of AD.
In this article, we review the role of KLF4 in neuroprotection and
neurogenesis in AD.

KLF4 is not only a regulator of regulation of cell proliferation
and differentiation, but also a potential target for regulating
immune responses. KLF4 may regulate negative inflammatory
factors and promote inflammatory response, and have a
great effect on the expression of astrocyte nuclear microglia.
In addition, KLF4 and ERK5 can act together to exert
neuroprotective actions. Furthermore, axon regeneration can be
accomplished by altering the content of specific transcription
factors, intracellular inhibitors, or altering intracellular signaling
pathways. Knocking out KLF4 can enhance the axon regeneration
and accelerate axon growth rate. Reduction of KLF4 expression
promotes axon regeneration through the JAK-STAT3 pathway,
and KLF4 promotes the JAK-STAT3 pathway to further axon
regeneration. Therefore, KLF4 might be involved in the process
of anti-inflammatory, anti-apoptosis, axon regeneration and iron
accumulation in the CNS, which plays a pivotal role in the
AD generation. These findings suggest that KLF4 represents a
potential therapeutic target for AD. However, the deep cellular
and molecular mechanisms of the effects of KLF4 on AD remain
unclear and further investigations are needed.
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