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Abstract.
Background: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified,
especially where clinical diagnoses of dementia may not be available.
Objective: We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a
multi-study consortium and use the twin design of the sample to validate the results.
Methods: Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to
assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative
of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the
LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia.
Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between
the LDI and clinically diagnosed dementia where available.
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Results: Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed
dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract
a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs
and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical
diagnosis.
Conclusion: This latent dementia indicator approach may serve as a model for other research consortia confronted with
similar data integration challenges.
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INTRODUCTION

Harmonized measures of cognitive functioning,
cognitive impairment, and dementia are critical for
consortium-based studies of aging that combine
multiple cohorts. Large samples comprised of mul-
tiple studies are essential for testing genetic and
environmental effects that require large numbers
of participants to discover significant and mean-
ingful associations and for incorporating diverse
populations in dementia research. In practice, a
dementia diagnosis requires progressive impairment
in cognition sufficient to interfere with function-
ing in everyday life. The most frequent cause of
dementia is Alzheimer’s disease in which memory
impairment is the most common presentation [1].
In clinical settings, establishing dementia diagnoses
typically entails teams of clinicians who integrate
information from neurological examination, clini-
cal neuropsychological testing, neuroimaging, and/or
markers from cerebrospinal fluid [2–4]. These pro-
cedures align with current diagnostic criteria [5].
Large population-based studies of aging, however,
cannot feasibly implement such clinical protocols,
and instead must rely on a combination of mental sta-
tus tests, various statistical algorithms applied to brief
cognitive batteries, or, alternatively, linkage with
administrative records such as Medicare (e.g., Health
and Retirement Study (HRS) [6]; National Health and
Aging Trends Study [7]) or national patient registries
[8].

The purpose of this paper is to show that a latent
approach to estimating likelihood of dementia can
be coordinated across available data from studies in a
multi-study consortium as well as for individual stud-
ies. Our intention is that this latent dementia indicator
approach may serve as a model for other research
consortia confronted with similar challenges. Latent
variable approaches offer an intuitively appealing
option. A latent variable is a statistically weighted
combination of available measures which serve as

indicators of a concept; in this case, the concept
is dementia. Here the latent indicators of dementia
incorporate functional ability in addition to cogni-
tive performance [9]. Functional ability refers to the
components of instrumental activities of daily liv-
ing affected by cognitive functioning (e.g., shopping,
handling routine household tasks, finding one’s way,
balancing a checkbook) [10]. Recent applications of
latent variable models have proven to be valid and
reliable, as reported in numerous articles in this jour-
nal [11, 12] and elsewhere [13]. These latent dementia
approaches partition variance attributed to general
cognitive ability from variance attributed to func-
tional ability, to remove premorbid cognitive ability
from loss of function signaling dementia. The latent
dementia factor characterized by the overlap of cogni-
tive and functional ability indicators has been referred
to as delta (δ) with the variance accounted for by “cog-
nition alone” retained in a residual general cognitive
ability g’ factor rather than being part of the δ fac-
tor [9, 13]. In prior studies, the correlation between δ

and dementia diagnosis is stronger than the correla-
tion between general cognitive ability and dementia
diagnosis [9, 11, 13]. Latent variable approaches have
been employed by others in a variety of different sam-
ples [13, 14], but has not yet extended to pooling
across studies.

In this study, we create an indicator of likelihood of
dementia using a latent conceptualization of dementia
that we apply across studies to perform coordinated
analyses. First, we describe the development of our
latent dementia index (LDI), which reflects the like-
lihood that a person has dementia, and then apply it
to 10 twin studies participating in the international
consortium on the Interplay of Genes and Environ-
ments across Multiple Studies (IGEMS). Scores on
cognitive tests and survey assessments of functional
ability are used to create these LDI scores. Then, we
evaluate sensitivity and specificity of the LDI using
studies from the consortium where clinical diagnoses
of dementia are available.
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Because the consortium includes twins, we use
classical twin models to validate the LDI by esti-
mating the genetic overlap underlying the LDI and
clinical diagnoses of dementia. Classical twin models
compare similarity between members of monozy-
gotic (MZ) twin pairs, who share 100% of their
genes, to similarity between members of dizygotic
(DZ) twin pairs, who on average share 50% of their
genes. From the difference between MZ and DZ
twin correlations, it is possible to estimate propor-
tions of variance explained by genetic factors and by
environmental factors. Heritability (or proportion of
variance explained by genetic factors) of clinically
diagnosed dementia is approximately 60% in prior
twin studies [15, 16]. If heritability of LDI is of simi-
lar magnitude, the result supports the utility of the
LDI. Strong genetic correlations between the LDI
and clinically diagnosed dementia would offer evi-
dence that the genetic effects underlying clinically
diagnosed dementia are the same as those underlying
the LDI. In addition, the non-shared environmental
correlations can be used to infer whether—as would
be expected—twins with poorer LDI scores are diag-
nosed more often with dementia than their co-twins
[17, 18].

METHODS

Study samples

All samples used in the analyses are part of the
IGEMS consortium [19, 20]. We included 10 stud-
ies from four countries (Sweden, Denmark, United
States, and Australia), representing all IGEMS stud-
ies with both a functional ability measure and a
cognitive assessment battery that includes memory.
To the extent possible, we wished to know for each
participant whether or not the person ever developed
probable dementia. Therefore, we selected the most
recent assessment wave for each participant with cog-
nitive, memory, and/or functional ability data. No par-
ticipant was included more than once. The individual
studies are presented in Table 1 and described below.
The combined sample size across all studies was
15,770. This study was approved by the University
of Southern California Institutional Review Board.

