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Abstract

Many evolutionary comparative methods seek to identify associations between phenotypic traits or between traits and
genotypes, often with the goal of inferring potential functional relationships between them. Comparative genomics
methods aimed at this goal measure the association between evolutionary changes at the genetic level with traits
evolving convergently across phylogenetic lineages. However, these methods have complex statistical behaviors that
are influenced by nontrivial and oftentimes unknown confounding factors. Consequently, using standard statistical
analyses in interpreting the outputs of these methods leads to potentially inaccurate conclusions. Here, we introduce
phylogenetic permulations, a novel statistical strategy that combines phylogenetic simulations and permutations to
calculate accurate, unbiased P values from phylogenetic methods. Permulations construct the null expectation for P
values from a given phylogenetic method by empirically generating null phenotypes. Subsequently, empirical P values
that capture the true statistical confidence given the correlation structure in the data are directly calculated based on the
empirical null expectation. We examine the performance of permulation methods by analyzing both binary and con-
tinuous phenotypes, including marine, subterranean, and long-lived large-bodied mammal phenotypes. Our results
reveal that permulations improve the statistical power of phylogenetic analyses and correctly calibrate statements of
confidence in rejecting complex null distributions while maintaining or improving the enrichment of known functions
related to the phenotype. We also find that permulations refine pathway enrichment analyses by correcting for non-
independence in gene ranks. Our results demonstrate that permulations are a powerful tool for improving statistical
confidence in the conclusions of phylogenetic analysis when the parametric null is unknown.

Key words: statistical phylogenetics, genotype—phenotype association, comparative genomics, convergent evolution,
phylogenetic generalized least squares, evolutionary rate convergence.

Introduction

Despite the availability of complete genomes for many spe-
cies, identifying the genetic elements responsible for a phe-
notype of interest is difficult because there are millions of
genetic differences between almost every pair of species.
One strategy to link genotypes and phenotypes is to take
advantage of convergent evolutionary events in which mul-
tiple unrelated species have evolved similar characteristics.
Such events represent natural biological replicates of evolu-
tion during which species may have experienced similar ge-
netic changes driving similar phenotypic changes. When
lineages independently evolve or lose a shared phenotype,
convergent molecular signals can be used to identify specific
genetic elements associated with the phenotypic shift.

Diverse analytic approaches have been developed to use
convergent phenotypes to identify specific genetic elements
underlying a trait. The methods include analyzing convergent
amino acid substitutions (Foote et al. 2015) and convergent
shifts in evolutionary rates (Hiller et al. 2012; Wertheim et al.
2015; Prudent et al. 2016; Hu et al. 2019; Kowalczyk et al. 2019)
as well as investigating convergent gene loss (Hiller et al. 2012;
Meyer et al. 2018). Methods that analyze convergent shifts in
evolutionary rates (rather than convergence to any specific
sequence) have been particularly successful. We have previ-
ously developed one such method called RERconverge
(Kowalczyk et al. 2019; Partha et al. 2019) to link genetic
elements to convergently evolving phenotypes based on evo-
lution across a sequence of interest. Our method has been
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successfully used to identify the genetic basis of adaptation to
a marine habitat (Chikina et al. 2016), regression of ocular
structures in a subterranean habitat (Partha et al. 2017), and
evolution of extreme life span and body size phenotypes
(Kowalczyk et al. 2020) in mammals. Other groups have de-
veloped similar methods for identifying convergent shifts in
evolutionary pressure. The Forward Genomics algorithm,
which correlates percent sequence change along a phylogeny
with phenotypic changes (Hiller et al. 2012; Prudent et al.
2016), has been used to identify genetic elements underlying
low levels of biliary phospholipid levels in horses and guinea
pigs, the loss of ability to synthesize vitamin C in some pri-
mates, bats, and guinea pigs, as well as the loss of ocular
structures in two independent subterranean mammals.
Both RERconverge and Forward Genomics involve a phylo-
genetic inference step and a subsequent test for phenotype
association. More sophisticated but computationally inten-
sive methods that consider the phenotype at the phyloge-
netic inference step have also been developed, notably
PhyloAcc (Hu et al. 2019), although these methods are diffi-
cult to scale to genome-wide analyses. A related but distinct
approach is to assess the association between gene loss (the
limiting case of relaxed evolutionary pressure) and conver-
gent phenotypes. A recent study used phylogenetic general-
ized least squares (PGLS) (Grafen 1989) to compute
associations between gene losses and diverse traits and found
a large number of significant associations (Prudent et al.
2016).

Importantly, these methods are often applied in a
genome-wide discovery context. As such, the general ap-
proach can be summarized as using a statistical test to cal-
culate the association between convergent phenotypes and
some measure of molecular evolution (evolutionary rate or
gene loss) across a large number of genomic regions, followed
by multiple hypothesis testing corrections. If an enrichment
of small P values is observed, then it is presumed that some
genes (or other genetic elements) are truly associated with
the phenotype. This conclusion rests on the assumption that
under the null hypothesis of no association, each data point is
sampled independently from a common null distribution, in
which case uniform P values would be observed. However,
when applied to genome-scale data sets, phylogenetic meth-
ods often show atypical statistical behavior in which the
expected uniform distribution of P values is not observed
when using null phenotypes (fig. 1A). For example, the stan-
dard RERconverge analysis is anti-conservative when applied
to the marine phenotype but conservative when applied to
the long-lived large-bodied phenotype. Forward Genomics
likewise produces large deviations from the expected null.
This issue exists for even the widely used PGLS method, which
produces a near-uniform null when applied to gene loss in
long-lived large-bodied mammals, but an extremely skewed
distribution when applied to loss of transcription factor bind-
ing sites in the same phenotype.

PGLS is specifically designed to account for autocorrela-
tions arising from phylogenetic dependence. Therefore, the
fact that a nonuniform null is observed for even the PGLS
method demonstrates that deviations from the expected null

cannot be explained by the phylogenetic structure of the data
alone, but can also result from other sources of dependence
that arise in the context of large multiple alignment data sets.
Differences in genome quality (Hosner et al. 2016), nucleotide
frequencies (Romiguier and Roux 2017), a misspecified phy-
logeny, or other unknown systematic effects all create sys-
tematic biases that accumulate when the method is applied
to thousands of genomic regions. As such, even if the tests
can be proven to be theoretically valid under some assump-
tions (such as the well-understood PGLS model), they are not
guaranteed to produce the expected uniform distribution
when applied repeatedly to data from the same multiple
sequence alignment. This deviation from the null expectation
can result in overestimated statistical confidence and pro-
duce spurious genotype—phenotype associations.

The problem is further compounded when results from
genetic elements are aggregated at the pathway level. Beyond
the existing biases that arise from the nature of multiple se-
quence alignments, gene set analyses suffer additional non-
independence induced by the evolutionary process itself. It is
well established that genes that are functionally related expe-
rience correlated evolutionary pressure and thus evolve in a
dependent fashion (Juan et al. 2008; Clark et al. 2012, 2013).
One extreme example of such coevolution is “reductive
evolution,” where losing a member of interacting proteins
decreases the selection pressure for preserving its interacting
partners (Ochoa and Pazos 2014). As a result of coevolution,
many functionally related genes “travel in packs” in associa-
tion with a phenotype, meaning that if one gene in a group
appears to be associated with a phenotype, the other genes in
the group will as well because they do not evolve indepen-
dently. The result is that a function could appear as associated
with the phenotype due to random chance instead of actual
involvement, causing an erroneous inference of enrichment.

