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A B S T R A C T   

Background: Programmed cell death is closely related to glioma. As a novel kind of cell death, the mechanism of 
disulfidptosis in glioma remains unclear. Therefore, it is of great importance to study the role of disulfidptosis- 
related genes (DRGs) in glioma. 
Methods: We first investigated the genetic and transcriptional alterations of 15 DRGs. Two consensus cluster 
analyses were used to evaluate the association between DRGs and glioma subtypes. In addition, we constructed 
prognostic DRG risk scores to predict overall survival (OS) in glioma patients. Furthermore, we developed a 
nomogram to enhance the clinical utility of the DRG risk score. Finally, the expression levels of DRGs were 
verified by immunohistochemistry (IHC) staining. 
Results: Most DRGs (14/15) were dysregulated in gliomas. The 15 DRGs were rarely mutated in gliomas, and only 
50 of 987 samples (5.07 %) showed gene mutations. However, most of them had copy number variation (CNV) 
deletions or amplifications. Two distinct molecular subtypes were identified by cluster analysis, and DRG al-
terations were found to be related to the clinical characteristics, prognosis, and tumor immune microenviron-
ment (TIME). The DRG risk score model based on 12 genes was developed and showed good performance in 
predicting OS. The nomogram confirmed that the risk score had a particularly strong influence on the prognosis 
of glioma. Furthermore, we discovered that low DRG scores, low tumor mutation burden, and immunosup-
pression were features of patients with better prognoses. 
Conclusion: The DRG risk model can be used for the evaluation of clinical characteristics, prognosis prediction, 
and TIME estimation of glioma patients. These DRGs may be potential therapeutic targets in glioma.   

1. Introduction 

Originating from glial cells in the spinal cord and brain, gliomas are 
the most frequent primary intracranial tumors, accounting for 30 % of 
all central nervous system tumors [1]. Glioblastoma patients had a 
median overall survival (OS) time of approximately 12 months, and 
their OS rate for 5 years was less than 5 % [2,3]. An important factor in 
the low 5-year survival rate in the progression of gliomas is their inva-
sion [4]. Men had a higher incidence of gliomas than women, and those 
aged 30–40 years had the highest prevalence [5]. Although glioma pa-
tients can receive various treatments, including surgical resection, 
chemotherapy, radiation, and electric field treatment, their prognosis is 
generally poor [6]. No successful targeted therapies or immunotherapies 

have been developed. As a result, exploring new targeted therapies and 
immunotherapies to improve the clinical outcomes of glioma patients is 
of high importance. 

Recent evidence suggests that programmed cell death plays a critical 
role in the clearance of abnormally homeostatic cells and is considered a 
promising cancer treatment strategy. Depending on the mechanism, cell 
death is programmed in different ways, such as apoptosis, necroptosis, 
pyroptosis, ferroptosis, and cuproptosis. Dan Wang et al. concluded that 
glioma cell apoptosis could inhibit glioma cell proliferation [6]. Fang’s 
research demonstrated the complex role of necroptosis in tumorigenesis 
and metastasis [7,8]. Kovacs pointed out that pyroptosis plays a major 
part in tumor development and therapeutic mechanisms [9]. Recently, 
Liu’s research identified a new method of cell death that was distinct 
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from ferroptosis, necroptosis, and pyroptosis and named it “disul-
fidptosis” [10]. Excessive accumulation of disulfide bonds in disul-
fidptosis leads to abnormal disulfide bonds between actin skeleton 
proteins, triggering actin network disassembly and cell death, not only 
advancing the basic understanding of cell homeostasis but also 
providing important ideas for the treatment of cancers. Liu’s study 
suggested that disulfidptosis induced by glucose transporter (GLUT) 
inhibitors might be an effective strategy to treat tumors [10]. Overall, 
programmed cell death-related genes are associated with malignant 
behaviors in a variety of tumors. At present, disulfidptosis-related genes 
(DRGs) have been confirmed to play an important role in the progression 
of various tumors [11–13]. However, there have been few studies on 
DRGs in glioma, and we speculate that these genes may influence the 
progression of glioma. 

In this study, we comprehensively evaluated the expression profile of 
DRGs through two clusters and provided a comprehensive overview of 
the intraglioma immune landscape. First, two subgroups were identified 
from 1562 glioma patients according to the level of DRG expression. 
Following the identification of differentially expressed genes (DEGs) 
based on the two disulfidptosis subtypes, 1562 glioma patients were 
categorized into three gene subtypes. Additionally, we investigated the 
glioma tumor immune microenvironment (TIME) and developed a DRG 

risk score to predict prognosis and immunotherapy sensitivity. 

