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ARTICLE INFO ABSTRACT

Keywords: Background: Programmed cell death is closely related to glioma. As a novel kind of cell death, the mechanism of
Di?“lﬁdPtOSiS disulfidptosis in glioma remains unclear. Therefore, it is of great importance to study the role of disulfidptosis-
Glioma related genes (DRGs) in glioma.

Eﬁ:ﬁzzz‘; Methods: We first investigated the genetic and transcriptional alterations of 15 DRGs. Two consensus cluster
Immunotherapy analyses were used to evaluate the association between DRGs and glioma subtypes. In addition, we constructed

prognostic DRG risk scores to predict overall survival (OS) in glioma patients. Furthermore, we developed a
nomogram to enhance the clinical utility of the DRG risk score. Finally, the expression levels of DRGs were
verified by immunohistochemistry (IHC) staining.

Results: Most DRGs (14/15) were dysregulated in gliomas. The 15 DRGs were rarely mutated in gliomas, and only
50 of 987 samples (5.07 %) showed gene mutations. However, most of them had copy number variation (CNV)
deletions or amplifications. Two distinct molecular subtypes were identified by cluster analysis, and DRG al-
terations were found to be related to the clinical characteristics, prognosis, and tumor immune microenviron-
ment (TIME). The DRG risk score model based on 12 genes was developed and showed good performance in
predicting OS. The nomogram confirmed that the risk score had a particularly strong influence on the prognosis
of glioma. Furthermore, we discovered that low DRG scores, low tumor mutation burden, and immunosup-
pression were features of patients with better prognoses.

Conclusion: The DRG risk model can be used for the evaluation of clinical characteristics, prognosis prediction,
and TIME estimation of glioma patients. These DRGs may be potential therapeutic targets in glioma.

1. Introduction

Originating from glial cells in the spinal cord and brain, gliomas are
the most frequent primary intracranial tumors, accounting for 30 % of
all central nervous system tumors [1]. Glioblastoma patients had a
median overall survival (OS) time of approximately 12 months, and
their OS rate for 5 years was less than 5 % [2,3]. An important factor in
the low 5-year survival rate in the progression of gliomas is their inva-
sion [4]. Men had a higher incidence of gliomas than women, and those
aged 30-40 years had the highest prevalence [5]. Although glioma pa-
tients can receive various treatments, including surgical resection,
chemotherapy, radiation, and electric field treatment, their prognosis is
generally poor [6]. No successful targeted therapies or immunotherapies
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have been developed. As a result, exploring new targeted therapies and
immunotherapies to improve the clinical outcomes of glioma patients is
of high importance.

Recent evidence suggests that programmed cell death plays a critical
role in the clearance of abnormally homeostatic cells and is considered a
promising cancer treatment strategy. Depending on the mechanism, cell
death is programmed in different ways, such as apoptosis, necroptosis,
pyroptosis, ferroptosis, and cuproptosis. Dan Wang et al. concluded that
glioma cell apoptosis could inhibit glioma cell proliferation [6]. Fang’s
research demonstrated the complex role of necroptosis in tumorigenesis
and metastasis [7,8]. Kovacs pointed out that pyroptosis plays a major
part in tumor development and therapeutic mechanisms [9]. Recently,
Liu’s research identified a new method of cell death that was distinct
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from ferroptosis, necroptosis, and pyroptosis and named it “disul-
fidptosis” [10]. Excessive accumulation of disulfide bonds in disul-
fidptosis leads to abnormal disulfide bonds between actin skeleton
proteins, triggering actin network disassembly and cell death, not only
advancing the basic understanding of cell homeostasis but also
providing important ideas for the treatment of cancers. Liu’s study
suggested that disulfidptosis induced by glucose transporter (GLUT)
inhibitors might be an effective strategy to treat tumors [10]. Overall,
programmed cell death-related genes are associated with malignant
behaviors in a variety of tumors. At present, disulfidptosis-related genes
(DRGs) have been confirmed to play an important role in the progression
of various tumors [11-13]. However, there have been few studies on
DRGs in glioma, and we speculate that these genes may influence the
progression of glioma.

