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Simple Summary: Lung cancer screening with low-dose CT (LDCT) has been shown to significantly
reduce cancer-related mortality and is recommended by the United States Preventive Services Task
Force (USPSTF). With pending recommendation in Europe and millions of patients enrolling in the
program, deep learning algorithms could reduce the number of false positive and negative findings.
Therefore, we evaluated the cost-effectiveness of using an AI algorithm for the initial screening
scan using a Markov simulation. We found that AI support at initial screening is a cost-effective
strategy up to a cost of USD 1240 per patient screening, given a willingness-to-pay of USD 100,000
per quality-adjusted life years (QALYs).

Abstract: Background: Lung cancer screening is already implemented in the USA and strongly rec-
ommended by European Radiological and Thoracic societies as well. Upon implementation, the total
number of thoracic computed tomographies (CT) is likely to rise significantly. As shown in previous
studies, modern artificial intelligence-based algorithms are on-par or even exceed radiologist’s perfor-
mance in lung nodule detection and classification. Therefore, the aim of this study was to evaluate the
cost-effectiveness of an AI-based system in the context of baseline lung cancer screening. Methods: In
this retrospective study, a decision model based on Markov simulation was developed to estimate
the quality-adjusted life-years (QALYs) and lifetime costs of the diagnostic modalities. Literature
research was performed to determine model input parameters. Model uncertainty and possible costs
of the AI-system were assessed using deterministic and probabilistic sensitivity analysis. Results: In
the base case scenario CT + AI resulted in a negative incremental cost-effectiveness ratio (ICER) as
compared to CT only, showing lower costs and higher effectiveness. Threshold analysis showed that
the ICER remained negative up to a threshold of USD 68 for the AI support. The willingness-to-pay of
USD 100,000 was crossed at a value of USD 1240. Deterministic and probabilistic sensitivity analysis
showed model robustness for varying input parameters. Conclusion: Based on our results, the use of
an AI-based system in the initial low-dose CT scan of lung cancer screening is a feasible diagnostic
strategy from a cost-effectiveness perspective.

Keywords: lung cancer screening; deep learning; cost-effectiveness analysis; AI-support system

1. Introduction

Based on the findings of the national lung screening trial (NLST), in 2014 the United
States Preventive Service task force recommended the annual lung cancer screening of
patients between 55 and 80 years with 20 pack years of smoking history [1,2]. In contrast
to the high and further increasing incidence of lung cancer globally, the incidence of
lung cancer was relatively low in the NLST. Nonetheless, the NLST was able to show a
significant reduction in lung cancer related mortality due to the annual screening with low-
dose computed tomography (CT). Consequently, a European Position Statement followed
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in 2017, strongly recommending the CT-based lung cancer screening as well [3]. This
recommendation is further supported by the Dutch-Belgian lung-cancer screening trial
(Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON)), which also showed a
significant reduction in lung cancer mortality for high-risk patients who participated in the
screening [4]. With several ongoing pilot projects in Europe, the widespread introduction
of lung cancer screening seems to be only a matter of time.

Nevertheless, the benefits of lung cancer screening are limited by false negative and
false positive findings, which not only result in high costs but also affect clinical outcome
and quality of life [2,5,6]. Currently, low dose CT-scans in the screening setting are evaluated
based on standardized systems like Lung-RADS (Lung imaging reporting and data system),
which improve the diagnostic accuracy for radiologists and reduces costs by decreasing the
need for further diagnostic tests [7,8]. Even after a recent revision of the reporting system,
observer variability will remain a relevant limitation [9,10].

The rapid development of artificial intelligence (AI) in the medical field has shown
promising results for cancer screening and recent AI-models may achieve or exceed the
diagnostic performance of sub-specialized experts, for example in breast cancer screen-
ing [11]. While long-standing CAD (computer aided diagnosis/detection) systems show
mixed results for lung cancer detection [12–14], novel neural networks, convolutional
neural networks (CNN) in particular, seem to have a positive effect on the diagnostic perfor-
mance of radiologists [15]. Ardila et al. showed that a 3D-CNN outperformed radiologists
in low-dose CT screening scans when no prior scans were available, indicating a favorable
benefit for screening initiation.

Among other constraints, the health economic impact of AI systems is an important
factor in the decision to implement models in routine clinical practice. Despite the imminent
deployment of lung cancer screening and the promising results of AI-systems, no study
has been performed to evaluate the utilization of neural networks in lung cancer screening
compared to the stand-alone low dose CT-scan from an economic point of view. Therefore,
the aim of our study was to evaluate the cost effectiveness of an AI-system for the initial
scan of annual lung cancer screening and present the first results on identifying a cost
margin for a clinical integration.

