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Abstract: Temozolomide, a DNA methylating drug, is currently being used first-line in glioblastoma
therapy. Although the mode of action of this so-called SN1 alkylating agent is well described, including
the types of induced DNA damage triggering the DNA damage response and survival and death
pathways, some researchers expressed doubt that data mostly obtained by in vitro models can be
translated into the in vivo situation. In experimental settings, high doses of the agent are often used,
which are likely to activate responses triggered by base N-alkylations instead of O6-methylguanine
(O6MeG), which is the primary cytotoxic lesion induced by low doses of temozolomide and other
methylating drugs in O6-methylguanine-DNA methyltransferase (MGMT) repair incompetent cells.
However, numerous studies provided compelling evidence that O6MeG is not only a mutagenic,
but also a powerful toxic lesion inducing DNA double-strand breaks, apoptosis, autophagy and
cellular senescence. MGMT, repairing the lesion through methyl group transfer, is a key node in
protecting cells against all these effects and has a significant impact on patient’s survival following
temozolomide therapy, supporting the notion that findings obtained on a molecular and cellular level
can be translated to the therapeutic setting in vivo. This comment summarizes the current knowledge
on O6MeG-triggered pathways, including dose dependence and the question of thresholds, and
comes up with the conclusion that data obtained on cell lines using low dose protocols are relevant
and apoptosis, autophagy and senescence are therapeutically important endpoints.
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In a recent review in Biomedicines, Strobel et al. discussed the mode of action of temozolomide,
which is being used first-line in glioblastoma therapy [1]. Temozolomide (TMZ, Temodal®) is a
spontaneously decomposing methylating agent, which acts similarly to dacarbazine (DTIC) that
needs metabolic activation. TMZ was also frequently used in malignant melanoma therapy, but has
been replaced in recent years by checkpoint inhibitors [2] and immunomodulators [3]. Although the
authors provide a solid overview on the metabolism of methylating anticancer drugs, their reaction
with the DNA, adduct formation and the role of membrane permeability, they largely neglected
the cell biological effects of these SN1 methylating agents, for which a significant body of data is
available (reviewed in [4,5]). Thus, they came to the conclusion that “ . . . the only consistently shown
effect of TMZ on cells is the increase of DNA content.” Furthermore, it was stated that “While TMZ
has been shown to induce cell death, this is usually only produced in experimental systems with
unphysiologically high concentrations, often in the range of 100 µM TMZ (ref) up to 1000 and 4000 µM
(ref) while models predict a peak concentration in the tumor in the range of 14.95–34.54 µM (ref).” It
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was further concluded that “TMZ should be considered primarily cytostatic and senescence-inducing
and not cytotoxic and apoptosis-inducing, potentially preventing cancer cells from G2 to M phase
transition when tumor cells are most sensitive for mitotic cell death.” [1]. In my opinion, these are
misleading and unsubstantiated statements that need comment.

First, there is solid data to show that TMZ and other SN1 methylating agents induce cell death
by apoptosis [6,7], and the pathways activated by the critical lesion O6-methylguanine (O6MeG)
are well described [4]. Thus, it has been shown that TMZ induces via processing of O6MeG/T
mismatches DNA double-strand breaks (DSBs) in the post-treatment cell cycle [8,9] and triggers
activation of the DNA damage kinases ATR and, as a secondary event, ATM [10], which in turn activate
CHK1/CHK2-p53-driven apototic pathways [11]. It has also been shown that in p53 mutant glioma
cells, the endogenous (mitochondrial) apoptosis pathway becomes activated, which is, however, less
effective in triggering apoptosis than the exogenous p53 driven pathway [12]. Furthermore, it has been
shown that TMZ induces autophagy and cellular senescence, which are important responses triggered
by the O6MeG lesion [13,14]. It is important to note that these observed responses were evoked in
glioblastoma cell lines with TMZ doses below and up to 50 µM [12,13].

In a recent study, the dose responses of these critical endpoints were assessed and it was shown
that apoptosis, senescence (SA-βGal) and autophagy increased linearly with dose. Thus, even very
low doses (between 5 and 25 µM), which are in the range of what is achieved systemically in the
therapeutic setting [15–17], elicited toxic effects [18]. Interestingly, using the LN-229 and LN-308
(p53 wild-type) cell models, thresholds for apoptosis were not observed. This finding is compatible
with the observation that the amount of γH2AX foci, which are an accepted marker of DSBs that trigger
apoptosis, increases linearly with the dose of TMZ [18] and other O6-methylating agents (unpublished
data). It should also be noted that O6MeG-derived secondary lesions activate upon treatment of
glioblastoma cells with doses ≤50 µM TMZ the ATR/ATM-CHK1/2-SIAH1/HIPK2-p53Ser46 axis [19],
which is considered to trigger the apoptosis pathway [20]. Furthermore, also the Jun kinase pathway,
forcing both receptor-mediated and mitochondrial apoptosis via Fas ligand (FASL) and BIM, is activated
following TMZ [21]. The pathways activated by O6MeG are outlined in Figure 1. Taken together, the
available data show undoubtedly that the TMZ-induced DNA adduct O6MeG is a highly cytotoxic,
genotoxic, recombinogenic and DNA damage response (DDR)-activating lesion. The data demonstrate
at the same time that a single DNA repair protein, MGMT, is highly efficient in protecting against
all these effects [22]. Importantly, already at low dose levels, O6MeG is a powerful activator of the
apoptosis pathway [6,7], which can be explained by its MMR-mediated conversion into DSBs that
trigger efficiently apoptosis without the involvement of PARP1 activation that stimulates necrosis [23].