In this study, we comprehensively evaluated the expression profile of
DRGs through two clusters and provided a comprehensive overview of
the intraglioma immune landscape. First, two subgroups were identified
from 1562 glioma patients according to the level of DRG expression.
Following the identification of differentially expressed genes (DEGs)
based on the two disulfidptosis subtypes, 1562 glioma patients were
categorized into three gene subtypes. Additionally, we investigated the
glioma tumor immune microenvironment (TIME) and developed a DRG

Glioma sample

from four dataset
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risk score to predict prognosis and immunotherapy sensitivity.
2. Materials and methods
2.1. Datasets

Fig. 1 illustrates the flow of our research. Four glioma cohorts
(TCGA, CGGA_693, CGGA_325, and GSE43378) and a normal brain
tissue cohort (GTEx) were included in our research. The expression data
of the TCGA (RNA-seq) were acquired from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer. gov/), and the relevant clinico-
pathological data were acquired from the Chinese Glioma Genome Atlas
(CGGA) (http://www.cgga.org.cn/). Other gene expression and clini-
copathological data of glioma were acquired from CGGA and Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The
RNA-seq data of normal brain samples were downloaded from GTEX
(https://xenabrowser.net/datapages/). Mutation data and copy number
variation (CNV) data of TCGA cohorts were acquired from the TCGA. We
excluded glioma patients with indistinct World Health Organization
(WHO) grades and with indistinct OS or with OS < 30 days. Therefore,
1562 glioma patients were included in the subsequent analyses. The
clinical information of 1562 glioma patients is shown in Table 1. We

15 disulfidptosis-
related genes
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Table 1
Clinical features of glioma patients in this study.

Clinicopathological features TCGA CGGA-693 CGGA-325 GEO
Age

<65 479 626 293 35

>65 79 29 7 14

NA 0 1 0 0
Gender

Male 236 374 186 34

Female 321 282 114 15
WHO grade

I 196 172 96 5

11 215 248 72 13

v 146 236 132 31
IDH status

Mutant 343 332 161 NA

Wild-type 208 276 139 NA

NA 6 48 0 NA
1p/19q status

Codel 138 137 62 NA

Non-codel 414 453 238 NA

NA 5 66 0 NA
MGMT promoter status

Methylated NA 304 146 NA

Un-methylated NA 217 136 NA

NA NA 135 18 NA

TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; GEO:
Gene Expression Omnibus WHO: World Health Organization; IDH: isocitrate
dehydrogenase; MGMT: O-6-methylguanine-DNA methyltransferase.

used the function “remove batch effect” in the “sva” package in R soft-
ware to merge RNA-sequencing of TCGA-Glioma and GTEx-Brain for
differential expression analysis and combine TCGA datasets, CGGA_693
datasets, CGGA_325 datasets, and GSE43378 datasets for further anal-
ysis [14].

2.2. Expression, mutation, and CNV analyses of DRGs in glioma

Fifteen DRGs were obtained from the most current studies [10]. We
downloaded glioma expression data from the UCSC Xena (https
://xenabrowser.net/datapages/) website for comparison with GTEx
data. We used the “remove batch effect” function in the “sva” package in
R software to merge RNA sequencing of TCGA-Glioma and GTEx-Brain
[14]. Then, we compared the expression of DRGs in glioma and
normal brain tissue using the “limma” R package in the combined
samples [15]. The mutant landscape of these 15 DRGs was shown by
using the waterfall map created by the “maftools” R package [16]. In
addition, we investigated the somatic CNVs in these genes.

