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Abstract: Frataxin plays a key role in cellular iron homeostasis of different organisms. It has been
implicated in iron storage, detoxification, delivery for Fe-S cluster assembly and heme biosynthesis.
However, its specific role in iron metabolism remains unclear, especially in photosynthetic organisms.
To gain insight into the role and properties of frataxin in algae, we identified the gene CreFH1, which
codes for the frataxin homolog from Chlamydomonas reinhardtii. We performed the cloning, expression
and biochemical characterization of CreFH1. This protein has a predicted mitochondrial transit
peptide and a significant structural similarity to other members of the frataxin family. In addition,
CreFH1 was able to form a dimer in vitro, and this effect was increased by the addition of Cu2+ and
also attenuated the Fenton reaction in the presence of a mixture of Fe2+ and H2O2. Bacterial cells with
overexpression of CreFH1 showed increased growth in the presence of different metals, such as Fe,
Cu, Zn and Ni and H2O2. Thus, results indicated that CreFH1 is a functional protein that shows some
distinctive features compared to its more well-known counterparts, and would play an important
role in response to oxidative stress in C. reinhardtii.

Keywords: frataxin; Chlamydomonas; algae

1. Introduction

Frataxin is a highly conserved protein present in most organisms, including bacteria,
fungi, mammal, plants and algae. Its deficiency was initially described in humans as the
primary cause of Friedreich’s ataxia, a cardio- and neurodegenerative disease characterized
by oxidative stress and iron accumulation in mitochondria [1–4]. It was reported that
frataxin plays an essential role in mitochondria biogenesis and is required for cellular
iron homeostasis regulation in different organisms, iron-sulfur cluster assembly, heme
metabolism, oxidative phosphorylation, oxidative stress and NO signaling [5–17]. Recent
studies have proposed frataxin as a regulator of ferroptosis by modulating iron home-
ostasis and mitochondrial function [18]. Nevertheless, it is possible that frataxin may also
have specific functions within each organism or cellular tissue. Even though it has been
implicated in diverse important processes, its exact molecular function remains unclear
at present.

Previous studies in yeast showed that frataxin mediates the delivery of iron Fe2+ to
the protein Isu1 to assemble Fe-S clusters [19]. In humans, yeast and Arabidopsis thaliana
frataxin is able to interact with other proteins from the Fe-S cluster biosynthesis pathway
forming multiproteic complexes [20–26]. Frataxin also provides the iron for hemo cluster
biosynthesis, interacting with ferrochelatase in humans and yeast [27,28] or as a part of the
plant ISC complex [29]. Furthermore, several studies associate frataxin with cellular redox
control, iron detoxification and protection against oxidative stress [15,30,31].

Although many studies have been conducted on human and yeast frataxin, there
are few reports on the characterization of frataxins from photosynthetic organisms. We
previously described the existence of two frataxin isoforms in maize, with localization in
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chloroplasts and mitochondria and the presence of only one frataxin isoform (AtFH), but
dually localized in both organelles in Arabidopsis thaliana [32–35]. AtFH can complement
Saccharomyces cerevisiae null mutant cells for the frataxin gene YFH (∆yfh), restoring its
respiratory rate and decreasing its sensibility to oxidant reagents [32,36]. This suggests that
AtFH could be involved in mitochondrial respiration and in the oxidative stress response.
Previous studies showed that atfh homozygote null mutants in Arabidopsis are lethal at em-
bryogenesis level, suggesting that frataxin could have an essential role in plants [37]. AtFH
deficient lines presented a high content of mitochondrial iron, increased ROS production,
induction of oxidative stress marker genes and decreased activity of mitochondrial and
chloroplastic Fe-S enzymes [33,34]. In addition, the deficiency in AtFH caused an alteration
in the transcript levels of proteins involved in heme biosynthesis, lower heme content,
and reduced activity of hemoproteins, such as catalase. These results suggest that AtFH
is involved in heme biosynthesis and hemoprotein biogenesis in plants [13]. However, its
specific role in iron metabolism remains unclear, especially in photosynthetic organisms.

In recent years, the unicellular green algae Chlamydomonas reinhardtii has been exten-
sively used to study iron metabolism. This microalga has a compact and sequenced genome,
rapid growth in defined medium and availability of a wide variety of well-established
molecular biology tools [38,39]. Previous bioinformatic analysis of C. reinhardtii genome
showed a remarkable conservation of the proteins involved in the Fe-S biosynthesis path-
way; this alga contains the same set of components of the mitochondria ISC, export, CIA
and chloroplast SUF machinery as Arabidopsis thaliana, with minor exceptions [40,41]. Many
ISC machinery genes in plants are present in multiple copies; however, some of these genes,
such as frataxin, exist as a single copy in Chlamydomonas [40].