2. Materials and methods 

2.1. Datasets 

Fig. 1 illustrates the flow of our research. Four glioma cohorts 
(TCGA, CGGA_693, CGGA_325, and GSE43378) and a normal brain 
tissue cohort (GTEx) were included in our research. The expression data 
of the TCGA (RNA-seq) were acquired from The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer. gov/), and the relevant clinico-
pathological data were acquired from the Chinese Glioma Genome Atlas 
(CGGA) (http://www.cgga.org.cn/). Other gene expression and clini-
copathological data of glioma were acquired from CGGA and Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The 
RNA-seq data of normal brain samples were downloaded from GTEX 
(https://xenabrowser.net/datapages/). Mutation data and copy number 
variation (CNV) data of TCGA cohorts were acquired from the TCGA. We 
excluded glioma patients with indistinct World Health Organization 
(WHO) grades and with indistinct OS or with OS < 30 days. Therefore, 
1562 glioma patients were included in the subsequent analyses. The 
clinical information of 1562 glioma patients is shown in Table 1. We 

Fig. 1. The whole research process of this study.  
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used the function “remove batch effect” in the “sva” package in R soft-
ware to merge RNA-sequencing of TCGA-Glioma and GTEx-Brain for 
differential expression analysis and combine TCGA datasets, CGGA_693 
datasets, CGGA_325 datasets, and GSE43378 datasets for further anal-
ysis [14]. 

2.2. Expression, mutation, and CNV analyses of DRGs in glioma 

Fifteen DRGs were obtained from the most current studies [10]. We 
downloaded glioma expression data from the UCSC Xena (https 
://xenabrowser.net/datapages/) website for comparison with GTEx 
data. We used the “remove batch effect” function in the “sva” package in 
R software to merge RNA sequencing of TCGA-Glioma and GTEx-Brain 
[14]. Then, we compared the expression of DRGs in glioma and 
normal brain tissue using the “limma” R package in the combined 
samples [15]. The mutant landscape of these 15 DRGs was shown by 
using the waterfall map created by the “maftools” R package [16]. In 
addition, we investigated the somatic CNVs in these genes. 

2.3. DRGs cluster analysis 

Pursuant to the expression of 15 DRGs, we divided the datasets 
combining TCGA, CGGA_693, CGGA_325 and GSE43378 into two clus-
ters through the “ConsensusClusterPlus” package [17]. Clustering se-
lection criteria: First, the sample size of each group was similar. Second, 
the within-group correlation was large, and the between-group corre-
lation was small. In addition, we explored the relationship between DRG 
subtypes, clinical features and outcomes to determine the clinical value 
of the two DRG subtypes. In addition, differences in OS between the two 
DRG subtypes were evaluated using survival curves drawn by the 
“Survival” and “Survminer” packages. 

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis 

We identified different pathways of biological function between the 
two DRG subtypes using the “GSVA” R package [18]. To explore 
different functions between the two DRG subtypes, we applied the 
“limma” R package to recognize the DEGs [15]. Criteria for defining 

DEGs: |log2FC| ≥ 0.585 and adjusted p value < 0.05. The “clusterPro-
filer” R package was applied for GO and KEGG analysis of DEGs [19]. 

2.5. DEG cluster analysis 

Univariate Cox regression analysis of DEGs was conducted to screen 
for the genes closely linked to glioma OS, which we called prognostic 
DEGs. Pursuant to the quantity of expression of prognostic DEGs, we 
divided the datasets combining TCGA, CGGA_693, CGGA_325 and 
GSE43378 into three clusters through the “ConsensusClusterPlus” R 
package [17]. We explored the relationship between DEG subtypes, 
clinical features and molecular markers to determine the clinical value 
of the three DEG subtypes. Furthermore, differences in OS between three 
DEG subtypes were compared using survival curves drawn by the 
“Survival” and “Survminer” R packages. 

2.6. Establishment of the prognostic DRG risk score 

The total glioma patients were randomly divided into a training 
group (n = 781) and a testing group (n = 781) with a proportion of 
approximately 1:1. In the training cohort, we included the prognostic 
DEGs in the LASSO analysis in R to reduce overfitting DEGs (utilizing R’s 
“glmnet” package) [20]. Then, the signature genes and their regression 
coefficients were determined by multivariate Cox regression analysis. 
computation of risk scores for glioma patients: risk Score = Σ(Exp(i) * 
coef(i)), where Coef and Exp represent the coefficient and the expression 
level of prognostic DEGs, respectively. Adopting the median DRG risk 
score as the cutoff, glioma patients in the training group, testing group 
and all samples were divided into high-risk and low-risk groups and 
subjected to Kaplan‒Meier (KM) survival analysis and receiver oper-
ating characteristic (ROC) curve analysis. 