The implication of coevolution is apparent when we apply
standard pathway enrichment analysis to gain insight into
which groups of functionally related genes are overrepre-
sented among convergently evolving genes, as implemented
in standard tools such as GOrilla, GO:TermFinder, and
RERconverge enrichment functions (Boyle et al. 2004; Eden
et al. 2007, 2009; Kowalczyk et al. 2019). Figure 1B demon-
strates how correlated evolutionary rates can cause problems
in pathway enrichment analyses. When genes are ranked
based on gene—phenotype associations, coevolving genes
tend to have clustered ranks. Such clusters make it easier to
observe enrichment of extreme ranks, or coevolving genes
that all have either high or low ranks, due to chance alone,
and therefore the typical null expectation does not hold. Even
when using a null phenotype, genes appear to cluster at the
extremes of the ranked list. The clustering, and resulting en-
richment, is caused by the genes traveling in packs, in which
case simple enrichment tests assign undue confidence to an
essentially spurious enrichment.

Rigorous statistical handling needs to be employed to ad-
dress these sources of bias. Systematic solutions have been
devised to correct issues with nonindependence, both in the
contexts of quantitative genetics (Allison et al. 2002) and
phylogenetics (Stone et al. 2011). However, these systematic
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Fic. 1. Permulations reveal statistical anomalies in genetic element- and pathway-level analyses because parametric P values deviate from the
expected uniform distribution when assessed on null phenotypes. (A) P value histograms comparing P values obtained using an observed
phenotype (red) compared with P values obtained from 500 (or more, see Results) null phenotypes from permulations. We evaluate a binary
phenotype (marine) and a continuous phenotype (long-lived and large-bodied) through RERconverge, a binary phenotype (marine) through

Forward Genomics, and a binary phenotype (marine) and a continuous phenotype (long-lived

and large-bodied) through PGLS with gene stop

codon counts and noncoding element STAT2 TFBS counts. In all cases, the empirical null from permulations (shown in blue) is nonuniform. Since
null P value distributions are often nonuniform (shown in blue), observed parametric P values from standard statistical tests (shown in red) cannot
be interpreted using traditional strategies. (B) Pathway enrichment statistics from RERconverge long-lived large-bodied analyses demonstrate
artificially inflated significance because genes in many pathways are nonindependent. Accordingly, null phenotypes from permulations often show
false signals of enrichment. Permulations correct for nonindependence by quantifying the frequency at which significant pathway enrichment

occurs due to chance.
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approaches often make assumptions on the evolutionary
process or other distributional assumptions, which may not
accurately represent the data. We argue that an empirical
approach that is grounded in the observed data can provide
better calibration against sources of bias. In the context of
gene expression, this problem is typically handled by perform-
ing label permutations (Subramanian et al. 2005; Majewski
et al. 2010; Ritchie et al. 2015) and, in certain cases, parametric
adjustments (Wu and Smyth 2012). However, simple label
permutations are not applicable to associations involving a
phylogeny as they would not preserve the underlying phylo-
genetic relationships, thereby producing false positives.

Here, we develop a novel strategy that combines permu-
tations and phylogenetic simulations to generate null pheno-
types, termed “permulations.” The strategy addresses
statistical nonindependence empirically by generating pheno-
type permutations from phylogenetic simulations. In this
way, the strategy preserves the underlying phylogenetic de-
pendence by sampling permutations from the correct covari-
ance structure. It also more accurately mimics the null
expectation for a given phenotype by exactly matching the
distribution of observed phenotype values for continuous
phenotypes and exactly matching the number and structure
of foreground branches (branches on which the phenotype
changes) for binary phenotypes. We use these “permulated”
phenotypes to calculate empirical P values for gene—pheno-
type associations and pathway enrichment related to a phe-
notype. In doing so, we have created a statistical pipeline that
accurately reports confidence in relationships between ge-
netic elements and phenotypes at the level of both individual
elements and pathways.

New Approaches

Permulations: A Hybrid Approach of Using
Permutations and Phylogenetic Simulations to
Generate Null Statistics

The goal of permulations is to empirically calibrate P values
from phylogenetic methods by producing permutations of
the phenotype tree that account for the structure in the data.
The permulation method requires a master species tree and a
species phenotype (either continuous or binary). The method
then returns a set of phenotypes that are random but pre-
serve the phylogenetic dependence of the input phenotype.
We typically generate 1,000 such permulated phenotypes,
which are then used in the framework of a certain phyloge-
netic method (e.g, RERconverge) to compute gene-trait
associations, resulting in 1,000 empirical null statistics for
each gene. Similarly, we can also run enrichment analyses
using the permulated phenotypes to produce 1,000 empirical
null statistics for each pathway. Finally, for each gene or path-
way, we calculate the empirical P value as the proportion of
empirical null statistics that are as extreme or more extreme
than the observed parametric statistic for that gene or path-
way. Since empirical null statistics capture the true null dis-
tributions for genes and pathways, the empirical P values
represent the confidence that we have to reject the null hy-
potheses of no association, correlation, or enrichment given

the underlying structure of our data. Note that permulations
do not eliminate the need for multiple hypothesis correction;
even with a corrected null model, the likelihood that false
discoveries are made from performing multiple statistical
inferences simultaneously still exists. Our permulation meth-
ods for binary and continuous phenotypes have been in-
cluded in the publicly available RERconverge package for R
(Kowalczyk et al. 2019) (published on github at https://
github.com/nclark-lab/RERconverge, last accessed March 20,
2021), with a supplementary walkthrough (see supplemen-
tary walkthrough, Supplementary Material online) also avail-
able as a vignette included in the RERconverge package.

Phylogenetic Permulation for Continuous Phenotypes
For continuous traits, generating permulated phenotypes is a
two-step process. First, null phenotype values are simulated.
Second, real phenotype values are assigned based on the
simulated values. In step one, given the master tree with
branch lengths representing average evolutionary rates and
phenotype values for each species, we simulate a random
phenotype using the Brownian motion model of evolution.
The Brownian motion model takes a “random walk” down
the master tree phylogeny to assign phenotype values. Since
more closely related species are a shorter “walk” from each
other, they are more likely to have more similar phenotype
values than more distantly related species. In step two, real
phenotype values are assigned to species based on ranks of
the simulated values. The species with the highest simulated
value is assigned the highest observed value, the species with
the second-highest simulated value is assigned the second
highest observed value, and so on. By doing so, observed
phenotypes are shuffled among species with respect to the
underlying phylogenetic relationships among the species.
Since simulated values are more similar among more closely
related species compared with distantly related species, the
newly reassigned real values follow the same pattern (fig. 2).