2. Materials and Methods
2.1. Model Structure

A decision model including the diagnostic strategies of conventional CT and CT
augmented by AI was created and used as a decision tree, as shown in Figure 1.
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For calculation of costs and benefits in the different iterations a Markov transition state
model was created. The model included the stages:

• No BC (patients without BC = true negative);
• No BC, Suspicious nodule (patients without BC but suspicious nodule = false positive);
• BC undetected (patients with undetected BC = false negative);
• BC after resection (patients with BC after resection);
• BC palliative (patients with BC which is unresectable/palliative);
• Dead.

Additionally, for better simulation and understanding of the model, the states “BC
delayed detection” and “BC early detection” were created, which only served for transi-
tion. The Markov model reflects the different states a patient can be assigned to. Taking
into account transition probabilities between the states as well as costs and effectiveness
(displayed in Quality of Life) in those states during several iterations, cumulative costs and
cumulative effectiveness within a defined time horizon can be calculated by adding those
up throughout the iterations.

Analysis of the model was performed using a dedicated decision analysis software
(TreeAge Pro Version 19.1.1, Williamstown, MA, USA).

2.2. Input Parameters

There was no requirement for an ethical approval for this analysis based on commonly
available data. Model input parameters were based on current literature. Age-specific
risk of death was derived from the US life tables [16]. Age at the diagnostic procedure
was set to 60 years and willingness-to-pay was set to USD 100,000 per quality adjusted
life year (QALY) at a discount rate of 3%, as reported previously [17,18]. The discount
rate reflects the loss in economic value or effectiveness when there is a delay in realizing
a benefit or incurring costs. The pre-test probability of BC was set to 2.635% for the risk
group consisting of female and male smokers risk for an interval of 30 years, according to
published data from Jacob et al. [19]. All input parameters and corresponding references
are listed in Table 1.

Table 1. Input parameters.

Pre-test-Probability of BC 2.635 Jacob et al. [19]

Age at diagnostic procedure 60 years US Preventive Services Task Force [1]
Assumed WTP USD 100,000,00 Assumption
Discount rate 3.00% Assumption

Markov model time 20 years Assumption

Diagnostic Test Performances
Sensitivity for BC CT 77.9% Ardila et al. [15]
Specificity for BC CT 87.7% Ardila et al. [15]

Sensitivity for BC CT + AI 97.7% Ardila et al. [15]
Specificity for BC CT + AI 98.4% Ardila et al. [15]

Costs (Acute)
CT USD 161.00 Medicare (71,250) [20]

Costs (Long Term)
No BC USD 0.00

Follow up if false positive USD 2256.00 ten Haaf et al. [21]
Curative therapy BC/resection cost USD 36,305.00 Cowper et al. [22]

BC undetected USD 0 Assumption
BC after resection USD 4283.00 ten Haaf et al. [21]

Therapy BC, palliative USD 60,000.00 ten Haaf et al. [21]
Dead USD 0 Assumption
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Table 1. Cont.

Utilities
No BC 1 Assumption

Follow up if false positive 0.98 Gareen et al. [23]
Curative therapy BC/resection 0.79 Grutters et al. [24]

BC undetected 1 Assumption
BC after resection 0.933 Möller et al. [25]

BC palliative 0.63 Doyle et al. [26]
Dead 0 Assumption

Transition Probabilities
Verification of suspicious nodule as no BC 100% Assumption

Death if no BC but suspicious nodule 0.001 (invasive diagnostics) + life tables The National Lung Screening Trial
Research Team [2]

Resection rate of BC after early detection 75% The National Lung Screening Trial
Research Team [2]

Death after curative resection 4.70% Green et al./Toker et al. [27,28]
Recurrence after resection 9.80% Lou et al. [29]

Detection of initially undetected BC 15% 1st, 40% 2nd, 100% 3rd year Scholten et al. [30]
Death with undetected BC life tables

Resection rate of BC after delayed
detection 26% Hunbogi et al. [31]

Death with palliative care 36% Cancer Stat Facts: Lung and Bronchus
Cancer, National Cancer Institute [32]

Death without BC life tables

AI = artificial intelligence; BC = bronchial cancer; CT = computed tomography; QALY = quality adjusted life year;
WTP = willingness-to-pay.

2.3. Diagnostic Test Performances

Sensitivity and specificity values for CT detection of BC with and without AI were
derived from the literature (Table 1).

2.4. Costs

From a United States (US) healthcare perspective, costs were estimated based on
Medicare data and available literature (Table 1). The long-term costs of the follow up in
case of false positive was estimated at USD 2256 including the costs for a follow up CT
examination and a possible bronchoscopy and biopsy [21]. The resection costs of BC were
set to USD 36,305, according to Cowper et al. [22]. annual costs of palliative BC patients
were estimated at USD 60,000 [21].