2.7. Establishment and validation of a prognostic nomogram 

First, we removed all of the groups of glioma cases that had complete 
clinical data. Then, to ascertain whether the DRG risk score had inde-
pendent predictive relevance, univariate/multivariate Cox regression 
was performed in conjunction with clinical features. In addition, based 
on the results of univariate/multivariate Cox regression analysis, a 
nomogram was created using the “RMS” package, and calibration plots 
and time ROC curves were used to thoroughly assess the nomogram’s 
predictive power. The nomogram could show the contribution of each 
impact factor. 

2.8. Characteristics of TIME cell infiltration 

For every glioma patient, we assessed the stromal and immune scores 
using the ESTIMATE algorithm [21]. Additionally, the CIBERSORT 
method was used to determine the scores of 22 immune cell sub-
populations for every glioma patient [22]. Then, we investigated the 
relationships between the DRG risk score, immune checkpoint-related 
genes, tumor mutation burden (TMB) and cancer stem cells (CSCs). 

2.9. Single-cell RNA sequence (scRNA-seq) analysis and 
immunohistochemistry (IHC) verification 

Tumor Immune Single Cell Hub (TISCH) can visualize single-cell 
transcriptome data [23]. In TISCH, we investigated the expression of 
12 genes used to construct the DRG risk score at single-cell resolution. In 
the HPA database, we verified the expression of 10 genes used to 
construct the DRG risk score in glioma and normal brain tissue. 

2.10. Statistical analysis 

The Wilcoxon test was used for comparison in the two groups, and 
the Kruskal‒Wallis test was used for comparison in the three groups. 

Table 1 
Clinical features of glioma patients in this study.  

Clinicopathological features TCGA CGGA-693 CGGA-325 GEO 

Age 
≤65 479 626 293 35 
>65 79 29 7 14 
NA 0 1 0 0 

Gender 
Male 236 374 186 34 
Female 321 282 114 15 

WHO grade 
II 196 172 96 5 
III 215 248 72 13 
IV 146 236 132 31 

IDH status 
Mutant 343 332 161 NA 
Wild-type 208 276 139 NA 
NA 6 48 0 NA 

1p/19q status 
Codel 138 137 62 NA 
Non-codel 414 453 238 NA 
NA 5 66 0 NA 

MGMT promoter status 
Methylated NA 304 146 NA 
Un-methylated NA 217 136 NA 
NA NA 135 18 NA 

TCGA: The Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas; GEO: 
Gene Expression Omnibus WHO: World Health Organization; IDH: isocitrate 
dehydrogenase; MGMT: O-6-methylguanine-DNA methyltransferase. 
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Differences in OS among subgroups were assessed using the log–rank 
test. Spearman analysis was used to assess correlations. The remaining 
methods are described in detail in the Methods section. R software 
(v4.2.1) was applied for total statistical analyses. P < 0.05 was consid-
ered statistically significant. 

3. Results 

3.1. Differential expression analysis 

As shown in Fig. 2A, 9 genes (FLNA, MYH9, TLN1, ACTB, MYH10, 
CAPZB, PDLIM1, CD2AP, and SLC7A11) were significantly upregulated 
in glioma tissues, while 5 genes (FLNB, MYL6, DSTN, IQGAP1, and 
INF2) were significantly upregulated in normal brain tissue. 

3.2. Genetic alteration of the 15 DRGs in glioma 

The waterfall plot showed the frequency of somatic mutations in 

these 15 DRGs, which were relatively low in the glioma cohort (Fig. 2B). 
Only 50 of 987 (5.07 %) samples had genetic mutations. FLNA was the 
most frequently mutated gene, but only two percent of the time. 
SLC7A11, CAPZB, MYL6, DSTN, ACTB, PDLIM1, INF2 and CD2AP did 
not have any mutations. In CNV analysis, the frequency of copy number 
gain of TLN1, FLNA and IQGAP1 was greater than the frequency of copy 
number loss, while the frequency of copy number loss of INF2, ACTN4, 
MYL6, ACTB, CAPZB, PDLIM1, CD2AP, MYH9, TLNB, SLC7A11, MYH10 
and DSTN was greater than the frequency of copy number gain (Fig. 2C). 
In the copy number circle plot, we found the distribution of CNVs and 
CNVs in DRGs (Fig. 2D). 