2.3. DRGs cluster analysis

Pursuant to the expression of 15 DRGs, we divided the datasets
combining TCGA, CGGA_693, CGGA_325 and GSE43378 into two clus-
ters through the “ConsensusClusterPlus” package [17]. Clustering se-
lection criteria: First, the sample size of each group was similar. Second,
the within-group correlation was large, and the between-group corre-
lation was small. In addition, we explored the relationship between DRG
subtypes, clinical features and outcomes to determine the clinical value
of the two DRG subtypes. In addition, differences in OS between the two
DRG subtypes were evaluated using survival curves drawn by the
“Survival” and “Survminer” packages.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis

We identified different pathways of biological function between the
two DRG subtypes using the “GSVA” R package [18]. To explore
different functions between the two DRG subtypes, we applied the
“limma” R package to recognize the DEGs [15]. Criteria for defining
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DEGs: |log2FC| > 0.585 and adjusted p value < 0.05. The “clusterPro-
filer” R package was applied for GO and KEGG analysis of DEGs [19].

2.5. DEG cluster analysis

Univariate Cox regression analysis of DEGs was conducted to screen
for the genes closely linked to glioma OS, which we called prognostic
DEGs. Pursuant to the quantity of expression of prognostic DEGs, we
divided the datasets combining TCGA, CGGA_693, CGGA_325 and
GSE43378 into three clusters through the “ConsensusClusterPlus” R
package [17]. We explored the relationship between DEG subtypes,
clinical features and molecular markers to determine the clinical value
of the three DEG subtypes. Furthermore, differences in OS between three
DEG subtypes were compared using survival curves drawn by the
“Survival” and “Survminer” R packages.

2.6. Establishment of the prognostic DRG risk score

The total glioma patients were randomly divided into a training
group (n = 781) and a testing group (n = 781) with a proportion of
approximately 1:1. In the training cohort, we included the prognostic
DEGs in the LASSO analysis in R to reduce overfitting DEGs (utilizing R’s
“glmnet” package) [20]. Then, the signature genes and their regression
coefficients were determined by multivariate Cox regression analysis.
computation of risk scores for glioma patients: risk Score = Z(Exp(i) *
coef(i)), where Coef and Exp represent the coefficient and the expression
level of prognostic DEGs, respectively. Adopting the median DRG risk
score as the cutoff, glioma patients in the training group, testing group
and all samples were divided into high-risk and low-risk groups and
subjected to Kaplan-Meier (KM) survival analysis and receiver oper-
ating characteristic (ROC) curve analysis.

2.7. Establishment and validation of a prognostic nomogram

First, we removed all of the groups of glioma cases that had complete
clinical data. Then, to ascertain whether the DRG risk score had inde-
pendent predictive relevance, univariate/multivariate Cox regression
was performed in conjunction with clinical features. In addition, based
on the results of univariate/multivariate Cox regression analysis, a
nomogram was created using the “RMS” package, and calibration plots
and time ROC curves were used to thoroughly assess the nomogram’s
predictive power. The nomogram could show the contribution of each
impact factor.

2.8. Characteristics of TIME cell infiltration

For every glioma patient, we assessed the stromal and immune scores
using the ESTIMATE algorithm [21]. Additionally, the CIBERSORT
method was used to determine the scores of 22 immune cell sub-
populations for every glioma patient [22]. Then, we investigated the
relationships between the DRG risk score, immune checkpoint-related
genes, tumor mutation burden (TMB) and cancer stem cells (CSCs).

2.9. Single-cell RNA sequence (scRNA-seq) analysis and
immunohistochemistry (IHC) verification

Tumor Immune Single Cell Hub (TISCH) can visualize single-cell
transcriptome data [23]. In TISCH, we investigated the expression of
12 genes used to construct the DRG risk score at single-cell resolution. In
the HPA database, we verified the expression of 10 genes used to
construct the DRG risk score in glioma and normal brain tissue.

2.10. Statistical analysis

The Wilcoxon test was used for comparison in the two groups, and
the Kruskal-Wallis test was used for comparison in the three groups.
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Differences in OS among subgroups were assessed using the log-rank
test. Spearman analysis was used to assess correlations. The remaining
methods are described in detail in the Methods section. R software
(v4.2.1) was applied for total statistical analyses. P < 0.05 was consid-
ered statistically significant.