Sweden

The four Swedish studies were drawn from the
Swedish Twin Register, a population-based register
of twins born in Sweden since 1886. Studies include

the cross-sectional census: the Study of Dementia
in Swedish Twins termed by the Swedish acronym
HARMONY for Hälsa (health), ARv (genes), Miljö
(environment), Och (and), NY (new) [21], and
three longitudinal studies of specific subgroups: the
Swedish Adoption/Twin Study of Aging (SATSA)
[22], Ageing in Women and Men: A Longitudinal
Study of Gender Differences in Health Behavior and
Health among Elderly (GENDER) [23], and the Ori-
gins of Variance in the Oldest-Old (OCTO-Twin)
[24]. Some individuals were part of both HAR-
MONY and one of the three longitudinal studies.
Those individuals were placed in the analytic sample
that contained their most recent cognitive, memory,
and/or functional ability data.

HARMONY entailed screening all living twins in
the Swedish Twin Register aged 65+ years [25], then
referring for clinical workup all twins who screened
positive for cognitive impairment along with their
co-twin and a control sample of healthy twin pairs.
Individuals were evaluated between 1998 and 2004.
The analytic sample included 1,381 individuals.

SATSA is a longitudinal study that began in
1984 and follows same-sex twins who indicated they
had been separated before the age of 10 years and
reared apart, and a matched sample of twins reared
together. All SATSA twins who reached age 50 were
invited to participate in in-person testing (IPT). We
included only data from the fifth through ninth IPTs
(1999–2012) when word list recall was collected. The
analytic sample included 548 individuals.

OCTO-Twin includes same-sex twin pairs over the
age of ∼80 (79–98 years) at baseline in 1991, with
five follow-up waves obtained through 2002. The
analytic sample included 561 individuals.

GENDER is a longitudinal study of opposite-sex
twin pairs born between 1916 and 1925 who were
aged 70–79 years at the first IPT and had three IPT
waves between 1995 and 2005. The analytic sample
included 479 individuals.

Denmark

The two Danish twin studies were drawn from
the Danish Twin Registry and include the Longitu-
dinal Study of Aging Danish Twins (LSADT) [26]
and the Middle-Aged Danish Twins Study (MADT)
[27]. LSADT is a cohort-sequential study of same
sex twin pairs that began in 1995. Initially, LSADT
included twins aged 75+ years, but as new cohorts
were recruited the age minimum was lowered to 70,
resulting in age ranges from 70 to 96 years. MADT is



1190 C.R. Beam et al. / Latent Dementia Index

Table 1
Analytic sample characteristics by study

Sample N % Female # of Twin Type Mean Age Years of % Clinically
at Testing Study Diagnosed

(SD) Dementia

MZ DZ-SS DZ-OS

Sweden
HARMONY 1381 56% 391 611 349 81.0 (7.41) 1998–2004 41%
SATSA 548 60% 197 348 0 77.8 (8.92) 1999–2012 12%
GENDER 479 50% 0 0 479 80.0 (3.96) 1995–2005 17%
OCTO-Twin 561 66% 246 315 0 87.6 (3.91) 1991–2002 26%

Australia
OATS 592 65% 329 169 92 74.9 (5.71) 2006–2018 4%

Denmark
MADT 4306 49% 1470 1388 1448 56.4 (6.34) 1998 –
LSADT 4626 59% 1555 2820 220 80.1 (6.37) 1995–2005 –

US
CAATSA 675 59% 241 261 166 49.2 (14.51) 1999–2003 –
MIDUS 1341 56% 517 459 341 60.4 (12.01) 2004–2014 –
VETSA 1261 – 736 525 0 61.5 (2.64) 2008–2013 –

HARMONY, Study of Dementia in Swedish Twins; SATSA, Swedish Adoption/Twin Study of Aging; GENDER, Ageing in Women and
Men: A Longitudinal Study of Gender Differences in Health Behavior and Health among Elderly; OCTO-Twin, Origins of Variance in the
Oldest-Old; OATS, Older Australian Twins Study; LSADT, Longitudinal Study of Aging Danish Twins; MADT, Middle-Aged Danish Twins
Study; CAATSA, Carolina African-American Twin Study of Aging; MIDUS, Midlife Development in the United States; VETSA, Vietnam
Era Twin Study of Aging; MZ, monozygotic; DZ-SS, dizygotic same sex; DZ-OS, dizygotic opposite sex.

a longitudinal study of both same- and opposite-sex
twin pairs born between 1931 and 1952 who were
first assessed in 1998, resulting in age ranges from
45 to 68 years. The analytic sample included 4,626
in LSADT and 4,306 in MADT.

Australia

The Older Australian Twins Study (OATS) [28]
started in 2006 with the recruitment of twins aged 65
and older, including twins from the Australian Twin
Registry as well as new volunteers from the commu-
nity. In-person evaluations included core components
for diagnosing dementia, including medical and neu-
ropsychological examinations, informant interview,
blood collection, and brain imaging [28]. The analytic
sample included 592 individuals.