As mentioned, there are few reports on the characterization of plant frataxin homologs.
However, no information is available about any algae counterpart. Thus, in order to expand
the knowledge on the structure and function of the components of the ISC machinery in
algae, we identified the presence of the CreFH1 gene, which codes for a putative frataxin
homolog from C. reinhardtii. CreFH1 was cloned and heterologously expressed, and the
protein was purified and characterized. Protein modeling showed that CreFH1 shares
structural similarity with other frataxin homologs. In addition, the presence of Cu2+ and
other metals, such as Fe3+ and Zn2+, increased the oligomerization of CreFH1. Moreover,
E. coli cells expressing CreFH1 were able to grow better in the presence of these metals
and other oxidative stress agents. Our results indicate that CreFH1 is a functional protein
of C. reinhardtii, and might be involved in metal homeostasis, protection against metal
oxidative damage and/or the maintenance of cellular redox state.

2. Results
2.1. Gene Structure, Protein Sequence Analysis and Homology Modelling

Based on the information obtained from Phytozome v12 [42], we found the CreFH1
gene (Cre12.g538350t1.1) in chromosome 12 of C. reinhardtii. This gene contains 1864 bp
from the 5′ to the 3′ UTR regions, and it is composed of six exons and five introns, which
produce a transcript with a 519 bp CDS (Figure 1A). The gene codes for a 172 amino acid
putative frataxin homolog protein with an estimated molecular mass of 19 kDa. Domain
identification was performed using CD-Search [43,44]. We found that CreFH1 contains
a frataxin-like domain between the amino acid region 63-169. In addition, the analysis
using TargetP-2.0 Server [45] suggested the presence of a mitochondrial transit peptide of
52 amino acids (score 0.88). Thus, the mature form of CreFH1 would contain 120 amino
acids with a molecular mass of 13.56 kDa, and it would be targeted to that organelle.

The amino acid sequence of CreFH1 shares 25% and 41% identity with the ho-
molog proteins from Escherichia coli (CyaY, EDU66360.1) and Saccharomyces cerevisiae (YFH,
ONH78464.1), respectively, and about 47% to 51% identity with other characterized fratax-
ins, such as those from humans (HsFH, AAH48097.1), Drosophila melanogaster (DmFH,
NP_511094.1), Arabidopsis thaliana (AtFH, NP_192233.2) and both proteins from Zea mays
(ZmFH-1 and -2, NP_001146272.1 and NP_001150732.1) (Figure 1B). In addition, we found
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that CreFH1 contains 12 acidic residues, most of them located in conserved positions, in
the α1 and β1 regions of the protein. These data indicate that CreFH1 is highly conserved
among different species.
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CreFH1 (accession number XP_042918788.1) was compared with CyaY from E. coli (accession num-
ber NP_418251) and frataxin homologs from H. sapiens (accession number NP_000135.2), D. melano-
gaster (NP_511094), S. cerevisiae (accession number NP_010163.1), A. thaliana (accession number 
NP_192233.2) and both Z. mays isoforms (ZmFH1, NP_001150732 and ZmFH2, NP_001146272). Po-
sitions with a high degree of conservation are indicated in red, and positions with a lower degree of 
conservation are indicated in blue. Secondary structure is indicated on the E. coli sequence with coils 
(α-helices) and arrows (β-sheets). The arrow indicates the position of the transit peptide cleavage 
predicted with TargetP-2.0 Server [45]. 
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Figure 1. Gene structure organization of Chlamydomonas reinhardtii frataxin. (A) Structure of the
gene coding the C. reinhardtii frataxin homologue (Cre12.g538350.t1.1, abbrev. CreFH1). CreFH1
is composed of 6 exons and 5 introns. The arrows correspond to the oligonucleotides used in the
molecular analyses. 5’UTR and 3’UTR correspond to the 5’ and 3’ untranslated regions. (B) Align-
ment of the amino acid sequences of frataxin homologues from different organisms. The protein
sequence of CreFH1 (accession number XP_042918788.1) was compared with CyaY from E. coli (ac-
cession number NP_418251) and frataxin homologs from H. sapiens (accession number NP_000135.2),
D. melanogaster (NP_511094), S. cerevisiae (accession number NP_010163.1), A. thaliana (accession num-
ber NP_192233.2) and both Z. mays isoforms (ZmFH1, NP_001150732 and ZmFH2, NP_001146272).
Positions with a high degree of conservation are indicated in red, and positions with a lower degree of
conservation are indicated in blue. Secondary structure is indicated on the E. coli sequence with coils
(α-helices) and arrows (β-sheets). The arrow indicates the position of the transit peptide cleavage
predicted with TargetP-2.0 Server [45].

To understand the possible roles of CreFH1, it is relevant to analyze its 3D structure.
Solution and crystal structures have been reported for different frataxin homologs, such
as HsFH, bacterial CyaY and YFH [46–50]. Several structural studies showed that the
characteristic frataxin folding consists of a compact α-β sandwich composed of two N- and
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C-terminal α-helix and seven β-strands in the central region of the protein. Analysis of
CreFH1 using Jpred 4 [51] predicted a similar fold with two α-helix, but only six β-strands
in the central region of the protein (Figure 1B).