3. Results
3.1. Differential expression analysis

As shown in Fig. 2A, 9 genes (FLNA, MYH9, TLN1, ACTB, MYH10,
CAPZB, PDLIM1, CD2AP, and SLC7A11) were significantly upregulated

in glioma tissues, while 5 genes (FLNB, MYL6, DSTN, IQGAP1, and
INF2) were significantly upregulated in normal brain tissue.

3.2. Genetic alteration of the 15 DRGs in glioma

The waterfall plot showed the frequency of somatic mutations in
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these 15 DRGs, which were relatively low in the glioma cohort (Fig. 2B).
Only 50 of 987 (5.07 %) samples had genetic mutations. FLNA was the
most frequently mutated gene, but only two percent of the time.
SLC7A11, CAPZB, MYL6, DSTN, ACTB, PDLIM1, INF2 and CD2AP did
not have any mutations. In CNV analysis, the frequency of copy number
gain of TLN1, FLNA and IQGAP1 was greater than the frequency of copy
number loss, while the frequency of copy number loss of INF2, ACTN4,
MYL6, ACTB, CAPZB, PDLIM1, CD2AP, MYH9, TLNB, SLC7A11, MYH10
and DSTN was greater than the frequency of copy number gain (Fig. 2C).
In the copy number circle plot, we found the distribution of CNVs and
CNVs in DRGs (Fig. 2D).

3.3. Identification of disulfidptosis-related subtypes in glioma patients

To show the characteristics of glioma patients more comprehen-
sively, we combined the expression information of TCGA, CGGA_693,
CGGA_325 and GSE43378 and underwent batch correction, which
included 1562 glioma patients. Then, to investigate the value of DRGs in
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glioma prognosis, we conducted KM analysis in the combined set. The
results of KM analysis manifested that all 15 genes were closely linked
with the OS of glioma (Fig. 3A). Our prognostic network map suggested
that CAPZB, MYL6, ACTB, TLN1, MYH9, FLNB, FLNA, CD2AP, PDLIM]1,
ACTN4 and IQGAP1 were the risk factors in glioma, while the DSTN,
MYH10, INF2 and SLC7A11 were the favorable factors in glioma
(Fig. 3B). Based on the “Consensus Cluster Plus” R package, we deter-
mined the best k value for clustering to be k = 2 (Fig. 4A). In addition,
we performed principal component analysis (PCA), the results of which
indicated the reliability of the clustering (Fig. 4B). We also performed
survival analysis and discovered that the prognosis of glioma patients in
Cluster A glioma was significantly better than that in Cluster B (Fig. 4C).
We further compared the differences in DRGs expression and clinico-
pathological features between the two clusters. The relatively high
expression of CD2AP, TLN1, MYH9, ACTN4, MYL6, PDLIM1, FLNA,
IQGAQ1 and ACTB in Cluster B and MYH10 in Cluster A suggested that
these DRGs might be key markers to identify different clusters (Fig. 4D).
Intriguingly, we found Cluster A had a higher proportion of isocitrate
dehydrogenase (IDH) mutation status, 1p19q codeletion and O-6-
methylguanine-DNA methyltransferase (MGMT) methylation, which
might explain the better prognosis of this cluster.

3.4. Comparison of the TIME in the two DRG subtypes

The infiltration abundances of the vast majority of immune cells in
Cluster B were significantly higher than those in Cluster A, and the
infiltration abundances of monocytes in Cluster A were significantly
higher than those in Cluster B (Fig. 4E). Enrichment analysis of GSVA
showed that subtype A was significantly enriched in immune-related
and metabolism-related pathways, including antigen processing and
presentation, complement and coagulation cascades, leukocyte trans-
endothelial migration, glycosaminoglycan degradation, glycan biosyn-
thesis, starch and sucrose metabolism, galactose metabolism, focal
adhesion and the jak stat signaling pathway (Fig. 4F).