United States

The three US studies include the Carolina African-
American Twin Study of Aging (CAATSA) [29],
the twin sample of the Midlife Development in the
United States (MIDUS) [30], and the Vietnam Era
Twin Study of Aging (VETSA) [31].

CAATSA is a cross-sectional sample of African
American twins from North Carolina recruited by
phone book/internet/credit service searches and voter
registration records in 1999 through 2003 [29, 32].

The analytic sample included 675 individual twins
ranging in age from 20 s through 80 s.

MIDUS is a nationally representative longitudinal
study, which also collected a twin subsample of both
same- and opposite- sex twin pairs ascertained using
a random-digit dialing procedure and supplemented
with additional twin pairs recruited through referrals
given by non-twin participants [33]. Cognitive func-
tion and self-rated functional ability were assessed
in two waves in 2004 to 2006 and in 2013 to 2014.
The analytic sample included 1,341 individuals, ages
ranging from 34 to 82 years.

VETSA is a longitudinal study of a national sam-
ple of male twins who served in the military during
the Vietnam era (1965–1975), recruited through the
Vietnam Era Twin Registry. All twins were 51 to 61
years of age at initial assessment wave and were 55
to 67 years of age at the second assessment wave
that was used in the analyses. The analytic sample
included 1,261 individuals.

Variables

The 10 IGEMS studies differ considerably in
the number and type of memory, other cognitive,
and functional ability measures available. Memory
measures represent various episodic memory tasks.
Other cognitive measures encompass domains of
verbal ability, visuospatial ability, analytical reason-
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ing, verbal fluency, processing speed, and working
memory, with each study typically assessing only
some domains. Functional ability measures encom-
pass everyday activities that require cognition in
order to function independently. In our analyses, we
included measures of memory and other cognitive
domains that were available in each participating
study (as shown in Table 2 and described in detail in
the Supplementary Material). Consistent with prior
work [34], we converted raw memory and other
cognitive scores into the proportion of maximum pos-
sible, a variation of percentage of maximum possible
(POMP) values [35]. All scores were coded so that
higher values indicated better performance. When
there was a total correct score, the POMP score was
the raw score divided by maximum possible (i.e., pro-
portion correct). When raw score values were number
of items generated during a timed task (e.g., ver-
bal fluency), the POMP score was the number of
items generated divided by the time allotted. When
raw score values were times to complete a task with
lower scores indicative of better performance (e.g.,
trails), we calculated the POMP score by subtracting
time to complete from maximum time then divid-
ing by maximum time. The proportions were then
multiplied by 10 so that all scores ranged from 0 to
10; the transformation does not affect the covariance
matrices analyzed [35].

Five studies (n = 3,490) from Sweden and Aus-
tralia administered a complete diagnostic protocol
and applied clinical diagnostic criteria to estab-
lish clinical diagnoses of dementia, including type
of dementia, also whether the person met criteria
for mild cognitive impairment (MCI) or cognitively
impaired/not dementia (CIND). MCI and CIND were
considered not-dementia in our dichotomous clini-
cally diagnosed dementia variable, which was coded
1 = dementia (of any type) and 0 = not-dementia.

Swedish and Danish twin registries were both
linked to population-based health registries that con-
tained diagnostic information. There is a lag between
the time a clinical diagnosis is made at a clinic and
how soon the registry records the diagnostic code.
Based on data from the three Swedish Twin Register
longitudinal studies, it was estimated that a demen-
tia ICD code appears in the National Patient Registry
(NPR) on average 5.5 years after the diagnosis is first
made [36, 37]. Thus, in our analyses of agreement
between registry and LDI, we determined whether
the participant had an ICD code for dementia in any
registry within 5 years after the assessment wave used
for scoring the LDI.

Data analysis

LDI scores
Raw data from each study sample were used in

one-factor confirmatory factor analysis (CFA) mod-
els to estimate LDI in each of the 10 studies. CFA
tests the hypothesis that the observed variables fit
the latent structure of the model. Figure 1 illustrates
the one-factor CFA model fit to each study sam-
ple. This model allows for existing variability in the
number and type of memory, other cognitive, and
functional ability measures administered across stud-
ies. For example, not every study included word list
learning and recall among their memory measures.
For studies that did, the number of words could vary
from 10 to 16, the number of learning trials from 1 to
5, the delay before recall from 5 to 30 min.

Consistent with prior approaches [9, 11, 13], cog-
nitive ability was modeled as part of the LDI but with
correlated residuals, which in effect splits the cogni-
tive ability variance into a residual general cognitive
ability component that represents baseline cognitive
ability and a latent dementia indicator component
that represents those cognitive abilities and functional
areas affected by dementia. Both functional ability
and memory were considered unique to the LDI. The
separability of memory from general cognitive abil-
ity is already well-supported [38, 39] and matches the
outcomes of prior δ studies [9, 13] that showed fac-
tor loadings of the memory measures on the general
cognitive ability factor became non-significant after
adding δ to the models.

The model in Fig. 1 saturates the correlations
among the residuals of the non-memory cognitive
ability variables, thereby statistically addressing dif-
ferences among studies in the number of tests that
assess the same domain. We specified one memory
variable factor loading constrained to 1.0 to scale
the LDI and allow the LDI variance to be estimated.
The intercept of the same memory variable was con-
strained to 0 so that the mean of the LDI could be
estimated. This scaling of means and variances has
the effect of scaling the LDI scores by similar tasks
across study so that studies can be coordinated mean-
ingfully.