3.3. Identification of disulfidptosis-related subtypes in glioma patients 

To show the characteristics of glioma patients more comprehen-
sively, we combined the expression information of TCGA, CGGA_693, 
CGGA_325 and GSE43378 and underwent batch correction, which 
included 1562 glioma patients. Then, to investigate the value of DRGs in 

Fig. 2. Expression and genetic alteration analyses. (A) Differential expression of 15 DRGs in normal and glioma tissues. (B) Mutation frequencies of 15 DRGs in the 
TCGA cohort. (C) CNV of 15 DRGs. (D) CNV localization of 15 DRGs on chromosomes. 
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glioma prognosis, we conducted KM analysis in the combined set. The 
results of KM analysis manifested that all 15 genes were closely linked 
with the OS of glioma (Fig. 3A). Our prognostic network map suggested 
that CAPZB, MYL6, ACTB, TLN1, MYH9, FLNB, FLNA, CD2AP, PDLIM1, 
ACTN4 and IQGAP1 were the risk factors in glioma, while the DSTN, 
MYH10, INF2 and SLC7A11 were the favorable factors in glioma 
(Fig. 3B). Based on the “Consensus Cluster Plus” R package, we deter-
mined the best k value for clustering to be k = 2 (Fig. 4A). In addition, 
we performed principal component analysis (PCA), the results of which 
indicated the reliability of the clustering (Fig. 4B). We also performed 
survival analysis and discovered that the prognosis of glioma patients in 
Cluster A glioma was significantly better than that in Cluster B (Fig. 4C). 
We further compared the differences in DRGs expression and clinico-
pathological features between the two clusters. The relatively high 
expression of CD2AP, TLN1, MYH9, ACTN4, MYL6, PDLIM1, FLNA, 
IQGAQ1 and ACTB in Cluster B and MYH10 in Cluster A suggested that 
these DRGs might be key markers to identify different clusters (Fig. 4D). 
Intriguingly, we found Cluster A had a higher proportion of isocitrate 
dehydrogenase (IDH) mutation status, 1p19q codeletion and O-6- 
methylguanine-DNA methyltransferase (MGMT) methylation, which 
might explain the better prognosis of this cluster. 

3.4. Comparison of the TIME in the two DRG subtypes 

The infiltration abundances of the vast majority of immune cells in 
Cluster B were significantly higher than those in Cluster A, and the 
infiltration abundances of monocytes in Cluster A were significantly 
higher than those in Cluster B (Fig. 4E). Enrichment analysis of GSVA 
showed that subtype A was significantly enriched in immune-related 
and metabolism-related pathways, including antigen processing and 
presentation, complement and coagulation cascades, leukocyte trans-
endothelial migration, glycosaminoglycan degradation, glycan biosyn-
thesis, starch and sucrose metabolism, galactose metabolism, focal 
adhesion and the jak stat signaling pathway (Fig. 4F). 

3.5. Identification of DEG subtypes in glioma patients 

First, we obtained 3498 DEGs through differential analysis of the two 
DRG subtypes. Then, univariate Cox regression analysis was conducted 
to identify the 3498 differentially expressed genes, and 3497 prognostic 
DEGs were identified. To further explore the regulatory mechanism of 
disulfidptosis, we used a consensus clustering algorithm to classify gli-
oma patients into three subtypes on the basis of the expression of 
prognostic DEGs, including Cluster A, Cluster B, and Cluster C (Fig. 5A). 
Survival analysis was conducted, and the results suggested that the 
prognosis of glioma patients in Cluster A was the best and Cluster B was 
the worst (Fig. 5B). In addition, the three DEG subtypes showed signif-
icant differences in DRG expression (Fig. 5C). Interestingly, we found 
that Cluster A had the highest percentage of 1p19q codeletions, which 
might explain why this cluster had the best prognosis (Fig. 5D). GO 
enrichment analysis showed that DEGs were enriched in cell signal 
transduction-related biological processes (Fig. 5E). KEGG analysis 
showed that DEGs were enriched in cancer-related pathways, indicating 
that DEGs played an important role in glioma progression (Fig. 5F). 