Phylogenetic Permulation for Binary Phenotypes

For binary traits, the critical feature is the number of fore-
ground species and their exact phylogenetic relationship, and
hence the inferred number of phenotype-positive internal
nodes or equivalently phenotypic transitions. The two-step
process proposed above does not guarantee to perfectly pre-
serve this structure. Instead, we employ a rejection sampling
strategy where the simulation is used to propose phenotypes
that are accepted only if they match the stricter require-
ments. Specifically, species are ranked based on simulated
values, and a set of top-ranked species chosen to match
the number of foreground species in the observed phenotype
are proposed as a null phenotype. The proposed phenotype is
only accepted if it preserves the phylogenetic relationships
among chosen foregrounds, as observed in the actual fore-
grounds (fig. 2, Binary Phenotype). Using the simulation as the
proposed distribution ensures that phylogenetically depen-
dent phenotypes are generated and thus speeds up the con-
struction of null phenotypes over what can be achieved from
random selection.
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Fic. 2. Permulated phenotypes were generated by simulating phenotypes and then assigning observed phenotype values based on the rank of
simulated values. Simulations were performed using Brownian motion phylogenetic simulations and a phylogeny containing all mammals with
branch lengths representing the average evolutionary rate along that branch genome-wide. For binary phenotypes, foreground branches for
permulated phenotypes are assigned based on the highest-ranked simulated values while preserving the phylogenetic relationships between
foregrounds. For continuous phenotypes, observed numeric values were assigned directly to species based on ranks of simulated values.

We present two binary permulation strategies: the com-
plete case (CC) method and the species subset match (SSM)
method. The SSM method accounts for the fact that not all
genes have orthologs in all species, whereas the CC method
ignores species presence/absence for simplicity. The strategies
encompass the trade-off between computational feasibility
and statistical exactitude—in some cases, it may not be pos-
sible to perform the SSM method, in which case the CC
method is a viable alternative. The CC method is the first
and simpler strategy. The CC method performs permulations
using the master tree in which all species are present and
therefore generates permulated trees that contain the com-
plete set of species. Since not all species will have sequences
available for all genes and the CC method produces one set of
permulated phenotypes for all the genes, the exact number of
foreground and background species per genetic element may
not be preserved because of species presence/absence in
those alignments (fig. 3). Thus, the CC method is an imperfect
but fast method to generate null phenotypes, but we recom-
mend use of the SSM method whenever feasible.

In contrast, the SSM method accounts for the presence/
absence of species in different gene trees. For each permula-
tion, the SSM method generates separate null phenotypes for
each tree in the set of genetic elements. Since genetic
element-specific trees contain exactly the species that have
that genetic element, the null phenotypes exactly match the
observed phenotypes for that genetic element in terms of
number of foreground and background species (fig. 3).
Additionally, unlike the CC method, null phenotypes for a
single permulation iteration are distinct, and potentially
unique, from each other because they are generated on a
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genetic element-by-genetic element basis. Although the
SSM method is statistically more ideal than the CC method,
it is much more computationally intensive and may not be
feasible for very large data sets. For example, the CC method
took 7s to produce 50 permulated traits for 200 genes,
whereas the SSM method took ~15.5 min.

Data Sets for Method Evaluation

We evaluated the performance of our permulation methods
by using RERconverge to find genetic elements that demon-
strated convergent acceleration of evolutionary rates in asso-
ciation with convergent phenotypic adaptations that are well
characterized, namely the evolution of the marine mammal
phenotype (Chikina et al. 2016; Meyer et al. 2018), the sub-
terranean mammal phenotype (Partha et al. 2017), and the
long-lived large-bodied mammal phenotype (Kowalczyk et al.
2020). For the remaining part of this article, we will refer to
these phenotypes as the marine phenotype, the subterranean
phenotype, and the long-lived large-bodied phenotype, re-
spectively. We used the set of protein-coding gene trees
across 63 mammalian species previously computed by
Partha et al. (2019). These trees have the “Meredith+" tree
topology (Kowalczyk et al. 2020) (fig. 4), a modification of the
tree topologies published by Meredith et al. (2011) and
Bininda-Emonds et al. (2007), resolved for their differences
across various studies as originally reported by Meyer et al.
(2018).

For the binary marine phenotype, we set three indepen-
dent lineages as foreground species that possessed the marine
trait (blue branches in fig. 4, Binary Phenotype): pinnipeds
(Weddell seal, walrus), cetaceans (bottlenose dolphin, killer
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Fic. 3. Examples of toy binary phenotypes permulated using the CC method or the SSM method. For the CC method, top-ranked simulated values
are assigned as foreground branches regardless of gene-specific species absence. For the SSM method, top-ranked simulated values are assigned as
foreground branches after considering gene-specific species absence so the number of foreground and background species for each gene is
consistent across every permulated phenotype. Note that in the case of genes with all species present (e.g, gene 1), CC and SSM methods are

identical.

whale, the cetacean ancestor), and sirenians (West Indian
manatee) (Chikina et al. 2016). For the subterranean pheno-
type, we set as foregrounds three independent subterranean
species for which high-quality genomes were available in our
data set: naked mole-rat, star-nosed mole, and cape golden
mole (red branches in fig. 4, Binary Phenotype).

Finally, for the continuous long-lived large-bodied pheno-
type, we used the “3L” trait as defined in previous work
(Kowalczyk et al. 2020). The numerical phenotype was con-
structed by calculating the first principal component (PC1)
between body size and maximum life span across 61 mammal
species (fig. 4, Continuous Phenotype). PC1 therefore repre-
sents the agreement between body size and life span—species
like whales with long life spans and large sizes have large
phenotype values and species like rodents with short life
spans and small sizes have small phenotype values. For ex-
ample, killer whale, elephant, and rhino have the highest
values (2.63, 2.40, and 1.95) because they are both large and
long-lived, whereas shrew, star-nosed mole, and mouse have
the smallest values (—2.62, —2.46, and —2.27) because they

are small and short-lived. Human, while longest-lived among
the mammals included, has the fifth largest value (1.87) be-
cause humans are relatively small compared with the other
mammals. Likewise, large grazing animals like cow also have
smaller PC1 values (1.08, the 15th largest value) because al-
though cows are large, they are not very long-lived given their
body size.

Results

Permulation of Binary Phenotypes Improved Power
and Type | Error Control

To evaluate the performance of the permulation methods
compared with the parametric method for binary pheno-
types, we first used RERconverge to find genetic elements
with convergently accelerated evolutionary rates in species
with the marine phenotype. We considered three P-value
calculation methods: parametricc, CC permulations, and
SSM permulations. The resulting P values were corrected
for multiple hypothesis testing using Storey’s correction
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Fic. 4. Meredith+- tree topology and the binary and continuous phenotypes evaluated. Binary phenotypes include the marine mammal phenotype
and the subterranean mammal phenotype (foreground branches are indicated in blue and red, respectively). The continuous phenotype evaluated
is the long-lived large-bodied phenotype as constructed based on the first principal component between species body size and maximum

longevity (Kowalczyk et al. 2020).

(Storey and Tibshirani 2003; Storey et al. 2020). We see in
figure 1A that the parametric P values for the association of
genes with the observed marine phenotype (red histogram)
were enriched for small P values. According to the standard
parametric approach, which assumes a simple null hypothesis
with uniformly distributed P values, the enrichment of low P
values indicated the possible presence of genes with evolu-
tionary rate shifts that were significantly correlated with ma-
rine adaptation. However, when we constructed the empirical
null P value distribution using 1,000 permulations of the ma-
rine phenotype, the null distribution of parametric P values
was not uniform. In fact, the enrichment of low P values was
also present in the null distribution (blue histogram), al-
though a lesser enrichment than the observed, meaning
that observing low P values by chance was more likely than
expected. Thus, if we used standard multiple testing proce-
dures directly on the parametric P values, we would identify
more positive genes than the true number of positives, in
other words causing an undercorrection of P values.