Analyses were conducted in Mplus 8.4 [40]. Maxi-
mum likelihood with robust standard errors was used
as the estimator to account for violations of mul-
tivariate normality and missing data. Non-response
was assumed to be missing at random or missing
not at random. In both cases, full information max-
imum likelihood is the recommended approach for
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Table 2
Latent dementia indicator standardized factor loadings and correlations by study

Country Sweden Australia Denmark US

Study HARMONY SATSA GENDER OCTO-Twin OATS MADT LSADT CAATSA MIDUS VETSA
(n = 1,381) (n = 548) (n = 479) (n = 561) (n = 592) (n = 4,306) (n = 4,626) (n = 675) (n = 1,341) (n = 1,261)

Memory Variables

Word List Immediate Recall 0.89a 0.79a 0.91a 0.85a 0.74a 0.64a 0.39 0.86a 0.56a

Word List Delayed Recall 0.82 0.79 0.90 0.90 0.69 0.70 0.82 0.52
Word List Delayed Recognition 0.68 0.67 0.69 0.31
Prose Recall Immediate 0.90a 0.56 0.90a 0.91
Prose Recall Delayed 0.61 0.83 0.92
Picture Memory 0.69 0.62 0.87

Cognitive Variables

Block Design 0.60 0.53 0.52 0.77 0.40
Digits Forward 0.31 0.51 0.16 0.27 0.30 0.20 0.20
Digits Backward 0.47 0.61 0.31 0.40 0.49 0.30 0.31 0.25
Figure Identification 0.52 0.49 0.85
Figure Rotation 0.44 0.29
Semantic Fluency 0.76 0.42 0.33 0.52 0.27 0.31
Letter Fluency 0.70 0.57 0.35 0.20
Information 0.49 0.48 0.81
Synonyms 0.68 0.54 0.64 0.76
Symbol Digit 0.60 0.53 0.52 0.81 0.45 0.41 0.56 0.26
Trails A 0.40 0.26
Trails B 0.47 0.37

Functional Ability –0.77 –0.43 –0.44 –0.28 –0.32 0.15 0.32 –0.15 –0.14 –0.25

LDI mean (variance) 2.79 (1.00b) 5.11 (1.00b) 3.98 (1.00b) 2.01 (1.00b) 5.33 (1.00b) 4.43 (1.00b) 4.74 (1.00b) 2.10 (1.00b) 3.21 (1.00b) 8.82 (1.00b)
Correlations
Clinically Diagnosed Dementia –0.75 –0.46 –0.58 –0.64 –0.41 – – – – –
Mental Status 0.79 0.63 0.53 0.80 0.52 – 0.45 0.48 – –
Age 0 0 0 0 0 0 0 0 0 0
Male –0.06 0.07 0.18 –0.01 0.19 0.17 0.06 0.07 0.21 –

LDI, latent dementia index. Loadings only shown in table for tests in multiple studies. a and b indicate unstandardized loading was fixed to 1.0. Loadings not displayed in the table by sample
include: SATSA: Analogies (0.56); OATS: Naming (0.46), Similarities (0.45), List Immediate Short Delay Recall (after interference list: 0.89); CAATSA: Alphabet Span (0.39); MIDUS: Counting
Backward (0.21), Number Series (0.27), Stop-Go Switching (0.10); VETSA: Semantic Fluency-Boy Names (0.28), Hidden Figures (0.28), Letter-Number Sequencing (0.22), Matrix Reasoning
(0.34), Reading (0.43), Spatial Span Forward (0.17), Spatial Span Backward (0.25), Stroop (0.19), Vocabulary (0.30). All loadings shown for HARMONY, GENDER, and OCTO-Twin. Fixed
loading of word list immediate recall to 1.0 (unstandardized) in all studies except OCTO-Twin and CAATSA where we instead fixed logical memory immediate to 1.0 (unstandardized). OCTO-Twin
did not have word list and CAATSA, which used Telephone Interview for Cognitive Status – modified (TICSm) 10-item scale, did not have adequate variance on this test. Clinically diagnosed
dementia is dichotomized as dementia vs. not dementia, which includes all subthreshold and mild impairment categories. Seven HARMONY twins missing clinical diagnoses, so Ns do not all
sum to full sample analytic N. Mental status is obtained by MMSE in HARMONY, SATSA, OCTO-Twin, and OATS and by TICS (removing word list item used as word list immediate recall) in
CAATSA. HARMONY n = 1,131 for MMSE scores. MMSE, Mini-Mental State Examination.
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obtaining least biased parameter estimates and stan-
dard errors [41]. To obtain unbiased standard errors,
we accounted for the dependence between twins in
the same family. Factor scores were scaled such that
lower scores indicate greater likelihood of dementia.
Finally, age at testing was included in the model as
a predictor of the cognitive, memory, and functional
ability variables to center obtained scores at age 60
[42].

To pool all studies for coordinated analyses of
the entire consortium data set, study sample LDI
scores were re-centered to align with HARMONY
LDI scores. The aligned individual scores were
constructed by adding the difference between each
individual’s sample mean and HARMONY LDI
mean to each individual score (e.g., LDIAligned =
LDIOriginal + (

LDIOriginal − LDIHarmony

)
).