3.6. Development and validation of a DRG risk score 

We established a DRG risk score in the training group. Computation 
of risk scores for glioma patients = (0.164638375191975 * expression of 
NFE2L3) - (expression of ARL3 * 0.249060961628408) - 
(0.159952892626383*expression of AMZ1) + (0.161263746815120 
expression of PBX) + (0.0902646983989976 * expression of HOXD9) - 
(0.208875684755589 * expression of MKX) - (0.232461723016582 * 
expression of FXYD2) - (0.121331890778999 * expression of SAMD11) 
+ (0.304541275576046 * expression of FSCN1)- (0.17006620014416 * 
expression of CLVS1)- (0.223160069617897 * expression of SEMA3G) 

+ (0.172302760245823 * expression of TP73). Glioma patients in the 
training group were segmented into high-risk and low-risk groups by 
using the median risk score as the cut-off. Then, we validated the risk 
score in the testing group, which was also segmented into high- and low- 
risk groups on the basis of the median value of the DRG risk score in the 
training group. Fig. 6A shows the differential expression of 15 DRGs 
between the two groups. Through the risk distribution map of the DRG 
cluster, we found that the DRG risk score of Cluster B was significantly 
higher than that of Cluster A, which was consistent with our previous 
study showing that the prognosis of glioma patients in Cluster A was 
significantly better than that in Cluster B (Fig. 6B). The risk distribution 
map of the DEG cluster indicated that the DRG risk scores of Cluster A, 
Cluster B and Cluster C were significantly different (Fig. 6C). This 
finding was based on the results of our previous three prognostic DRG 
survival analyses. Fig. 6D shows the process of constructing a DRG risk 
score. In addition, survival analyses were performed in two DRG risk 
groups. The KM curve of the training group, testing group and all 
samples showed that the OS of the low-risk group was significantly 
longer than that of the high-risk group with higher AUC values (Fig. 7A- 
O). 

3.7. Construction of a nomogram 

We identified grade, 1p19q codeletion status and DRG risk score as 
independent prognostic factors for glioma prognosis using univariate 
and multivariate Cox regression analyses (Fig. 8A and B). The nomo-
gram showed the contribution of each influencing factor, and risk score, 
tumor grade and 1p19q codeletion status were the factors that signifi-
cantly affected the prognosis (Fig. 8C). Calibration curves at 1, 3, and 5 
years were also generated, which indicated the high predictive accuracy 
of the nomogram (Fig. 8D). ROC curves were used to predict the sensi-
tivity and specificity of 1-, 3-, and 5-year survival of the nomogram and 
AUC values were 0.829, 0.882, and 0.880, respectively (Fig. 8E–H). 

3.8. Comparison of the TIME between the two risk groups 

We explored the associations of 22 immune cells with risk scores and 
12 genes were used to construct the model. The immune-related heat-
map suggested that the DRG risk score was positively related to native B 
cells, macrophages, neutrophils, CD8 T cells, follicular helper T cells and 
regulatory T cells and negatively related to memory B cells, resting 
dendritic cells, eosinophils, activated mast cells, monocytes, activated 
NK cells and resting memory CD4 T cells. We also found that the 12 
genes were associated with almost all immune cells (Fig. 9A and B). In 
addition, we explored the correlation between DRGs and immune 
checkpoints and found that the majority of immune checkpoints were 
significantly increased in the high-risk group (Fig. 9C). Furthermore, the 
stromal score, immune score and ESTIMATE score were used to quantify 
the tumor microenvironment. Interestingly, the high-risk score was 
positively related to the stromal score, immune score, and ESTIMATE 
score (Fig. 9D). 

3.9. Mutation and Csc index analysis 

Previous research has demonstrated that since individuals with high 
TMB have more neoantigens, they may benefit more from immuno-
therapy [24]. When we compared TMB in the high- and low-risk groups, 
we discovered that the DRG risk score and TMB were positively corre-
lated, suggesting that the high-risk group may benefit from immuno-
therapy (Fig. 10A and B). The variations in the somatic mutation 
distribution between the two DRG risk groups were next examined. 
IDH1, TP53, and ATRX were the top 3 mutated genes in both the high- 
and low-risk groups (Fig. 10C and D). To evaluate glioma stem cell 
characteristics, we also performed a stem cell association analysis and 
found an inverse relationship between the DRG risk score and the Csc 
index. Scatter plots of stem cell association indicated that the high-risk 
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Fig. 3. Identification of prognostic DRGs and the relationship between DRGs. (A) All 15 DRGs were glioma prognostic-related genes. (B) The right half of the circle in 
green represents the protective genes, while the right half of the circle in purple represents the risk genes. The two DRGs connected by the pink line are positively 
correlated, while the two DRGs connected by the blue line are negatively correlated. 
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group had a lower Csc index and a higher degree of cell differentiation 
(Fig. 10E). 