To demonstrate that our permulation strategy effectively
corrected for the background P value distribution, we plotted
similar histograms of the empirical P values for the marine
phenotype versus 1,000 permulated phenotypes, generated

3010

from both CC and SSM permulations. With permulations, we
can see that although some enrichment of small empirical P
values was observed for the marine phenotype, the empirical
P values for the null phenotypes were almost perfectly uni-
form, meaning that our permulation methods were able to
construct the correct null distribution (supplementary fig. 1,
Supplementary Material online). When we overlaid the P
value histograms of the parametric and empirical P values
for the marine phenotype, we can see that compared with
the parametric method, the histograms for the CC and SSM
permulations had steeper slopes at low P values, indicating
that the permulation methods had better Type | error control
(fig. 5A). Furthermore, the histograms for the permulation
methods plateaued at higher 7, than the parametric method,
consistent with the postulation that the parametric method
would identify more (possibly false) positives. These findings
were also observed when we defined genes with significant
evolutionary acceleration in marine mammals (i.e, “marine-
accelerated” genes) by setting a rejection threshold of Storey’s
false discovery rate (FDR) < 0.4 (the high threshold was set
considering the high minimum FDR from the parametric
method), as shown in figure 5B. For the permulation meth-
ods, as the number of permulations increased, the number of
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Fic. 5. Permulation of binary phenotypes corrects for inflation of statistical significance in finding evolutionarily accelerated genes in marine
mammals. (A) Histogram of parametric and permulation P values for the marine phenotype from the parametric, the CC permulation, and the
SSM permulation methods. (B) Permulation methods identify fewer accelerated genes in marine mammals compared with the parametric
method, correcting for the inflation of significance. The rejection region of the multiple hypothesis testing is set to be Storey’s FDR < 0.4,
considering the weak power of the parametric method. (C) Binary permulation methods have greater statistical power compared with the
parametric method, as shown by the minimum FDR calculated using Storey’s method. (D) Permulation methods can identify accelerated genes
that are missing in many species (gene tree size <30), whereas the parametric method fails to do so.

identified marine-accelerated genes increased and eventually
stabilized after ~400 permulations. The asymptotic numbers
of marine-accelerated genes identified by permulations
(~350 genes for CC permulation and ~450 genes for SSM
permulation) were much smaller than the ~700 genes iden-
tified through parametric statistics, demonstrating improved
Type | error control.

Surprisingly, although the permulation methods identified
fewer significantly accelerated regions, we could have greater
confidence in their significance. Figure 5C shows the mini-
mum FDRs achieved by the permulation methods with in-
creasing number of permulations. The figure shows that the
permulation methods provided better control of FDRs com-
pared with the parametric method with only a few permu-
lations (above ~125 permulations). With increasing
permulations, the minimum FDR continued to drop to reach
levels below 0.1 at 1,000 permulations, whereas the minimum
FDR from parametric statistics was higher at above 0.3. Use of

the permulation null substantially improved the statistical
power of the method and provided much higher confidence
in detecting true correlations between evolutionary rate shifts
and the convergent phenotype of interest.

Last, we found that permulation methods could identify
marine-accelerated genes that were missing in many species,
that is, genes with phylogenetic trees containing few species.
In contrast, the parametric method failed to identify any such
gene (fig. 5D).

Binary Permulation Methods Improved Gene-Level
Detection of Functional Enrichment

We have demonstrated that the permulation methods
showed favorable statistical properties based on the distribu-
tion of P values. We expected that this approach also im-
proved the biological signal of rate convergence analysis. To
address this question, we asked if the marine-accelerated
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the parametric method. (D) Precision-recall curves for the enrichment of the visual perception genes in the identified subterranean-accelerated

genes.

genes identified by binary permulations were enriched for
functions that were consistent with the marine phenotype.
Our group previously identified marine-specific pseudogenes
that should be undergoing accelerated evolution in marine
mammals due to relaxation of evolutionary constraint (Meyer
et al. 2018). Putative pseudogenes associated with marine
mammals were identified using Bayes Traits software (Pagel
and Meade 2006) to find signals of coevolution between ma-
rine status and pseudogenization. In addition, our group also
previously found that marine-accelerated genes that evolved
under relaxed constraint were enriched for genes responsible
for the loss of olfactory and gustatory functions (Chikina et al.
2016). Thus, to represent the “ground truth,” we selected a
collection of gene sets relevant to olfactory and gustatory
functions from the Mouse Genome Informatics database
and top-ranking marine-specific pseudogenes with Bayes
Traits FDR values <0.25.
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We then performed the one-tailed Fisher’s exact test to
measure the enrichment of the functions in the marine-
accelerated genes from the parametric and permulation
methods. The Fisher’s exact test odds ratios indeed showed
that the CC and SSM permulation methods generally mag-
nified or maintained the effect sizes of enrichment across the
gene sets compared with the parametric method (fig. 6A). At
worst, the permulation methods matched the performance
of the parametric method (e.g, “taste/olfaction phenotype”
gene set). The improved performance of the permulation
methods was also demonstrated in the example precision-
recall curves for the marine-associated pseudogenes in
figure 6B.

To see whether this observation generalized to other phe-
notypes, we repeated the whole analysis to find genes that
were accelerated in species with the subterranean phenotype.
As subterranean-accelerated genes have been found to be
enriched in ocular functions (Prudent et al. 2016; Partha
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et al. 2017, 2019), we picked gene sets relevant to vision-
related functions as the ground truth. In general, the signals
we obtained from RERconverge for the subterranean pheno-
type were much weaker than in the marine phenotype case,
but the enrichment was still captured in the rankings of the
genes. Similar to the marine phenotype, permulation meth-
ods generally improved or matched the performance of the
parametric method (fig. 6C and D).

Binary Permulation Method Corrects for False
Positives in Related Approaches

In addition to performing permulations using RERconverge,
we tested our methods using Forward Genomics and PGLS.
Other methods, such as PhyloAcc, would require tens of
millions of computational hours to generate 500 permula-
tions, and thus permulations were not scalable to those anal-
yses (from the analysis with RERconverge, the number of
identified accelerated genes plateaued after 400-500 permu-
lations were used (fig. 5B)).

Forward Genomics (Hiller et al. 2012; Prudent et al. 2016),
like RERconverge, tests for an accelerated evolutionary rate in
a set of foreground species by correlating a normalized sub-
stitution rate with phenotypes using Pearson correlation. It
works only for binary phenotypes and has demonstrated suc-
cess in coding and noncoding elements. Forward Genomics’
“global method” uses substitution rate with respect to each
tree’s root to correlate with trait loss and identify convergent
relaxed selection; therefore, it does not correct for evolution-
ary relatedness. The “local branch method,” an improvement
on the original approach, uses substitution rate with respect
to the most recent ancestor to identify relaxed selection,
which substantially improves its power (Prudent et al.
2016). We used the most recent version of both the global
and the local methods to test for associations between gene
evolutionary rates and the binary marine phenotype.