HARMONY is the study with the largest sample
size and clinical diagnoses of participants.

LDI validity

Criterion validity was evaluated by estimat-
ing correlations of continuous LDI scores with
dichotomously coded clinically diagnosed demen-
tia. Subsequently, cut-off points were derived for the
LDI (1 = likely to have dementia; 0 = unlikely to have
dementia) using dementia prevalence within the study
when available or otherwise based on prevalence in
the population from which the study was drawn (e.g.,
national rate of dementia in Denmark was 9% in those
65+ years old [43]; in the US, 10% in those 65+ years-
old [44, 45]. Using these cut-off points on the LDI, we
calculated sensitivity (true positive rate), specificity
(true negative rate), positive predictive value (propor-
tion of people below cut-off who have the disease),
false positive rate (those incorrectly identified as hav-
ing the disease), negative predictive value (proportion
of people above cut-off who do not have the disease),
and accuracy (sum of true positives and true nega-
tives, or those categorized correctly) compared with
dichotomous clinical diagnosis.

Separately, we used the LDI as the reference stan-
dard and register diagnosis as the test to examine
the specificity of the LDI. Given the Scandinavian
national registries have shown approximately 50%
sensitivity and nearly 100% positive predictive valid-
ity (i.e., there are minimal false positive cases [36,
37, 46]), we expected the LDI would show high
specificity and capture nearly everyone who had a
dementia code in a national registry.

Fig. 1. General Latent Dementia Index (LDI) Model (Variables
Taken From HARMONY). LDI, latent dementia index; manifest
variables include: COG1 – COGc, non-memory cognitive ability
variables (e.g., block design, verbal fluency, digit span); MEM1 –
MEMd, memory ability measures (e.g., immediate recall, delayed
recall, and recognition); and functional ability, which is a compos-
ite measure of instrumental activities of daily living that require
some level of cognitive functioning. Manifest variable intercepts
and latent means are indicated by triangles with a value of 1 inserted
in them. Residual variances (�) are estimated for each manifest
variable. * indicates that the parameter is estimated whereas val-
ues along paths (e.g., 0) indicate that the parameter is fixed to that
value.

Genetically informed analyses

We conducted univariate and bivariate quantita-
tive genetic analyses with univariate twin models
fit to the LDI scores (Fig. 2a). In classical twin
(“ACE”) models, additive genetic (A) components
are the cumulative additive effect of genotype and
are estimated by virtue of the fact that MZ twins
share 100% of their genes and DZ twins share 50%
of their genes, on average. Shared environmental
(C) components are the cumulative effect of any
environment that makes twins reared in the same
family more similar to one another and estimated
under the assumption that shared environmental influ-
ences affect twins similarly regardless of genetic
relatedness. Non-shared environmental (E) compo-
nents are any environmental factor that makes twins
different from one another, including measurement
error. Broad heritability estimates of LDIs were esti-
mated to infer whether additive genetic influence was
similar across studies using their respective 95% con-
fidence intervals.

Bivariate ACE models were fit to the continu-
ous LDI scores and dichotomous clinical diagnoses
(Fig. 2b, with observed and latent variables presented
for one twin only for simplicity of presenta-
tion). Genetic and environmental covariances were
estimated to construct the genetic and environ-
mental correlations between LDI and clinically
diagnosed dementia as product-moment correlations
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Fig. 2. Univariate Twin Model (a) and Bivariate Twin Model (b) for One Twin Only. The univariate model in (a) gives the example of
decomposing the observed latent dementia index (LDI) variance into random latent genetic (A), shared environmental (C), and non-shared
environmental (E) variance components. In this model, LDI intercepts are estimated and residual variances of the LDI are constrained to
be zero. Univariate ACE models were fit to dichotomized clinically diagnosed dementia and dichotomized LDI scores. In these models,
thresholds replace intercepts. Effects of age at cognitive assessment (presented) and age2 (not presented) were estimated. The subscripts 1
and 2 refer to twin 1 and twin 2, respectively. The bivariate model (b) estimates decomposes the LDI and clinically diagnosed dementia into
random latent genetic (A), shared environmental (C), and non-shared environmental (E) variance components and estimates the correlations
between the respective components (Cov(A), Cov(C), and Cov(E)). Effects of age at cognitive assessment (presented) and age2 (not presented)
were estimated.

and reported with 95% confidence intervals. Inter-
cepts and thresholds were constrained across twins
and zygosity groups. Age and age-squared were
included in all models to reduce bias in the shared
environmental variance given that the twins are tested
at nearly identical ages (r = 0.95). Proportions of
variability in LDI and clinically diagnosed demen-
tia attributed to genetic (A, or h2) and environmental
(C, or c2, and E, or e2) components were estimated
by dividing these variance components by the total
variance estimate.

Univariate ACE models were estimated with max-
imum likelihood, and bivariate twin models were
estimated using weighted least squares because of
including the dichotomous clinical diagnosis.