2.5. Utilities

Utility is measured in the additional quality-adjusted life years (QALY) which are
gained through each diagnostic procedure. According to previous studies, quality of life
(QOL) for curative BC patients was set to 0.79 for the first year after resection and 0.933
for the following years [24,25]. In accordance with the literature, QOL for palliative BC
patients was set to 0.63 [26]. These values were then used for calculations in a Markov
model specifically designed as mentioned above.

2.6. Transition Probabilities

Transition probabilities were derived from a systematic review of the recent literature
and are shown in Table 1. Probability of successful resection of (early) detected BC was
estimated at 75%, according to the national lung screening trial research team [2]. Risk
of secondary occurrence of cancer/metastases after resection of the primary tumor was
assumed to be 9.80% [29]. Annual mortality rate of curative patients was set to 4.7% and to
36.0% for palliative patients [28,32,33].
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2.7. Cost-Effectiveness Analysis

The cost-effectiveness analysis was performed based on Markov simulations with a
run time of 20 years (20 iterations) after initial diagnostic procedure. The discount rate was
set to 3.0% and willingness-to-pay was set to USD 100,000 per QALY according to current
recommendations [18].

In the base-case scenario, cost-effectiveness was determined with costs of CT + AI
identical to costs of CT only, meaning costs of USD 0 for additional use of AI. Based on these
results, maximum costs for AI were calculated for several willingness-to-pay thresholds.
For evaluation of model uncertainty and influence of alteration of each variable on the
model, a deterministic sensitivity analysis was performed. Results were visualized in a
tornado diagram.

Based on the Markov model, Monte-Carlo simulations were used to perform a proba-
bilistic sensitivity analysis with a total of 30,000 iterations. This method is used to account
for the variation of input-parameters among different individuals.

3. Results
3.1. Cost-Effectiveness Analysis

Simulations of a time horizon of 20 years resulted in average cumulative costs of USD
4310.82 for CT + AI and USD 4378.44 for CT if additional diagnostic costs for the use of AI
were set to USD 0 in the base case scenario. In this scenario, average cumulative effective-
ness was at 13.76 QALYs for CT + AI and at 13.75 QALYs for CT. To better understand the
impact of input parameters on the model, costs and effectiveness as well as distribution
of the different outcomes are shown in Figure 2. Different overall costs and effectiveness
derive from different distribution of the outcomes “true positive”, “false negative”, “true
negative”, and “false positive” based on different sensitivity and specificity of the two
methods. The incremental cost-effectiveness ratio in the base case scenario was negative,
meaning both, lower cost and higher effectiveness for CT + AI.
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Figure 2. Roll-back of the economic model showing costs and effectiveness of the different outcomes.
Distributions leading to overall costs and effectiveness are different for CT and CT + AI depending on
sensitivity and specificity of the two methods and indicated as probabilities. BC = bronchial cancer;
CT = computed tomography; TP = true positive; TN = true negative; FP = false positive; FN = false
negative; Prob = probability.
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3.2. Sensitivity Analysis

Probabilistic sensitivity analysis and Monte Carlo simulation was performed to de-
termine the distribution of the resulting ICER-values and is visualized in Figure 3. Monte
Carlo simulation reflects the difference between costs (=incremental costs) and effectiveness
(=incremental effectiveness) for a certain amount of notional scenarios/iterations. All
iterations with an ICER-value below the willingness-to-pay of USD 100,000 per QALY were
considered cost-effective.
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Incremental cost-effectiveness scatter plot for CT + AI vs. CT. iterations with an ICER-value below the
willingness-to-pay of USD 100,000 per QALY are shown as green crosses. WTP = willingness-to-pay.

Deterministic sensitivity analysis was performed to account for variability of input
parameters in the base case scenario. Results are displayed as a tornado diagram in
Figure 4A.

Applying wide ranges of variation for the different input parameters, ICER stayed
below USD 0/QALY for the sensitivities of the diagnostic modalities and the probabilities of
resectability in early and delayed diagnosis. Although ICER turned positive when varying
the specificity of CT and CT + AI, the willingness-to-pay threshold of USD 100,000/QALY
was not crossed in any of the cases.

3.3. Threshold Analysis

To determine the maximum possible costs for the use of AI at a willingness-to-pay
of USD 100,000/QALY, a threshold analysis was performed. As shown in Figure 5, ICER
remained negative until costs of AI were raised to USD 68.
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AI = artificial intelligence; P = probability.
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Figure 5. One-way sensitivity analysis for costs of AI (USD) and the corresponding incremental cost
effectiveness ratio (ICER in USD/QALY). Thresholds indicate values at an ICER of USD 0/QALY
and USD 100,000/QALY. ICER = incremental cost-effectiveness ratio; AI = artificial intelligence;
QALY = quality adjusted life year.
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Raising costs of AI further, the assumed willingness-to-pay threshold of USD 100,000/
QALY is only crossed at a value USD 1240. Influence in different input parameters in
this second base case scenario setting costs of AI to USD 1240 are shown in Figure 4B. To
account for possible variation of the willingness-to-pay, Table 2 displays possible costs for
AI depending on different willingness-to-pay thresholds. Due to the cost’s dependency
on the ICER, the cost for AI directly is further influenced by the systems performance,
resulting in a higher price for a better system due to the increased ICER.