3.5. Identification of DEG subtypes in glioma patients

First, we obtained 3498 DEGs through differential analysis of the two
DRG subtypes. Then, univariate Cox regression analysis was conducted
to identify the 3498 differentially expressed genes, and 3497 prognostic
DEGs were identified. To further explore the regulatory mechanism of
disulfidptosis, we used a consensus clustering algorithm to classify gli-
oma patients into three subtypes on the basis of the expression of
prognostic DEGs, including Cluster A, Cluster B, and Cluster C (Fig. 5A).
Survival analysis was conducted, and the results suggested that the
prognosis of glioma patients in Cluster A was the best and Cluster B was
the worst (Fig. 5B). In addition, the three DEG subtypes showed signif-
icant differences in DRG expression (Fig. 5C). Interestingly, we found
that Cluster A had the highest percentage of 1p19q codeletions, which
might explain why this cluster had the best prognosis (Fig. 5D). GO
enrichment analysis showed that DEGs were enriched in cell signal
transduction-related biological processes (Fig. 5E). KEGG analysis
showed that DEGs were enriched in cancer-related pathways, indicating
that DEGs played an important role in glioma progression (Fig. 5F).

3.6. Development and validation of a DRG risk score

We established a DRG risk score in the training group. Computation
of risk scores for glioma patients = (0.164638375191975 * expression of
NFE2L3) - (expression of ARL3 * 0.249060961628408) -
(0.159952892626383*expression of AMZ1) + (0.161263746815120
expression of PBX) + (0.0902646983989976 * expression of HOXD9) -
(0.208875684755589 * expression of MKX) - (0.232461723016582 *
expression of FXYDZ2) - (0.121331890778999 * expression of SAMD11)
+ (0.304541275576046 * expression of FSCN1)- (0.17006620014416 *
expression of CLVS1)- (0.223160069617897 * expression of SEMA3G)
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+ (0.172302760245823 * expression of TP73). Glioma patients in the
training group were segmented into high-risk and low-risk groups by
using the median risk score as the cut-off. Then, we validated the risk
score in the testing group, which was also segmented into high- and low-
risk groups on the basis of the median value of the DRG risk score in the
training group. Fig. 6A shows the differential expression of 15 DRGs
between the two groups. Through the risk distribution map of the DRG
cluster, we found that the DRG risk score of Cluster B was significantly
higher than that of Cluster A, which was consistent with our previous
study showing that the prognosis of glioma patients in Cluster A was
significantly better than that in Cluster B (Fig. 6B). The risk distribution
map of the DEG cluster indicated that the DRG risk scores of Cluster A,
Cluster B and Cluster C were significantly different (Fig. 6C). This
finding was based on the results of our previous three prognostic DRG
survival analyses. Fig. 6D shows the process of constructing a DRG risk
score. In addition, survival analyses were performed in two DRG risk
groups. The KM curve of the training group, testing group and all
samples showed that the OS of the low-risk group was significantly
longer than that of the high-risk group with higher AUC values (Fig. 7A-
0).

3.7. Construction of a nomogram

We identified grade, 1p19q codeletion status and DRG risk score as
independent prognostic factors for glioma prognosis using univariate
and multivariate Cox regression analyses (Fig. 8A and B). The nomo-
gram showed the contribution of each influencing factor, and risk score,
tumor grade and 1p19q codeletion status were the factors that signifi-
cantly affected the prognosis (Fig. 8C). Calibration curves at 1, 3, and 5
years were also generated, which indicated the high predictive accuracy
of the nomogram (Fig. 8D). ROC curves were used to predict the sensi-
tivity and specificity of 1-, 3-, and 5-year survival of the nomogram and
AUC values were 0.829, 0.882, and 0.880, respectively (Fig. 8E-H).

3.8. Comparison of the TIME between the two risk groups

We explored the associations of 22 immune cells with risk scores and
12 genes were used to construct the model. The immune-related heat-
map suggested that the DRG risk score was positively related to native B
cells, macrophages, neutrophils, CD8 T cells, follicular helper T cells and
regulatory T cells and negatively related to memory B cells, resting
dendritic cells, eosinophils, activated mast cells, monocytes, activated
NK cells and resting memory CD4 T cells. We also found that the 12
genes were associated with almost all immune cells (Fig. 9A and B). In
addition, we explored the correlation between DRGs and immune
checkpoints and found that the majority of immune checkpoints were
significantly increased in the high-risk group (Fig. 9C). Furthermore, the
stromal score, immune score and ESTIMATE score were used to quantify
the tumor microenvironment. Interestingly, the high-risk score was
positively related to the stromal score, immune score, and ESTIMATE
score (Fig. 9D).