Both global and local Forward Genomics methods had
unusual P value distributions. The local method identified
high proportion of positives with significant P values
(fig. 1A), whereas P values from the global method were highly
concentrated around 0.5 (global P values not shown).
Adjusting for multiple testing further exaggerated this issue.
For the global method, due to the number of genes with very
low P values, the lowest possible Benjamini-Hochberg (BH)
corrected parametric P value was 0.531, and for the local
method, the lowest possible corrected P value was 0.465.
For the local method, out of 18,797 genes, more than half
of the genes (12,438) had the lowest possible corrected para-
metric P value. As such, it was impossible to designate a
significance cutoff because it would either include no genes
or include most of the genes. Applying the permulation strat-
egy to Forward Genomics output, we found that of the same
set, 889 had corrected empirical P values that were <0.465
(the minimum observed corrected parametric P value), allow-
ing for a more reasonable selection of a rejection threshold.
Thus, permulation can improve statistical performance even
for a statistic with known flaws.

We further investigated our results from Forward
Genomics at the pathway level in addition to analyzing results

at the individual gene level. We used the marine pseudogenes
as a ground truth set of genes that should be undergoing
accelerated evolution in marine species, to test our ability to
detect pathway enrichment of these genes. As shown in
figure 7A, the global and local parametric test statistics
showed slight enrichment for elements that were pseudogen-
ized in marine mammals, and the difference was improved
when empirical P values were computed. Figure 7B shows the
same data as precision-recall plots, clearly demonstrating that
the permulation correction improved the predictive power of
both methods.

Next, we tested the effect of permulations on PGLS results.
PGLS tests for association between two traits across species
while adjusting for the phylogenetic relationships among
those species. In doing so, it numerically corrects for non-
independence due to phylogenetic relatedness. Note that
unlike RERconverge and Forward Genomics, PGLS does not
require evolutionary rate information and is therefore a more
generalized phylogenetic analysis. We tested PGLS using both
the binary marine and the continuous long-lived large-bodied
phenotype for coevolution with stop codon counts across
genes. We additionally tested the continuous phenotype for
coevolution with STAT2 transcription factor binding site
counts across noncoding regions.

Like other methods, PGLS demonstrated unexpected null
behavior that varied across genomic data sets and pheno-
types (fig. 1A). Although the null distribution of P values for
associations between the long-lived large-bodied phenotype
and the stop codon counts showed only a slight inflation of
low P values (5.2% of null P values below 0.05) and otherwise
nearly uniform distribution, tests using the marine phenotype
and the transcription factor binding site counts showed
much different behavior. Permulations for associations be-
tween the marine phenotype and stop codon counts
revealed that, although there might appear to be a meaning-
ful enrichment of low observed P values, such enrichment
was observed even when analyzing permulated phenotypes.
Conversely, although the enrichment of low observed P val-
ues appeared relatively less for associations between the long-
lived large-bodied phenotype and transcription factor bind-
ing site counts in noncoding regions, such enrichment was
indeed meaningful because it was greater than observed
when analyzing permulated phenotypes. Together, these
observations indicate that PGLS may exhibit aberrant statis-
tical behaviors that the exact nature of the behaviors may
vary greatly across data sets, and that permulations are a valid
strategy to identify and correct those behaviors.

Permulations Improve Power to Detect Genes
Correlated with a Continuous Phenotype

When we used RERconverge to evaluate the long-lived large-
bodied mammal phenotype, a continuous phenotype, we
observed that the Type | error rate was in fact too low. We
demonstrated this by performing 1,000 permulations to gen-
erate 1,000 null statistics and P values for each gene, calcu-
lating empirical P values as the proportion of null statistics
that were as extreme or more extreme than the observed
statistic per gene. As shown in figure 1A, the parametric null
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Fic. 7. Binary permulation methods improve Forward Genomics’ positive predictive value and power. (A) Distributions of Forward Genomics
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global statistics and to the right for local statistics) indicating enrichment of marine mammal pseudogenes under accelerated evolution (global
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accelerated evolution for the global method (AUC = 0.6653) and about the same shift for the local method (AUC = 0.6086) compared with
parametric statistics. (B) Precision-recall curves for the enrichment of pseudogenes in marine-accelerated genes using parametric statistics and
permulation P values for both local and global methods. Permulated values represent a unique ranking in which ties in permulation P values for
genes are broken based on parametric statistics. Permulation methods perform at least as well as both global and local methods, indicated by

curves that are higher at the left side of the plot.

P value distribution for genes associated with the long-lived
large-bodied phenotype was nonuniform and in fact sloped
down at low P values. This indicates that observing small
P values due to chance alone happened less often in our
data set than we would typically expect compared with the
standard uniform expectation. In practice, the result of the
nonuniform null was an overcorrection of parametric P values
using a standard multiple hypothesis testing correction. In
other words, for this data set, corrected parametric P values
were larger than they should be when using multiple hypoth-
esis testing correction (such as a BH correction) that assumed
a uniform null. The null distribution of “empirical” P values,
however, did follow a standard uniform null by construction,
so BH corrected empirical P values represented our true,
higher confidence in a correlation between gene evolutionary
rate and phenotypic evolution. We observed that this in-
creased confidence in our data—after multiple hypothesis
testing correction, only 24 parametric P values remained sig-
nificant at an o threshold of 0.15, whereas 305 empirical P
values remained significant. Regardless of the increase in
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power, empirical P values provide a more accurate represen-
tation of confidence in rejecting the null hypothesis and thus
are a more valid metric than parametric P values.

Permulations Correct Pathway Enrichments for Genes
with Correlated Evolutionary Rates

After generating null P values and statistics from permula-
tions for either binary or continuous traits, those values can
be used to calculate null pathway enrichment statistics.
Empirical P values for pathways are then calculated as the
proportion of null pathway enrichment statistics as extreme
or more extreme than the observed statistic. This procedure
corrects for gene sets with correlated evolutionary rates, that
is, genes whose rates will travel in packs regardless of any
relation to the phenotype (fig. 1B). Such groups of genes
will tend to show enrichment more often than would be
observed if the genes’ rates were independent after condi-
tioning on phenotype, resulting in false signals of pathway
enrichment.



Phylogenetic Permulations - doi:10.1093/molbev/msab068

MBE

Table 1. Top-Enriched Pathways with Quickly Evolving Genes and Slowly Evolving Genes in Association with the Long-Lived Large-Bodied

Phenotype According to Parametric P Values.

Pathway Enrichment

Positive Negative

Pathway Statistic P Adjusted Perm P Pathway Statistic P Adjusted Perm P

Adjusted adjusted
Olfactory Signaling 0.217 9.25e—43 0.199 Cytokine—cytokine —0.181 3.40e—20 0.0913

receptor interaction
Gprotein-coupled receptors 0.0606 8.34e—7 0.596 Mitotic cell cycle —0.132 6.03e—12 0.213
signaling

Biological oxidations 0.150 1.10e—6 0.276 Immune system —0.0600 1.54e—6 0.0913
Valine and isoleucine degradation 0.219 3.32e—5 0.354 DNA replication —0.122 2.81e—6 0.352
Fatty acid metabolism 0.215 8.26e—5 0.352 Fanconi anemia —0.212 4.45e—5 0.221

Note.—Due to the number of pathways, the lowest possible BH corrected permulation P value is 0.0913. Values in italics show significance at o = 0.25. Note that many
accelerated pathways that appear to be enriched based on parametric P values are not enriched based on permulation P values.