3.10. Validation of DRG expression patterns via scRNA-seq analysis and 
the HPA database 

To confirm the detailed cell types expressing these 12 genes that 
were used to construct DRG risk scores, we analyzed single-cell data 

Fig. 4. Identification of DRG clusters and correlation between DRG clusters, clinical features, TIME, and prognosis. (A) Heatmap depicting consensus clustering 
solution (k = 2). (B) Principal component analysis plots. (C) Kaplan-Meier curves of DRG cluster A and DRG cluster B. (D) Clinical features of DRG cluster A and DRG 
cluster B. (E) Abundance of 22 infiltrating immune cell types of DRG cluster A and DRG cluster B. (F) GSVA analysis for DRG cluster A and DRG cluster B. 
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Fig. 5. Identification of DEG clusters and correlation between DEG clusters, clinical features, and prognosis. (A) Heatmap depicting consensus clustering solution (k 
= 3). (B) Kaplan-Meier curves of gene cluster A, gene cluster B, and gene cluster C. (C) Distribution of DRGs expression in the three gene clusters. (D) Clinical features 
of the three gene clusters (E) GO enrichment analysis of DEGs. (F) KEGG enrichment analysis of DEGs. 
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from GSE148842. We detected six cell clusters, including AC-like ma-
lignant, CD8Tex, malignant, mono/macro, oligodendrocyte and others 
by single-cell analysis (Fig. 11A). We found that ARL3 and FSCN1 were 
highly expressed in malignant cells (Fig. 11B and C). In addition, most of 
the genes were expressed at low levels in Mono/macro and CD8Tex cells. 
There were no immunohistochemical data for HOXD9 and SAMD11 in 
the HPA database. We compared the IHC for 10 genes that were used to 
construct DRG risk scores in different WHO stages based on the HPA 
database (Fig. 12). ARL3 was moderately expressed in normal brain 
tissue but expressed at low levels in gliomas. AMZ1 was highly expressed 
in normal brain tissues but not in gliomas. PBX3 was expressed at low 
levels in normal brain tissues but was moderately expressed in gliomas. 
MKX was highly expressed in normal brain tissues but moderately 
expressed in gliomas. FSCN1 was moderately expressed in normal brain 
tissues and low-grade gliomas but highly expressed in high-grade gli-
omas. CLVS1 and SEMA3G were moderately expressed in normal brain 
tissues but not expressed in gliomas. There was no significant difference 
in the expression of NFE2L3, FXYD2, and TP73 in normal brain tissues, 
low-grade glioma, and high-grade glioma. 

4. Discussion 

Previous studies have shown that programmed cell death-related 
genes play a major role in predicting the prognosis and treatment of 
glioma [25–27]. The role of disulfidptosis in glioma inception and 
progression remains unclear. Furthermore, immunotherapy has shown 
remarkable results in treating tumors such as liver and lung cancer, but 
it had no discernible effect on the overall survival of glioma patients. 
Therefore, we explored the value of DRGs in gliomas and the potential of 
DRGs as targets for glioma immunotherapy. Based on the expression of 
DRGs, we clustered all glioma samples into two subtypes and found 
significant differences in clinical features, prognostic features and TIME 
between the two subtypes. Then, on the basis of the expression of DEGs 
in the two DRG subtypes, we clustered all glioma samples into three 
subtypes and found significant differences in clinical features and 
prognosis among the three subtypes. The results of the two rounds of 
clustering indicated that DRGs could be used as a potential target for 
immunotherapy and in evaluating the prognosis of gliomas. Moreover, 
we constructed a 12-gene DRG prognostic risk score and evaluated its 
predictive power. There were significant differences in prognosis, TMB, 

Fig. 6. Construction and grouping of DRG risk score. (A) Differential expression of 15 DRGs between high- and low-risk groups. (B) Differences in risk scores between 
DRG cluster A and DRG cluster B. (C) Differences in risk scores between three gene clusters. (D) Alluvial plot of the process of constructing a prognostic model. 
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TIME and CSC index between the two risk groups. The results showed 
that the high-risk group with poor prognosis had a higher immune score, 
which was contrary to the lower immune score in a high-risk group of 
colorectal cancer risk models in the past, but this partly explained the 
lack of survival benefit of immunotherapy in the treatment of glioblas-
toma [28]. Finally, we developed a nomogram to predict the OS of gli-
oma patients and verified that it had good predictive power, which 
assisted in making clinical decisions. Previously, Wang et al. constructed 

a DRG signature in glioma and showed good predictive ability. Our DRG 
signature includes more genes, which can more comprehensively 
display the biological characteristics of glioma. Moreover, the AUC 
values of our DRG signature in the testing group (0.808, 0.883, and 
0.890 at 1, 3, and 5 years, respectively) were higher than theirs (0.620, 
0.750, and 0.710 at 1, 3, and 5 years, respectively), showing more ac-
curate prediction performance [29]. In addition, compared to another 
recent study on DRGs, our DRG signature is suitable for both low-grade 