3.9. Mutation and Csc index analysis

Previous research has demonstrated that since individuals with high
TMB have more neoantigens, they may benefit more from immuno-
therapy [24]. When we compared TMB in the high- and low-risk groups,
we discovered that the DRG risk score and TMB were positively corre-
lated, suggesting that the high-risk group may benefit from immuno-
therapy (Fig. 10A and B). The variations in the somatic mutation
distribution between the two DRG risk groups were next examined.
IDH1, TP53, and ATRX were the top 3 mutated genes in both the high-
and low-risk groups (Fig. 10C and D). To evaluate glioma stem cell
characteristics, we also performed a stem cell association analysis and
found an inverse relationship between the DRG risk score and the Csc
index. Scatter plots of stem cell association indicated that the high-risk
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correlated, while the two DRGs connected by the blue line are negatively correlated.
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group had a lower Csc index and a higher degree of cell differentiation

(Fig. 10E).

3.10. Validation of DRG expression patterns via scRNA-seq analysis and
the HPA database

To confirm the detailed cell types expressing these 12 genes that
were used to construct DRG risk scores, we analyzed single-cell data
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from GSE148842. We detected six cell clusters, including AC-like ma-
lignant, CD8Tex, malignant, mono/macro, oligodendrocyte and others
by single-cell analysis (Fig. 11A). We found that ARL3 and FSCN1 were
highly expressed in malignant cells (Fig. 11B and C). In addition, most of
the genes were expressed at low levels in Mono/macro and CD8Tex cells.
There were no immunohistochemical data for HOXD9 and SAMD11 in
the HPA database. We compared the IHC for 10 genes that were used to
construct DRG risk scores in different WHO stages based on the HPA
database (Fig. 12). ARL3 was moderately expressed in normal brain
tissue but expressed at low levels in gliomas. AMZ1 was highly expressed
in normal brain tissues but not in gliomas. PBX3 was expressed at low
levels in normal brain tissues but was moderately expressed in gliomas.
MKX was highly expressed in normal brain tissues but moderately
expressed in gliomas. FSCN1 was moderately expressed in normal brain
tissues and low-grade gliomas but highly expressed in high-grade gli-
omas. CLVS1 and SEMA3G were moderately expressed in normal brain
tissues but not expressed in gliomas. There was no significant difference
in the expression of NFE2L3, FXYD2, and TP73 in normal brain tissues,
low-grade glioma, and high-grade glioma.

4. Discussion

Previous studies have shown that programmed cell death-related
genes play a major role in predicting the prognosis and treatment of
glioma [25-27]. The role of disulfidptosis in glioma inception and
progression remains unclear. Furthermore, immunotherapy has shown
remarkable results in treating tumors such as liver and lung cancer, but
it had no discernible effect on the overall survival of glioma patients.
Therefore, we explored the value of DRGs in gliomas and the potential of
DRGs as targets for glioma immunotherapy. Based on the expression of
DRGs, we clustered all glioma samples into two subtypes and found
significant differences in clinical features, prognostic features and TIME
between the two subtypes. Then, on the basis of the expression of DEGs
in the two DRG subtypes, we clustered all glioma samples into three
subtypes and found significant differences in clinical features and
prognosis among the three subtypes. The results of the two rounds of
clustering indicated that DRGs could be used as a potential target for
immunotherapy and in evaluating the prognosis of gliomas. Moreover,
we constructed a 12-gene DRG prognostic risk score and evaluated its
predictive power. There were significant differences in prognosis, TMB,
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TIME and CSC index between the two risk groups. The results showed
that the high-risk group with poor prognosis had a higher immune score,
which was contrary to the lower immune score in a high-risk group of
colorectal cancer risk models in the past, but this partly explained the
lack of survival benefit of immunotherapy in the treatment of glioblas-
toma [28]. Finally, we developed a nomogram to predict the OS of gli-
oma patients and verified that it had good predictive power, which
assisted in making clinical decisions. Previously, Wang et al. constructed
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Fig. 7. Validation of the DRG risk score. (A) Kaplan-Meier curves of high and low-risk groups in the training group. (B) Kaplan-Meier curves of high and low-risk
groups in the testing group. (C) Kaplan-Meier curves of high and low-risk groups in all samples. (D-F) ROC curves to predict the sensitivity and specificity of 1-, 3-,