Permulations account for the nonindependence prob-
lem by explicitly incorporating it into the null distribu-
tion used to calculate empirical P values. In the
demonstrated case of the coenzyme Q complex, only
one permulation out of the ten depicted shows enrich-
ment due to random chance (indicated by an asterisk [*]
below the vertical bar in fig. 1B), which would correspond
to an empirical P value of 0.1 in this toy example. This
interpretation is identical to the standard P value inter-
pretation—the proportion of times we expect to see a
statistic as extreme or more extreme than observed
“assuming that the null expectation is true.” In the case
of permulations, we simply explicitly calculate the null
expectation rather than using a predefined distribution
(t-distribution, F-distribution, etc.). In the case of enrich-
ment for a pathway with independent genes, the signif-
icance of the empirical P value will agree with the
significance of the parametric P value because the null
expectation from permulations agrees with the typical
null expectation.

In the case of a pathway with genes with nonindependent
evolutionary rates, the empirical P value will be larger than the
parametric P value because the empirical P value will penalize
for nonindependence. An example with “Structural
Maintenance of Chromosomes” genes shows that although
there is an apparent enrichment based on the observed phe-
notype, half (five out of ten) of permulated phenotypes show
at least as strong enrichment for an empirical P value of 0.5.
Therefore, although the pathway does appear to be enriched
from parametric statistics, its enrichment is actually not ex-
ceptional given the null expectation for that set of genes.

Empirical P values are calculated for every pathway indi-
vidually. Table 1 shows top enriched pathways under accel-
erated evolution and decelerated evolution in association
with the long-lived large-bodied phenotype. Although most
significantly enriched pathways under decelerated evolution
based on parametric P values also demonstrate significant
empirical P values, many pathways under significant acceler-
ation show nonsignificant empirical P values. Thus, this phe-
notype shows little evidence for accelerated pathway
evolution associated with phenotypic evolution.

Comparison of Phylogenetic Simulations,
Permutations, and Permulations

Alternatives to permulations include either permutations or
simulations alone. Permutations involve randomly assigning
phenotype values to species regardless of the underlying phy-
logenetic relationships among those species. Meanwhile, sim-
ulations refer to the first step of permulations—phenotype
values are generated based on predicted phenotype evolution
along the phylogenetic tree. However, unlike permulations,
simulations do not include reassigning the observed values
based on simulated values and thus do not preserve the dis-
tribution of the original phenotype values.

At the pathway level, permulations result in P values that
are about equally as conservative as phylogenetic simulations
alone and more conservative than permutations alone (fig. 8).
Both permulations and simulations are preferred to permu-
tations because null phenotypes generated from permula-
tions or simulations reflect the underlying phylogenetic
relationships among species, whereas null phenotypes from
permutations do not. Therefore, the empirical null generated
from permulations or simulations more closely represents the
true null expectation for phenotype evolution. Although per-
mulations and simulations show similar performance, we pre-
fer permulations because permulated phenotypes exactly
match the distribution of observed phenotypes and thus cre-
ate null phenotypes uniquely tailored to a particular contin-
uous phenotype of interest. Such matching eliminates
statistical anomalies that can arise due to discrepancies in
range and distribution of permulated phenotypes compared
with observed phenotypes.

Discussion

We present permulations, a set of novel empirical methods to
address problems of nonindependence and bias in phyloge-
netic analysis. The methods use phylogenetic relationships
among species alongside known values of an observed phe-
notype to inform Brownian motion simulations from which
permuted phenotypes are then generated. By doing so, the
methods empirically construct the possibly composite null
distribution and account for this complexity in multiple
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Fic. 8. Permulations P values are more conservative than permutation P values and about equally as conservative as simulation P values. All plots
demonstrate enrichment for canonical pathways associated with the long-lived large-bodied phenotype. (A) Density plots representing the
empirical P value distributions for the three methods to generate null P values. Permulation and simulation curves are very similar, whereas the
permutation curve demonstrates a stronger enrichment of low P values and therefore less conservative P values. (B) Q—Q plots comparing
empirical P values from permulations to empirical P values from simulations and permutations also demonstrate that permulation P values are
more conservative than permutation P values and about equally as conservative as simulation P values.

hypothesis testing. For permulation of binary phenotypes, the
phylogenetic characteristics preserved are the number of
foreground branches and the underlying relationships among
foreground branches. For continuous phenotypes, the exact
distribution of phenotype values is preserved in addition to
the underlying phylogenetic relationships among species.
From testing the strategy on binary and continuous phe-
notypes, we find that our permulation strategy is an effective
approach for overcoming challenges in multiple testing with
composite nulls in comparative phylogenetic studies. We dis-
cuss with examples how our binary and continuous permu-
lation methods fix issues of both undercorrection and
overcorrection of P values for specified phenotypes and sub-
sequently improve the quality and confidence of prediction.
Note that although our examples demonstrate the usefulness
of permulations, they are not necessarily representative of
how empirical null distributions will deviate from the typical
null for all phenotypes over all phylogenies for all sets of
genetic elements. In fact, we expect permulations to behave
differently as those variables change, and thus the best way to
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determine how permulations will affect a particular data set is
to run the permulation analyses.

Devising a systematic solution for such problems is difficult
because the causes of complex null distributions in phyloge-
netic studies can be confounding. The necessity for incorpo-
rating phylogenetic information to correct for phylogenetic
effects is well understood (Felsenstein 1985; Stone et al. 2017;
Sakamoto and Venditti 2018), and some systematic solutions
have been designed to tackle the problem, including phylo-
genetic independent contrast (PIC) (Felsenstein 1985), PGLS
(Grafen 1989), phylogenetic autoregression (Cheverud and
Dow 1985; Gittleman and Kot 1990), and phylogenetic mixed
models (Lynch 1991; Housworth et al. 2004; Hadfield and
Nakagawa 2010). However, systematic solutions usually
make phylogenetic or distributional assumptions that can
lead to inaccuracies if the assumptions do not accurately
represent the data. For example, PIC makes an assumption
that the observed phenotype evolved by Brownian motion,
and it can lead to overcorrection when the selection giving
rise to the observed data did not actually cause strong
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phylogenetic effects (Martins 2000). In addition, phylogenetic
mixed models usually assume that evolution along the phy-
logeny follows a Brownian motion process and that the
resulting phenotype values are normally distributed.
Without fully understanding the underlying evolutionary
mechanism, incorrect assumptions can lead to overcorrec-
tion or undercorrection of statistical confidence. Empirically
correcting P values using permulation methods allows us to
circumvent the need to artificially deconstruct this unknown
correlation structure in the data. Importantly, although our
permulation methods are based on Brownian motion simu-
lations, the simulated trait values themselves are not incor-
porated in the null phenotypes, and instead are only used as a
way to incorporate phylogenetic dependencies in informing
how trait values should be permuted across the phylogeny. In
this sense, the choice of simulation model is not important.

For binary phenotypes, our permulation methods choose
permuted foreground sets by matching the number of fore-
grounds and their underlying relationships to those observed
in the actual phenotype. This approach of defining null phe-
notypes can be justified by phylogenetic nonindependence, a
notion that arises from the implications of shared ancestry
(Felsenstein 1985). At the time of divergence, closely related
species diverging from a common ancestor are likely to ex-
perience similar selective pressures as the ancestor as well as
similar genetic predispositions to respond to the selection
pressures. With progressing evolutionary time, the daughter
species will evolve independently in response to their respec-
tive environments. Such similarities in environmental pres-
sures and genetic predispositions diminish with increasing
evolutionary distance between species, meaning that the var-
iance in phenotype values will increase with increasing diver-
gence in evolutionary time. Considering this phylogenetic
nonindependence and that adaptations to selection pres-
sures are often assumed to be reflected in evolutionary rates,
it is reasonable to preserve the pattern of divergence between
foreground species to construct hypothetical null pheno-
types, in finding correlations between evolutionary rates
and phenotypes. It is impossible to pick a new set of fore-
ground branches with perfectly matching divergence times,
but matching divergence patterns can serve as a justifiable
workaround because the general implications of shared an-
cestry on phylogenetic nonindependence among the new set
of foregrounds would apply in a similar way.