Fig. 7. Validation of the DRG risk score. (A) Kaplan-Meier curves of high and low-risk groups in the training group. (B) Kaplan-Meier curves of high and low-risk 
groups in the testing group. (C) Kaplan-Meier curves of high and low-risk groups in all samples. (D–F) ROC curves to predict the sensitivity and specificity of 1-, 3-, 
and 5-year survival according to the DRG risk score in the training group, testing group, and all samples. (G–L) distribution plot of risk score and survival status in the 
training group, testing group, and all samples. (M − O) A risk heatmap of 12 genes used to construct the risk score in the training group, testing group, and 
all samples. 
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Fig. 8. Construction and validation of a nomogram. (A–B) Univariate and multivariate Cox regression analysis. (C) Nomogram for predicting 1-, 3-, and 5-year 
survival. (D)The calibration plot for nomogram. (E–H) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival of the nomogram and 
independent prognostic factors. 
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Fig. 9. Correlation between DRGs and TIME. (A) Correlation of immune cells and 12 genes used to construct DRG risk score. (B) Correlation of immune cells and 
DRG risk score. (C)Differential expression of immune checkpoint-related genes in high- and low-risk groups. (D) Differences in immune-related scores between the 
high and low-risk groups. 
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and high-grade gliomas [30]. Therefore, this study is a good comple-
ment to glioma survival prediction methods. 

The molecular functions of these 12 genes were analyzed to explore 
their roles in the genesis and progression of glioma. As a protective 
factor, ARL3 is a glioma prognostic marker and therapeutic target that 

participates in immune cell infiltration in the GBM immune microen-
vironment [31]. ARL3 affects the outcomes of glioma by regulating the 
immune microenvironment [31]. NFE2L3 was not only trapped in the 
regulation of the cell cycle but was also related to apoptosis, differen-
tiation and inflammation of tumor cells, indicating that it might 

Fig. 10. Correlation between DRG risk score, Csc index, and TMB. (A–D) Correlation between TMB and DRG risk scores. (E) Correlation between Csc index and DRG 
risk scores. 
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participate in disulfidptosis-related processes [32]. In addition, NFE2L3 
could protect against colorectal cancer by modulating the tumor 
microenvironment, indicating its potential as a prognostic predictor for 
glioma [33]. PBX3 is a marker of many kinds of tumors [34]. As a risk 
factor, PBX3 increased the metastasis and invasion of glioblastoma, 
which was consistent with our study [35]. HOXD9 is a proliferation 
marker of glioma stem cells [36]. As the γ subunit of Na/K-ATPase, 
FXYD2 is a regulator of enzymatic activity [37]. FXYD2 inhibits tumor 
cell proliferation and survival by inhibiting the activation and expres-
sion of Na/K-ATPase, so FXYD2 can predict OS and chemotherapy 
sensitivity to TMZ in glioma patients [37]. FSCN1 is a highly conserved 
actin-binding protein. Past research has illustrated that FSCN1 is highly 
expressed in many cancers and that its overexpression is usually asso-
ciated with tumor spread and poor outcomes [38–41]. Huang’s study 

found that FSCN1 altered the TIME by regulating the mutual effect be-
tween tumor cells and macrophages to promote tumor development 
[42]. Therefore, FSCN1 is a potential target for glioma immunotherapy. 
Class 3 semaphorins (SEMA3) are a group of secreted glycoproteins 
involved in the development of the nervous system and axon guidance. 
As a member of the SEMA3 family of proteins, SEMA3G is highly 
correlated with the invasion and migration of glioma cells [43]. 
Edward’s study showed that TP73 could regulate various aspects of 
programmed cell death, including cell cycle arrest and apoptosis [44]. 
Candi’s research suggested that TP73 was associated with cancer pro-
gression and metastasis [45]. In our study, TP73 was a risk factor in the 
DRG risk score, which was consistent with Candi’s study. AMZ1, MKX, 
SAMD11 and CLVS1 have only been reported in a few studies, so their 
relationship with glioma is not clear at present. In our study, AMZ1, 

Fig. 11. Analysis of Single-cell data in GSE148842. (A) Cell composition in the GSE148842 database. (B–C) Expression of the 12 genes used to construct DRG risk 
scores in each cell in GSE148842. 
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MKX, SAMD11 and CLVS1 were identified as protective factors for 
glioma. 