Table 2. Cost of AI at different WTP-thresholds.

WTP (USD/QALY) 0 20,000 40,000 60,000 80,000 100,000 120,000 150,000 200,000

Cost of AI (USD) 68 302 537 771 1006 1240 1475 1826 2412

4. Discussion

The widespread integration of lung cancer screening is proving to be a complex and
challenging undertaking. Nevertheless, lung cancer screening is a cost-effective method
to reduce lung cancer mortality. AI-models for cancer detection and classification have
proved to be of benefit in lung cancer screening in several studies [15,34].

In the present study, we show that a state-of-the-art AI-model (3D-convolutional neural
network according to Ardila et al.) is a cost-effective method for the baseline screening
scan [15]. Despite promising results of AI in the health care sector, studies evaluating the
economic impact and cost effectiveness remain sparse [35]. To our knowledge, no study
has been conducted to investigate the cost-effectiveness of an AI-system in lung cancer
screening. Based on the superior performance of the AI-model without prior imaging, we
simulated an implementation for the initial screening scan using input parameters derived
from published screening cohorts [2,15,36,37], to ensure comparability to the standard
screening setting.

Our base case estimate for screening with an AI system compared to current low-
dose CT screening yielded a negative ICER up to costs of USD 68 for the AI system,
indicating that using an AI system in the screening setting results in lower cost and higher
effectiveness up to these costs per patient scan. Furthermore, the ICER remained below
the applied willingness-to-pay up to costs of USD 1240. To account for variations in input
parameters, we performed a deterministic sensitivity analysis for the base case scenario and
the maximum cost-effective costs (USD 1240). The specificity of the diagnostic strategy had
the greatest influence for both scenarios, due to the low lung cancer rate in screening cohorts.
For the base case scenario all input variations resulted in an ICER below the willingness-to-
pay by a large margin, indicating robust cost-effectiveness. Adding AI support showed
a reduced number of false-positives and an increased number of true negatives in our
simulation. In particular, the reduction of false-positives highly impacts the value of a
screening method, as not only costs in the form of unnecessary follow-up examination and
possibly further, partly invasive examinations are reduced, but also patients do not have
to experience the psychological distress of a possible cancer diagnosis [38]. Additionally,
the false positive rates and the frequency of invasive diagnostic procedures were more
frequent at the baseline CT, ranging from 7.9% to 49.3% for the false positive rate and 3.7%
for additional invasive procedures [2,39], further emphasizing the benefit of AI support for
the initial screening. As shown by Audelan et al., the sensitivity and specificity of AI in
lung cancer screening can further be improved, consequently allowing for an additional
reduction of costs and increased effectiveness [40].

Despite promising results, our study underlies several limitations. First, the cost-
effectiveness was only evaluated for the initial scan in the lung cancer screening. This is
due to published literature, focusing on the superiority of AI lung nodule detection and
classification in initial CT of the thorax without prior imaging for comparison. According to
Ardila et al., deep-learning algorithms are superior to radiologists in lung cancer screening
detection, when no prior imaging is available for comparison, but is on-par as soon as
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previous examinations are available for the reader. Consequently, further research has to be
conducted to evaluate the cost-effectiveness of AI-based computer-aided diagnosis systems
in longitudinal screening, beyond the initial scan [15]. Further, our evaluation is focused
on the sole AI system performance in comparison to the human reader—the radiologist.
However, several studies have shown promising results for the collaboration of both, often
referred to as the “Centaur model” [33]. Such systems were shown not only to be beneficial
in patient care but cost-effective as well [41]. Despite dealing with different challenges
compared to lung cancer, for thyroid nodule detection, AI systems outperform thyroid
cancer specialized radiologists in nodule classification, but the combination of specialized
radiologists with AI-support showed an even higher specificity and positive predictive
value when compared to the AI system alone [42]. Therefore, further research is needed
to evaluate the combination of AI models and specialized thorax radiologists in lung
cancer detection and its cost-effectiveness. Lastly, cost-effectiveness analysis with decision-
based models is highly dependent on the input parameters, while deterministic sensitivity
analysis may incorporate parameter variation to a certain degree, and recommendations
for each individual case cannot be derived from the model.

5. Conclusions

To conclude, in our study we show that screening with an AI-model in the initial
screening scan is a cost-effective strategy in low-dose CT lung cancer screening with
robustness to variation of input parameters. Defining thresholds for cost of AI results might
help faster translate AI systems into clinical use.
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