We developed two versions of permulation methods for
binary phenotypes. The CC algorithm produces one per-
muted phenotype from the master tree to apply for all genes
simultaneously, whereas the SSM algorithm produces distinct
permuted trees for each gene, accounting for the differences
in species membership in different gene trees. This makes the
CC method statistically imperfect. For example, a gene that is
missing in some species will have a phylogenetic tree that is
missing some branches. Because the CC method produces
permuted trees from the master tree that contains all species,
it may not conserve the number and relationships of fore-
grounds across the permulations of the example gene (e.g,
genes 3 and 4 in fig. 3). In contrast, the SSM method accounts
for differences in numbers and patterns of foregrounds

among different genes and addresses each gene indepen-
dently. This means that the SSM method is the ideal imple-
mentation of our concept of binary permulations. However,
the CC method is both computationally much faster and
accounts for the fact that existing comparative genomics
methods take in phenotype inputs in different forms. For
example, Forward Genomics requires one phenotype tree
to apply for all genes, whereas HyPhy RELAX requires multiple
phenotype trees with matching topology to each gene.
Regardless of the statistical flaw, our results demonstrate
that applying the CC method on Forward Genomics is ben-
eficial for improving prediction (fig. 7). The CC method is
significantly faster than the SSM method because it only
produces one permuted tree for each permulation, instead
of a heterogeneous set of permuted trees applying to different
genes. Therefore, in the case of limited computational resour-
ces or very large data sets in which using the SSM method is
infeasible, the CC method can serve as a good alternative.

Our results also demonstrate that binary permulations
improve the sensitivity of RERconverge to identify signifi-
cantly accelerated genes that are missing in many species
(fig. 5D), that is, genes with small trees. Because of lower
species numbers, genes with small trees suffer from lower
statistical power compared with genes with large trees (e.g,
the number of ways to permute a small tree is much fewer
compared with a large tree). As such, pooling all the P values
together to perform multiple testing correction unfairly
penalizes genes with small trees. Calculating empirical P val-
ues from multiple empirical permulations is a way to correct
for this imbalance in power by indirectly incorporating im-
portant covariates, which accounts for the number of fore-
grounds, backgrounds, and the ratio and phylogenetic
relationship between them. Indeed, the pooled null empirical
P values have a uniform distribution (supplementary fig. 1,
Supplementary Material online), establishing the validity of
applying standard multiple testing methods to identify signif-
icant divergence in evolutionary rates. Future work can eval-
uate if such benefits are similarly observed when applied to
other comparative genomics methods.

Permulations grant increased power to detect genes asso-
ciated with a continuous phenotype as suggested by the
shape of the empirical null distribution (fig. 1). When P values
from permulations are compared with permutations or sim-
ulations of trait values, we find that permulation P values are
more conservative than P values from permutations alone
and equally as conservative as P values from simulations
alone. This suggests that permulations offer a valid alternative
to phylogenetic simulations. Importantly, permulations pre-
serve the exact distribution and range of phenotype values, a
critical characteristic related to the power of the correlation
calculated between gene evolution and phenotype evolution.
Thus, permulations more accurately match the power be-
tween observed and permulated statistics compared with
observed and simulated statistics.

Although many of our tests of the permulation strategy
were performed using RERconverge, permulations are appli-
cable to any similar methods. When using permulations to
calculate empirical P values using Forward Genomics, an

3017



Saputra et al. - doi:10.1093/molbev/msab068

MBE

alternative evolutionary rates-based method, we show that
we can quantify a realistic confidence level at which we be-
lieve a gene is under accelerated evolution in a subset of
species. Even when using the Forward Genomics global
method, a deprecated method that does not account for
phylogenetic relationships among species, permulations im-
proved the ability to detect accelerated evolution in marine
pseudogenes (fig. 7). The improvement is likely due to per-
mulations indirectly capturing phylogenetic information
through their construction. For the Forward Genomics local
method, permulations captured realistic confidence levels
without losing the ability to detect accelerated evolution in
marine pseudogenes. Theoretical P values directly from the
Forward Genomics method (fig. 1A) show over half of the
genome under significantly accelerated evolution related to
the marine phenotype (12,438 out of 18,797 genes with the
lowest possible BH corrected P value), which is biologically
highly unlikely (Eyre-Walker and Keightley 1999; Eyre-Walker
et al. 2002; Eyre-Walker et al. 2006; Kryukov et al. 2007).
Permulations reduce the number of genes under significantly
accelerated evolutionary rates to a more modest number
(889 genes if using the same confidence level cut-off) to
more accurately reflect both the biology of the system and
our confidence in identifying genes with significant evolution-
ary rate shifts.

Our permulations also reveal aberrant statistical behavior
in PGLS. Designed to correct for phylogenetic relatedness
when testing for coevolution of traits, PGLS indeed demon-
strates a near-uniform empirical P value distribution for one
set of tests for coevolution of the long-lived large-bodied
phenotype and gene stop codon counts. However, the meth-
od’s behavior is dramatically different when testing for coevo-
lution of gene stop codon counts with the binary marine
phenotype. It likewise shows undesirable behavior when test-
ing for coevolution of STAT2 transcription factor binding site
counts across noncoding regions. In addition to revealing a
nonuniform null, the exact identity of noncoding regions with
significant observed and permulation P values is different,
completely altering analysis results. These findings suggest
that phylogenetic methods may behave in unexpected
ways, and permulations are a valid strategy to investigate
those behaviors and perform appropriate statistical
corrections.

Finally, permulations demonstrate a crucial correction
to pathway enrichment statistics that corrects for coevo-
lution among genes in a pathway of interest. Since path-
ways often contain functionally related genes that evolve
at similar rates, performing pathway enrichment treating
each gene as an independent observation is statistically
incorrect and will result in erroneous conclusions.
Performing permulations at the pathway level identifies
pathways that are falsely shown to be enriched and cor-
rectly quantifies the confidence at which we may state
that a pathway is enriched. We argue that a strategy like
permulations is essential in virtually all cases of pathway
enrichment calculations to account for gene noninde-
pendence driven by correlated evolutionary trends.
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Overall, permulations are an important statistical consid-
eration that should be undertaken to accurately report results
from evolutionary rates-based analyses as presented here.
Regardless of whether permulation allows for greater or fewer
null hypothesis rejections at a given threshold, they are an
accurate depiction of statistical power given a data structure.
In the absence of a known parametric null that accurately
represents a data set, a permulation-style approach is an im-
portant tool to calculate statistical confidence.