and 5-year survival according to the DRG risk score in the training group, testing group, and all samples. (G-L) distribution plot of risk score and survival status in the

training group, testing group, and all samples. (M — O) A risk heatmap of 12 genes used to construct the risk score in the training group, testing group, and
all samples.

a DRG signature in glioma and showed good predictive ability. Our DRG
signature includes more genes, which can more comprehensively
display the biological characteristics of glioma. Moreover, the AUC
values of our DRG signature in the testing group (0.808, 0.883, and
0.890 at 1, 3, and 5 years, respectively) were higher than theirs (0.620,
0.750, and 0.710 at 1, 3, and 5 years, respectively), showing more ac-
curate prediction performance [29]. In addition, compared to another
recent study on DRGs, our DRG signature is suitable for both low-grade
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and high-grade gliomas [30]. Therefore, this study is a good comple-
ment to glioma survival prediction methods.

The molecular functions of these 12 genes were analyzed to explore
their roles in the genesis and progression of glioma. As a protective
factor, ARL3 is a glioma prognostic marker and therapeutic target that
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participates in immune cell infiltration in the GBM immune microen-
vironment [31]. ARL3 affects the outcomes of glioma by regulating the
immune microenvironment [31]. NFE2L3 was not only trapped in the
regulation of the cell cycle but was also related to apoptosis, differen-
tiation and inflammation of tumor cells, indicating that it might
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participate in disulfidptosis-related processes [32]. In addition, NFE2L3
could protect against colorectal cancer by modulating the tumor
microenvironment, indicating its potential as a prognostic predictor for
glioma [33]. PBX3 is a marker of many kinds of tumors [34]. As a risk
factor, PBX3 increased the metastasis and invasion of glioblastoma,
which was consistent with our study [35]. HOXD9 is a proliferation
marker of glioma stem cells [36]. As the y subunit of Na/K-ATPase,
FXYD2 is a regulator of enzymatic activity [37]. FXYD2 inhibits tumor
cell proliferation and survival by inhibiting the activation and expres-
sion of Na/K-ATPase, so FXYD2 can predict OS and chemotherapy
sensitivity to TMZ in glioma patients [37]. FSCNL1 is a highly conserved
actin-binding protein. Past research has illustrated that FSCN1 is highly
expressed in many cancers and that its overexpression is usually asso-
ciated with tumor spread and poor outcomes [38-41]. Huang’s study
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found that FSCN1 altered the TIME by regulating the mutual effect be-
tween tumor cells and macrophages to promote tumor development
[42]. Therefore, FSCN1 is a potential target for glioma immunotherapy.
Class 3 semaphorins (SEMA3) are a group of secreted glycoproteins
involved in the development of the nervous system and axon guidance.
As a member of the SEMA3 family of proteins, SEMA3G is highly
correlated with the invasion and migration of glioma cells [43].
Edward’s study showed that TP73 could regulate various aspects of
programmed cell death, including cell cycle arrest and apoptosis [44].
Candi’s research suggested that TP73 was associated with cancer pro-
gression and metastasis [45]. In our study, TP73 was a risk factor in the
DRG risk score, which was consistent with Candi’s study. AMZ1, MKX,
SAMD11 and CLVS1 have only been reported in a few studies, so their
relationship with glioma is not clear at present. In our study, AMZ1,
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MKX, SAMD11 and CLVS1 were identified as protective factors for
glioma.