Interestingly, O6MeG is also a powerful trigger of the senescence pathway [13]. Comparing the
responses under identical treatment conditions, we observed with a dose of 15 µM TMZ yields of about
20% apoptosis (annexin V positive) and 42% senescence (C12FDG positive) in LN-229 glioblastoma
cells [18]. Thus, it appears that senescence is a major pathway activated by O6MeG lesions, which does
not mean that apoptosis is not induced and irrelevant for explaining the cytotoxic effects. Of note, we
do not know whether senescent cells die by apoptosis or by another process at a later stage. In view of
the bulk of published data (for an extended list of references see [5]) the statement that “TMZ should
be considered primarily cytostatic and senescence-inducing and not cytotoxic and apoptosis-inducing”
is not tenable.

I do agree with the authors that, in some publications, unusually high concentrations of TMZ
were used, which are even in the mM range. These high doses are required to elicit cytotoxic and
genotoxic effects in MGMT expressing, TMZ-resistant cells and are brought about by N-alkylations
and other adducts repaired by base excision repair (BER) and ALKBH2 [5]. At these high dose levels,
the cellular BER and ALKBH2 repair capacity appears to be saturated and, therefore, these adducts
become the preponderant toxic insults. It is true that these effects elicited at very high doses of TMZ
cannot be achieved in vivo, unless the tumor is impaired in BER and/or ALKBH2. Therefore, responses
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observed in MGMT expressing (MGMT promoter unmethylated) cell models and high TMZ doses
(>100 µM) should be taken with caution.
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the Fas receptor controlled by p53 [12], and the Fas ligand, which is under control of AP-1. 
Additionally, the AP-1 dependent BIM/BAX apoptosis pathway [21], as well as the SIAH1/HIPK2-
p53Ser46 pathway become activated [19] thus contributing to cell death executed by apoptosis. The 
model is based on experiments with TMZ doses of ≤50 μM, which were used for glioblastoma cell 
treatment in the cited works. 
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Figure 1. Cell death pathways triggered by the temozolomide-induced DNA lesion O6-methylguanine.
Although TMZ, like other SN1 alkylators, induces more than a dozen DNA adducts, O6MeG is the
key cytotoxic lesion and MGMT the primary node of drug resistance (reviewed in Reference [22]).
The damage is converted into DSBs and, in p53 mutated cells, stimulates mitochondrial apoptosis, a
hallmark of which is Bcl-2 decline [8]. In p53 wild-type cells, apoptosis is additionally driven by death
receptor triggered caspase-8 activation, which requires upregulation of the Fas receptor controlled by
p53 [12], and the Fas ligand, which is under control of AP-1. Additionally, the AP-1 dependent BIM/BAX
apoptosis pathway [21], as well as the SIAH1/HIPK2-p53Ser46 pathway become activated [19] thus
contributing to cell death executed by apoptosis. The model is based on experiments with TMZ doses
of ≤50 µM, which were used for glioblastoma cell treatment in the cited works.

It should also be taken into consideration that in the therapeutic setting TMZ is administered
repeatedly with daily doses of 50 to 130 mg/m2 or even higher [24,25]. Under these conditions, a
huge accumulation of O6MeG in the DNA is expected to occur in MGMT lacking (MGMT promoter
methylation positive) tumors, strongly enhancing the DNA damage response, signal activation and
activation of apoptosis and senescence pathways. Therefore, the biologically effective dose in a
therapeutic setting is even likely higher than what is achieved in vitro in most of the experimental
settings, when single doses of up to 100 µM are used.

TMZ is clearly a cytotoxic drug, as cells following treatment die by apoptosis even at low dose
levels [18,19]. Since TMZ induces, like all genotoxic agents, DNA synthesis inhibition and cell
cycle arrest as well as cellular senescence, it may also be considered a cytostatic drug (i.e., cells are
just inhibited in proliferation). However, measuring these endpoints, it remains unclear whether
cells blocked in particular cell cycle positions or the senescent state are irreversibly arrested or only
transiently, and finally enter a death pathway (or continue to proliferate). S-phase inhibition and
cell cycle delay following DNA damage are well-known transient phenomena, which should not be
considered as a cytostatic activity. It should also be noted that cell cycle inhibition and senescence
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are regulated, at least in part, by the same upstream DNA damage response players that regulate
apoptosis. For these reasons, TMZ should be considered a cytotoxic agent rather than a cytostatic drug.

To the best of my knowledge, neither apoptosis nor senescence has been demonstrated in human
glioblastoma specimens obtained after resection upon the first therapy cycle. However, this lack of
data should not be taken as an argument that glioblastoma cells do not die by apoptosis following
therapy. If apoptotic markers are not detectable following therapy, this may result from the clearance
of apoptotic cells in the recurrent tumor in the period between the end of TMZ treatment and resection.
The important role of MGMT, which was first discovered in bacteria [26], intensively assessed as a key
defense [27] and drug resistance mechanism in cancer cell lines in vitro [28,29] and then translated to
the tumor response [30], is an impressive example for demonstrating that processes occurring on a
molecular level can be translated to cancer cells that grow in a much more complex tumor environment.
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