RESULTS

LDI scores

Table 2 shows the standardized factor loadings
from the LDI model for the 10 studies (Supple-
mentary Table 1 presents unstandardized results).
Loadings were generally in the same range across
all studies (0.20s to 0.80s, standardized), regardless
of which cognitive tests were included. Loadings
for the memory tests generally were more strongly

associated with the LDI (0.30s to 0.90s, standard-
ized) than the non-memory cognitive items. LDI
factor means were lowest (i.e., greatest likelihood of
dementia) in studies with highest proportion of indi-
viduals diagnosed with dementia (e.g., HARMONY,
OCTO-Twin) and highest (i.e., least likelihood of
dementia) in studies with the smallest proportion of
individuals diagnosed with dementia (e.g., OATS,
VETSA), with rates of dementia mirroring age
distribution of the respective studies. As seen in Sup-
plementary Table 1, variances for the LDI score
were lower in US and Danish studies, suggest-
ing relatively greater precision of the LDI mean
estimate.

Figure 3 displays the LDI factor score histograms
(Fig. 3a) and density functions (Fig. 3b) for all stud-
ies. The vertical black line in the plot represents
the LDI cut-off point for categorizing individuals as
likely to have dementia with values to the left of
the black line categorized as “likely” and values to
the right of the black line categorized as “unlikely”.
This histogram provides support for a continuous
LDI that distinguishes between individuals who have
higher likelihood of dementia from those who have
lower likelihood of dementia. The overlapping den-
sity curves depict the shape of each study’s LDI
distribution, which is normally distributed. Although
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Fig. 3. Histogram (left panel) and Density Curves (right panel) of the 10 IGEMS studies (HARMONY units). Panel a is histogram of the
probability densities for all 10 studies. Panel b is the Gaussian kernel density plots of all 10 studies. Units are converted to those estimated
in the HARMONY. The solid black vertical line indicates the cut-off score (5.26) used to categorize twins with probable dementia (left of
the line) and twins without probable dementia (right of the line).

the distribution is symmetric and there is no notice-
able skewness, the distribution is platykurtic with a
value less than 3.00 (2.09), which suggests that there
are fewer extreme values in our LDI distribution than
a Gaussian distribution.

LDI scores consistently correlated with clinically
diagnosed dementia across studies (see lower por-
tion of Table 2). All values are moderate to high,
ranging from –0.41 in OATS to –0.75 in HAR-
MONY. Correlations between LDI and mental status
screening scores (e.g., Mini-Mental State Examina-
tion [MMSE] or Telephone Interview for Cognitive
Status [TICS]) also ranged from a moderate value of
0.48 in CAATSA to a large value of 0.80 in OCTO-
Twin.

Table 3 shows the criterion validity analyses for the
studies that have clinical diagnoses available. Consis-
tent with our selection of cut-off points that prioritize
keeping false positives at a minimum, false posi-
tives were low (range: 1.7–7.0%) and specificity was
high (90.5–98.2%) in all studies. Sensitivity varied
across the five studies from HARMONY at 87% to
SATSA at 51%. These sensitivity levels are highest
in studies with higher disease prevalence. Separately,
sensitivities for registry dementia codes within 5

years of neuropsychological testing were 88%, 93%,
93%, 89% for HARMONY, SATSA, GENDER, and
OCTO-Twin, respectively.

Genetically informed analyses

Table 4 presents univariate ACE estimates and
genetic and environmental correlations from bivari-
ate ACE models for clinically diagnosed dementia
where available, quantitative LDI, and dichotomized
LDI. Pooled heritability estimates (h2) of the quanti-
tative LDI scores (first set of columns in Table 4),
dichotomous LDI scores (second set of columns
in Table 4), and the dichotomously coded clinical
diagnosis variable (third set of columns in Table 4)
are comparable, showing h2 = 53%, 59%, and 61%,
respectively. Shared environmental variance (c2)
components underlying LDI were negative across all
studies and so were set to zero in the models. Non-
shared environmental factors (e2) accounted for the
remaining variance, with estimates of 47%, 41%, and
39% respectively for quantitative LDI, dichotomous
LDI, and clinically diagnosed dementia. Results for
individual studies were far more variable than the
pooled results. These results suggest that LDI mod-
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Table 3
Criterion validity

Sample N LDI Cut-Off False Sensitivity Specificity Positive Negative Accuracy Disease
Score Positive Predictive Predictive Prevalence

Value Value

Sweden
HARMONY 1374 5.26 5.60 86.50 90.50 86.40 90.60 88.90 41.10
SATSA 548 6.12 5.70 50.80 93.60 50.80 93.60 88.70 11.50
GENDER 477 5.15 6.50 62.60 92.20 61.70 92.40 87.20 16.80
OCTO-Twin 561 3.54 7.00 73.30 90.60 73.30 90.60 86.10 26.00

Australia
OATS 589 4.80 1.70 60.00 98.20 60.00 98.20 96.60 4.20

LDI, latent dementia index. Some twins are missing clinical diagnoses, so ns do not all sum to full sample analytic N. False positive,
sensitivity, specificity, positive predictive value, and negative predictive value, accuracy and disease prevalence expressed in %.

estly underestimates h2 and modestly overestimates
e2.

Moderate to strong genetic correlations were
observed between the quantitative LDI scores and
clinical diagnoses across all studies, with rA = –0.66
for the combined sample (range: rA = –0.81 to –0.48
for individual studies; see last set of columns in
Table 4), suggesting genetic sources of variability in
common to LDI and clinical diagnoses. Non-shared
environmental correlations were small to moderate
and significant, with rE = –0.51 for the combined sam-
ple (range: rE = –0.64 to –0.30 for individual studies).
Twins who had higher LDI scores compared to their
co-twins were, in fact, more likely to be diagnosed
with dementia.