In the past decade, immunotherapy has been increasingly used in 
solid tumors [45]. However, there still has not been a breakthrough in 
the treatment of glioma. The reason might be that the features of the 
TIME of glioma patients were not fully recognized. The TIME of glioma 
is very complex, including not only many highly heterogeneous tumor 
cells but also various immune cells [46]. Given this, we explored the 
features of the TIME of glioma subtypes. In our research, subtype A was 
related to a lower DRG score and exhibited immune inhibition, while 
subtype B was related to a higher DRG risk score and exhibited immune 
activation. We discovered significant differences in immune cell content 
between subtype A and subtype B and significant differences in immune 
score between the two DRG risk score groups, indicating that DRGs play 
an important role in the origin and development of glioma. PAKAWAT’s 
research suggested that gliomas could trigger gene mutations in T cells 
that cause them to lose function and return to the bone marrow, leading 
to the gradual collapse of the body’s immune cycle [47]. Liu’s study 
showed that the immune inhibition factors expressed by gliomas could 
malfunction T cells, so the large number of dysfunctional T cells in gli-
omas could lead to the failure of immunotherapy [48]. These studies 
might partly explain our finding that subtype B and the high DRG risk 
group had worse outcomes despite having higher T-cell infiltration. 
Schmidt’s study showed that B cells could act as antigen-presenting cells 
(APCs) and interact with CD4+ and CD8+ T cells to improve patient 
outcomes in breast cancer and non-small cell lung cancer [49,50]. 
However, Nelson’s research showed that B cells suppressed immune 
responses in lymphoma, colon cancer, melanoma and skin cancer [51]. 
According to the studies mentioned above, B lymphocytes function 
differently in various types of tumors. In our study, activated B cells and 
immature B cells in subtype B were significantly higher than those in 
subtype A. We also found that B-cell memory was negatively correlated 

with the DRG risk score, while native B cells were positively correlated 
with the DRG risk score. Therefore, the role of B cells in the glioma 
immune microenvironment needs to be further investigated. Kim’s 
study showed that one of the greatest obstacles to the treatment of 
glioblastoma was the large number of immunosuppressive macrophages 
that accumulated in the tumor, which promoted tumor progression by 
mediating the expression of growth factors, enzymes and cytokines 
related to tumor growth and immunosuppression [52]. In this study, the 
number of macrophages was high in the subtype B and high-risk DRG 
score groups, indicating immunosuppression and insensitivity to 
immunotherapy in the subtype B and high-risk score groups. Currently, 
targeting macrophages has good application prospects in the treatment 
of glioma [53,54]. We found that DRG risk scores were associated with 
macrophage infiltration, suggesting that DRGs may be a target for tar-
geting macrophages in glioma therapy. Clinical studies at the Andrew 
Cancer Research Center found that glioblastoma stem cells could inhibit 
natural killer (NK) cell activity by releasing TFG-β signaling proteins. 
However, deletion of TFG-β receptors in NK cells restored their anti-
tumor activity [55]. Experiments at Nara Medical University in Japan 
found that injecting NK cells into mice with glioblastoma significantly 
increased the OS of the mice [56]. In our study, NK cells were higher in 
the subtype A and low-risk DRG score groups, indicating that glioma 
patients in the subtype A and low-risk DRG score groups had a better 
prognosis. In addition, exploring the relationship between DRGs and NK 
cells might be one of the ways to activate the antitumor activity of NK 
cells. Immunotherapy plays an increasingly important role in the 
comprehensive treatment of cancer. However, immune checkpoint in-
hibitors targeting PD-1 and CTLA 4 have not shown a significant effect in 
glioma clinical trials [56]. Our research indicates a strong correlation 
between DRGs and the glioma TIME, indicating a promising future for 
DRG multitarget therapy in conjunction with immune checkpoint in-
hibitors [57,58]. 

Fig. 12. IHC for 10 key genes used to construct DRG risk scores with different WHO stages.  
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Of course, our study also has some limitations. First, the prognostic 
role of the DRG risk score should be validated by clinical data. Moreover, 
the underlying biological features related to the DRG risk score require 
future confirmation experiments. 

5. Conclusion 

The DRG risk score based on disulfidptosis molecular subtypes can be 
used for the evaluation of clinical characteristics, prognosis prediction, 
and immune microenvironment estimation of glioma patients. 
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