In the past decade, immunotherapy has been increasingly used in
solid tumors [45]. However, there still has not been a breakthrough in
the treatment of glioma. The reason might be that the features of the
TIME of glioma patients were not fully recognized. The TIME of glioma
is very complex, including not only many highly heterogeneous tumor
cells but also various immune cells [46]. Given this, we explored the
features of the TIME of glioma subtypes. In our research, subtype A was
related to a lower DRG score and exhibited immune inhibition, while
subtype B was related to a higher DRG risk score and exhibited immune
activation. We discovered significant differences in immune cell content
between subtype A and subtype B and significant differences in immune
score between the two DRG risk score groups, indicating that DRGs play
an important role in the origin and development of glioma. PAKAWAT’s
research suggested that gliomas could trigger gene mutations in T cells
that cause them to lose function and return to the bone marrow, leading
to the gradual collapse of the body’s immune cycle [47]. Liu’s study
showed that the immune inhibition factors expressed by gliomas could
malfunction T cells, so the large number of dysfunctional T cells in gli-
omas could lead to the failure of immunotherapy [48]. These studies
might partly explain our finding that subtype B and the high DRG risk
group had worse outcomes despite having higher T-cell infiltration.
Schmidt’s study showed that B cells could act as antigen-presenting cells
(APCs) and interact with CD4" and CD8" T cells to improve patient
outcomes in breast cancer and non-small cell lung cancer [49,50].
However, Nelson’s research showed that B cells suppressed immune
responses in lymphoma, colon cancer, melanoma and skin cancer [51].
According to the studies mentioned above, B lymphocytes function
differently in various types of tumors. In our study, activated B cells and
immature B cells in subtype B were significantly higher than those in
subtype A. We also found that B-cell memory was negatively correlated
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with the DRG risk score, while native B cells were positively correlated
with the DRG risk score. Therefore, the role of B cells in the glioma
immune microenvironment needs to be further investigated. Kim’s
study showed that one of the greatest obstacles to the treatment of
glioblastoma was the large number of immunosuppressive macrophages
that accumulated in the tumor, which promoted tumor progression by
mediating the expression of growth factors, enzymes and cytokines
related to tumor growth and immunosuppression [52]. In this study, the
number of macrophages was high in the subtype B and high-risk DRG
score groups, indicating immunosuppression and insensitivity to
immunotherapy in the subtype B and high-risk score groups. Currently,
targeting macrophages has good application prospects in the treatment
of glioma [53,54]. We found that DRG risk scores were associated with
macrophage infiltration, suggesting that DRGs may be a target for tar-
geting macrophages in glioma therapy. Clinical studies at the Andrew
Cancer Research Center found that glioblastoma stem cells could inhibit
natural killer (NK) cell activity by releasing TFG-p signaling proteins.
However, deletion of TFG-p receptors in NK cells restored their anti-
tumor activity [55]. Experiments at Nara Medical University in Japan
found that injecting NK cells into mice with glioblastoma significantly
increased the OS of the mice [56]. In our study, NK cells were higher in
the subtype A and low-risk DRG score groups, indicating that glioma
patients in the subtype A and low-risk DRG score groups had a better
prognosis. In addition, exploring the relationship between DRGs and NK
cells might be one of the ways to activate the antitumor activity of NK
cells. Immunotherapy plays an increasingly important role in the
comprehensive treatment of cancer. However, immune checkpoint in-
hibitors targeting PD-1 and CTLA 4 have not shown a significant effect in
glioma clinical trials [56]. Our research indicates a strong correlation
between DRGs and the glioma TIME, indicating a promising future for
DRG multitarget therapy in conjunction with immune checkpoint in-
hibitors [57,58].
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Of course, our study also has some limitations. First, the prognostic
role of the DRG risk score should be validated by clinical data. Moreover,
the underlying biological features related to the DRG risk score require
future confirmation experiments.

5. Conclusion

The DRG risk score based on disulfidptosis molecular subtypes can be
used for the evaluation of clinical characteristics, prognosis prediction,
and immune microenvironment estimation of glioma patients.
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