DISCUSSION

This study serves as a starting point for addressing
the issue of quantifying and categorizing dementia for
multi-study integration. The results show that latent
dementia factor scores can be extracted from het-
erogeneous variables and reasonably placed on the
same scale for pooled analyses. Furthermore, this
study produces the first latent dementia approach
that addresses the issue of coordinating scores of
dementia likelihood for individuals in studies without
clinical diagnoses available. Meaningful comparison
of scores across studies hinge on careful selection of a
conceptually similar variable, like episodic memory
used in the current study, to scale the latent variable
means and variance. The advantage of this approach
is the ability to handle the real-world practicalities of
diverse samples and datasets and provide flexibility
for what samples to include in an integrated analysis.

There are three features of our LDI approach that
make the method useful to other consortia. First, the
model has the benefit that samples can be added

or removed from analyses when testing different
hypotheses, each of which may only be possible to
test in a subset of samples, without requiring the re-
establishment of metric invariance in each instance.
Second, the univariate approach simplifies the data
analyses while maintaining consistency with other
LDI approaches (e.g., δ approaches [47]), insofar as
the residual cognitive ability variance is separated out
of the LDI scores. Third, the LDI approach produces
both a continuous measure of dementia likelihood as
well as cutoff scores that can be used to dichotomize
the LDI score with good accuracy, thereby enabling
characterization of probable disease presence and
degree of disease severity [48]. Like many clinical
conditions, dementia is not a binary state. Rather,
the progression from normal cognitive functioning to
clinical disease occurs in small degrees, ranging from
slight memory lapses to severe broad impairments.
The LDI score captures this range. Furthermore,
quantitative measures increase power to detect rela-
tionships and processes underlying dementia. We
note that, although some studies in the IGEMS con-
sortium have a broad age range, we suggest that the
LDI score is not useful at ages younger than 50 or 60.
Sensitivity and specificity of the LDI against clini-
cally diagnosed dementia was calculated for age 65
and older. LDI is a measure of dementia likelihood,
which is especially desirable when a study lacks other
ways to identify dementia cases; it is not a measure
of risk of future dementia.

The genetically informed analyses provide addi-
tional support for the validity of the LDI. The relative
stability of the heritability estimates of the quantita-
tive LDI, the dichotomized LDI, and dichotomized
clinical diagnosis variable in the combined sample
replicates prior twin study findings on the heritability
of dementia and Alzheimer’s disease in Swedish stud-
ies [15, 16, 49], with approximately 55–60% of the
variability attributed to genetic differences between
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Table 4
Univariate ACE standardized parameter estimates and bivariate ACE correlations (95% confidence intervals)

Univariate Univariate Univariate Bivariate Correlations
LDI Dichotomous LDI Clinically Diagnosed Dementia LDI < ->Clinically Diagnosed

Dementia

Sample h2 c2 e2 h2 c2 e2 h2 c2 e2 rA rC rE

All 0.53
(0.50, 0.56)

0.00
(0.00, 0.00)

0.47
(0.44, 0.50)

0.59
(0.36, 0.82)

0.00
(–0.18 –0.18)

0.41
(0.33, 0.49)

0.61
(0.50, 0.72)

0.00
(–0.01, 0.01)

0.39
(0.28, 0.50)

–0.66
(–0.74, –0.58)

– –0.51
(–0.59, –0.42)

HARMONY 0.09
(–0.06, 0.23)

0.00
(0.00, 0.00)

0.91
(0.77, 1.06)

0.34
(0.14, 0.54)

0.00
(–0.02, 0.02)

0.66
(0.46, 0.86)

0.35
(0.14, 0.56)

0.00
(–0.01, 0.01)

0.65
(0.44, 0.86)

–0.65
(–0.81, –0.49)

– –0.64
(–0.75, –0.52)

SATSA/
GENDER

0.47
(0.34, 0.60)

0.00
(0.00, 0.00)

0.53
(0.40, 0.66)

0.18
(–1.19, 1.54)

0.01
(–0.80, 0.83)

0.81
(0.18, 1.44)

0.56
(0.28, 0.84)

0.00
(0.00, 0.00)

0.44
(0.16, 0.72)

–0.48
(–0.66, –0.29)

– –0.57
(–0.76, –0.38)

OCTO-Twin 0.47
(0.34, 0.60)

0.00
(0.00, 0.00)

0.53
(0.40, 0.66)

0.60
(0.39, 0.81)

0.00
(0.00, 0.00)

0.40
(0.19, 0.61)

0.43
(–0.39, 1.24)

0.00
(–0.65, 0.65)

0.57
(0.29, 0.86)

–0.55
(–0.76, –0.34)

– –0.57
(–0.76, –0.39)

OATS 0.61
(0.51, 0.70)

0.00
(0.00, 0.00)

0.40
(0.30, 0.49)

0.20
(–1.25, 1.64)

0.35
(–0.89, 1.59)

0.46
(0.03, 0.88)

0.53
(–0.57, 1.64)

0.39
(–0.68, 1.46)

0.08
(–0.09, 0.24)

–0.81
(–0.98, –0.63)

– –0.30
(–0.53, –0.06)

MADT 0.43
(0.37, 0.48)

0.00
(0.00, 0.00)

0.58
(0.52, 0.63)

0.31
(–0.22, 0.84)

0.00
(–0.39, 0.39)