Materials and Methods

RERconverge

RERconverge finds associations between genetic elements
and phenotypes by detecting convergent evolutionary rate
shifts in species with convergent phenotypes. The method
operates on any type of genetic element and has been used
successfully for both protein-coding and noncoding regions.
Prior to running RERconverge, phylogenetic trees for each
genetic element are generated using the PAML program
(Yang 2007) or related method, with branch lengths that
represent the number of substitutions that occurred between
a species and its ancestor. Raw evolutionary rates are con-
verted to relative evolutionary rates (RERs) using
RERconverge functions, readTrees and getAllResiduals, which
normalize branches for average evolutionary rate along that
branch genome-wide and correct for the mean—-variance re-
lationship among branch lengths (Partha et al. 2019). RERs
and phenotype information are then supplied to
correlateWithBinaryPhenotype or correlateWithContinuous
Phenotype functions to calculate element—phenotype associ-
ations. Kendall's T associations are calculated for binary phe-
notypes, and Pearson correlation values are calculated for
continuous phenotypes, both by default.

After calculating association statistics, signed log P values
for associations are used to calculate pathway enrichment
using the rank-based Wilcoxon Rank Sum test. The
fastWilcoxGMTAII function in RERconverge calculates path-
way enrichment statistics over a list of pathway annotations
using all genes in a particular annotation set as the
background.

Phylogenetic Simulations

As shown in figure 2, each permulated phenotype is gener-
ated by first performing a phylogenetic simulation using an
established phylogenetic topology. To generate the master
tree, whose branch lengths represent the average evolution-
ary rates of all genetic elements in the data set for each spe-
cies, the function readTrees in RERconverge can be used.
Next, the master tree and the trait values (binary or contin-
uous) are used to compute the expected variance of the
phenotype per unit time, and subsequently perform a
Brownian motion simulation to simulate branch lengths;
the R package GEIGER (Harmon et al. 2008) is used to perform
both operations. Simulated values are then used in different
ways for binary and continuous phenotypes to generate per-
mulated phenotypes.
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Implementation of Permulation Methods

In RERconverge, CC and SSM permulations are performed
using the getPermsBinary function, by setting the argument
“permmode” to “cc” or “ssm,” respectively. The function
requires the user to supply information on the original fore-
ground species and their relationships by specifying 1) the
names of the extant (tip) foreground species and 2) an R list
object containing pair(s) of sister species whose common
ancestor(s) is to be included in the foreground set as well
(see  examples in  supplementary  walkthrough,
Supplementary Material online). Using these inputs, the func-
tion infers the original phenotype tree and assigns the phe-
notype values to the correct branches (1 for foreground and 0
for background), which is subsequently used as constraints
for the permulation. Phylogenetic simulations are then run
using the master tree to assign simulated branch lengths to
the tree branches.

For the CC permulation, the n tip branches with the high-
est trait values from the simulation, where n is the number of
observed tip foregrounds, are selected as the new fore-
grounds. The function then calls the foreground2Tree func-
tion in RERconverge with “clade” set to “all” to construct a
binary tree with a foreground set that includes all branches
(tip and internal) in the foreground clades. A valid permula-
tion has the same number of internal and tip foreground
branches as the original phenotype. Thus, permulated phe-
notypes with an incorrect foreground configuration are
rejected and phenotype generation is repeated until the cor-
rect number of permulations is achieved. Note that the CC
method uses the same permulated phenotype for every ge-
nomic element, so statistics for some genes will not be cal-
culated for some permulations because of species presence/
absence across genes. In other words, some genes will have
fewer total permulations because of the way permulated
phenotypes are constructed. The exact number of foreground
and background species may also differ across each permu-
lated phenotype for the same gene.

The SSM permulation matches the tree topology of the
permulated phenotypes to the tree of individual genes. To do
this, the SSM permulation follows the same steps as described
above, with an additional step of trimming off branches that
are missing in the gene tree. In this case, the m longest tip
branches (where m is the number of observed tip foregrounds
in the gene tree) are chosen as new tip foregrounds to run
foreground2Tree. Thus, in the SSM method, genes with differ-
ent tree topologies will have different sets of permulations.
However, for each unique topology, the number and phylo-
genetic relationships of the foregrounds are preserved.
Figure 3 shows examples of CC- and SSM-permulated trees
for four genes with distinct topologies.

For the continuous phenotype, the function simperm-
vec generates a permulated phenotype given the original
phenotype vector and the underlying phylogeny with ap-
propriate branch lengths. The master tree from the
RERconverge readTrees function is appropriate to use
for simulations. In most cases, the user will not have to
use the simpermvec function directly—instead, the
getPermsContinuous function that calculates null

empirical P values for gene correlations and pathway
enrichments will call simpermvec internally.

After calculating empirical null statistics and P values, em-
pirical P values per gene are calculated by finding the propor-
tion of null statistics from permulated phenotypes that are as
extreme or more extreme than the statistic calculated using
the real phenotype. This proportion represents the propor-
tion of times that random chance produces a concordance
between gene and phenotype evolution that is as strong as
the observed statistic, given the underlying structure of the
data. In RERconverge, the permpvalcor function calculates the
empirical P values for a given set of permulation association
statistics. Note that since empirical P values are a proportion
of total permulations, the precision of empirical P values is
based on the total number of permulations performed. For
example, with 1,000 permulations, the lowest reportable P
value is 0.001 and empirical P values calculated as 0 must
be reported as <0.001 because we only have precision to
report P values to the thousandths place.

Finally, to determine the number of permulations that can
provide sufficient correction for systematic bias, the function
plotPositivesFromPermulations can be used to plot how the
number of significantly accelerated or conserved genetic ele-
ments changes with increasing number of permulations
(fig. 5B). From the generated plot, users can determine the
minimum number of permulations by evaluating when the
number of positives start to stabilize.

Empirical P Values for Pathway Enrichment

Empirical null statistics and P values for pathways are calcu-
lated using the empirical null statistics and P values for indi-
vidual genes. For each set of empirical null statistics generated
from a particular permulated phenotype, genes are assigned
the log of the empirical null P value times the sign of the
empirical null statistic for that permulation. Empirical null
pathway statistics are calculated for each permulation using
those  values with the RERconverge function
fastWilcoxGMTall that performs a Wilcoxon Rank Sum test
comparing values from genes in a pathway to values in back-
ground genes. The function getEnrichPerms calculates null
enrichment statistics given a set of null correlation statistics,
or, alternatively, getPermsBinary and getPermsContinuous cal-
culate both null correlation and null pathway enrichment
statistics simultaneously by default for the binary and contin-
uous phenotypes, respectively. Empirical P values for pathway
enrichment are then calculated as the proportion of empirical
null statistics that are as extreme or more extreme than the
observed enrichment statistic using the permpvalenrich func-
tion. Pathways that show significant parametric P values and
nonsignificant empirical P values are likely cases of genes
“moving in packs” and are not truly significantly enriched.

Phylogenetic Generalized Least Squares

PGLS analyses were conducted through R as implemented in
the “nlme” package using the gls function. Within-group cor-
relation structure was defined using the corBrownian function
from the “ape” package and a master tree with branch lengths
representing genome-wide evolutionary rates per species.
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Noncoding regions were identified based on evolutionary
convergence from phastCons scores across the 63 mammal
species as described here: https://github.com/nclark-lab/
RERconverge/blob/master/NoncodingRegionWorkflow (last
accessed March 20, 2021). Stop codon calls per gene were
obtained from Meyer et al. (2018) and were based on
genome-wide calls across species.

TFBS calls were obtained using the HOCOMOCO STAT2
binding site motif based on position weight matrix scores.
Calls for 29,880 noncoding regions corresponding to human
chromosome 1 were used for analyses. Of those regions, 560
had a sufficient number of calls and variation in calls across
species to calculate PGLS statistics.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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