0.69
(0.48, 0.90)

– – – – – –

LSADT 0.49
(0.43, 0.55)

0.00
(0.00, 0.00)

0.51
(0.45, 0.57)

0.18
(–0.52, 0.88)

0.16
(–0.36, 0.68)

0.66
(0.39, 0.93)

– – – – – –

CAATSA 0.67
(0.58, 0.76)

0.00
(0.00, 0.00)

0.33
(0.24, 0.42)

0.31
(–0.13, 0.75)

0.00
(–0.03, 0.03)

0.69
(0.25, 1.13)

– – – – – –

MIDUS 0.29
(0.19, 0.40)

0.00
(0.00, 0.00)

0.71
(0.60, 0.81)

0.00
(–0.06, 0.06)

0.26
(0.03, 0.50)

0.74
(0.51, 0.97)

– – – – – –

VETSA 0.60
(0.53, 0.66)

0.00
(0.00, 0.00)

0.40
(0.34, 0.47)

– – – – – – – – –

h2 is the proportion of total variance in LDI, dichotomous LDI, or clinically diagnosed dementia attributed to additive genetic factors; c2 is the proportion of variance in LDI, dichotomous LDI, or
clinically diagnosed dementia attributed to common environmental variance; e2 is the proportion of variance in LDI, dichotomous LDI, or clinically diagnosed dementia attributed to nonshared
environmental variance; rA = genetic correlation between LDI and clinically diagnosed dementia; rC = common environmental correlation between LDI and clinically diagnosed dementia; rE = non-
shared environmental correlation between LDI and clinically diagnosed dementia; 95% confidence intervals are below each point estimate. GENDER consists only of opposite-sex DZ pairs of
twins and so was combined with SATSA given the similarity in sampling characteristics. Few VETSA participants met the dichotomous LDI cutoff, so model estimates of the dichotomized LDI
could not be made.
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individuals. This finding is notable given the wide
range of heritability and non-shared environmen-
tal estimates across the studies, suggesting that the
pooled sample yields reliable population estimates.

The genetic correlations between the LDI and clin-
ically diagnosed dementia also are informative about
the validity of LDI scores. Genetic causes account
for approximately 40% of the shared variance and
suggest that a sizeable proportion of variance shared
by the LDI and clinically diagnosed dementia is due
to all genetic causes combined. Future work deter-
mining whether the same set of causal loci account
for variance shared by the LDI and clinically diag-
nosed dementia would provide further validation of
this methodological approach and the LDI construct.

Non-shared environmental causes account for
greater than 25% of the shared variance between the
LDI and clinically diagnosed dementia. Our finding
of small- to moderately-sized non-shared environ-
mental correlations indicates that, within families, the
twin with the lower LDI score (indicating greater like-
lihood) is also more likely diagnosed with dementia
than the co-twin with the higher LDI score. This anal-
ysis tests how well LDI predicts clinical dementia
while adjusting for genetic and environmental selec-
tion [17, 18]. From these results, we can conclude that
the LDI is capable of rank ordering persons within
pair and between pairs.

This study serves to highlight the benefits of imple-
menting a latent index approach, but it is not without
limitations. We did not address types of dementia.
We recognize that the validation of the LDI against
clinical diagnoses is partially circular, given that for
some studies some of the same cognitive and func-
tional ability measures may be used in both the
LDI and in the clinical diagnostic workup, and this
may have inflated the validity coefficient. At the
same time, the clinical diagnoses are able to incor-
porate additional information, such as whether the
functional loss is due to physical conditions rather
than cognitive impairment, or if physical condi-
tions such as low vision may have interfered with
cognitive performance. Taking all of these consid-
erations into account, however, the LDI approach
provides evidence that using only a portion of the
information included in clinical diagnoses was suf-
ficient to classify cases accurately with the LDI.
Although results were generally consistent across
studies, there was variability in how well the LDI
model performed across studies, particularly in the
correlations between LDI and clinically diagnosed
dementia. Such variability is expected in as much

as sampling error is expected within a given study
and between studies. However, all the values could
be ranked according to the prevalence of dementia
in each study. Similarly, there was study variabil-
ity in the genetically informative analyses, perhaps
because of differential attrition or sample recruit-
ment methods. The LDI can be calculated with very
few cognitive tests but performs better if there are
a number of domains encompassed by the cognitive
measures. In addition, when LDI scores were pooled
across study, the distribution of scores appeared to be
sensible. Finally, the latent index should be regarded
as a research tool, not as a clinical determination.

Conclusion

We extended prior research on latent variable
approaches to estimating dementia likelihood in
single studies to multiple studies. Developing a con-
tinuous measure of dementia likelihood that can be
pooled across samples provides greater power than a
dichotomous measure and increases the likely gener-
alizability of findings. The consistency of our results
across diverse studies (where dementia assessment
may or may not have ever been intended) suggests
this latent dementia indicator approach can be applied
to any study of cognitive aging with everyday cogni-
tive function measures. Most large surveys of aging
include at least one measure of memory, one non-
memory measure of cognition, and a measure of
instrumental activities of daily living, which are the
elements used for deriving the LDI scores. The impli-
cation is that many studies could adopt this method
to coordinate estimation of likelihood of dementia
diagnosis. Furthermore, the simplicity of the single
factor LDI model specified in this study means that it
can be applied easily across additional studies within
research consortia.
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