To understand the structure of CreFH1 in more detail, a homology model was built
as described in the “Methods” section, using the 3D structure of YFH (PDB entry: 2GA5)
as a template. Analysis using ProSA-web server [52] showed a Z-score of −6.34, and the
analysis using Verify 3D [53] showed that 95% of the residues had a score >0.2, indicating
that the CreFH1 model is of good quality [54–57]. The monomeric CreFH1 structure
exhibited a fold similar to YFH, with both α1- and α2-helix and β1 to β6-sheets conserved
(Figure 2A,B). In addition, we found that the conserved N-terminal acidic residues in
the α1/β1 regions of CreFH1 generate a negatively charged surface, as reported for other
homologs (Figure 2C) [8,47]. These carboxylate side chains of aspartic and glutamic residues
could serve as ligands for metal binding, as in many Fe-binding proteins, suggesting that
these regions could be involved in this process (Figure 2D) [8]. Moreover, these amino
acid residues may also participate in electrostatic interactions that could mediate protein–
protein interactions. It was shown that electrostatic interactions play a more important role
in protein binding than they do in folding [58,59].
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Figure 2. Homology modeling of CreFH. (A) 3D structure of S. cerevisiae frataxin homologue (YFH,
PDB entry: 2GA5). (B) Proposed model of CreFH1. The structure of the CreFH1 was obtained by
homology modeling using the @TOME v.3 Platform [60] and 2GA5 as template. The α-helices are
shown in red and the β-sheets in light blue. (C) Electrostatic potential surface representation of
CreFH1. Red and blue show negative and positive potentials, respectively. The protein has the same
orientation as the ribbon structure showed in Figure 2B. (D) Superposed amino acid residues from
the acidic patch of YFH (red) and CreFH1 (blue). Superposition of the 3D structures of YFH and
CreFH1 was made using SuperPose server v. 1.0 [61].

2.2. Cloning, Expression and Purification of CreFH1

To characterize CreFH1 protein, we cloned the DNA fragment containing the
Cre12.g538350t1.1 mature sequence (360 bp, 120 amino acids) without the mitochondrial
transit peptide in a pET28 vector containing a His6 tag and a TEV cleavage site in the
N-terminal region to generate the pCREFH1m plasmid (Figure 3A). The protein was ex-
pressed in E. coli (DE3) RIL cells and purified by a single purification step using Ni2+
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affinity chromatography on a HiTrap chelating column. After elution, the protein was
treated with TEV protease and, subsequently, the protease was removed using a Ni2+ resin.
Using this procedure, we have obtained about 0.5 mg of CreFH1 protein from 10 g of
E. coli cells. The eluted protein fractions were analyzed by SDS-PAGE. Figure 3B shows the
presence of a highly purified single protein band of around 14 kDa. This agrees with the
calculated molecular mass of CreFH1 (13.56 kDa). The protein fractions were pooled and
concentrated to >1 mg/mL. The identity of the protein was confirmed by tryptic digestion
and MALDI-TOF MS/MS mass spectrometry (not shown).
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Figure 3. Cloning, expression and purification of CreFH1. (A) Schematic representation of plasmid
pCREFH1m used to transform competent E. coli cells to express CreFH1 mature protein (from aa. 53
to 172) with a Hisx6 tag and a TEV protease cleavage site. (B) SDS-PAGE analysis of protein fractions
eluted from CreFH1 after digestion with TEV protease. Lane 1: 0.5 ug CreFH1-His; Lane 2: 1 ug
CreFH1-His; Lanes 3–5: CreFH1 fractions after digestion with TEV protease.

2.3. Oligomerization with Metals

One of the properties of human, yeast and bacteria frataxins is the ability to assemble
and form oligomers spontaneously and/or in the presence of iron [28,62–64]. In order to
evaluate the ability of CreFH1 to form oligomers, we evaluated the effect of the incubation
of CreFH1 in the presence of different metal ions, such as Fe3+, Cu2+ and Zn2+. Thus,
CreFH1 was incubated at 0 ◦C for 1 to 3 h in the presence of 33 µM of Fe3+, Cu2+ or Zn2+,
and then analyzed by native PAGE (Figure 4A). We found that in the absence of metals,
CreFH1 oligomerized in a low proportion, forming a dimeric structure of about 28 kDa.
In the presence of metals, we observed a higher extent of CreFH1 oligomerization and
also the formation of dimers. Interestingly, the highest dimer production (about 40% of
the total protein) was observed in the presence of Cu2+. This is consistent with previous
results obtained in our laboratory, where the frataxin homologs from Arabidopsis thaliana
and Zea mays oligomerized when incubated with Cu2+ [35,65]. Oligomerization was also
detected in the presence of Zn2+ and Fe3+; however, only about 22% of the protein was
found as a dimer, while 78% remained as monomer (Figure 4A).

Recombinant CreFH1 proteins incubated with the different metals were also analyzed
by ESI-MS, and the previous results were confirmed (Figure 4B). In all conditions tested, a
major apo-monomeric species at m/z of 14,167 appeared, together with a smaller presence
of a monometalated dimeric species with a MW of 14,335. The first peak corresponded to
the methionine loss (MW 131) of the 14.3 kDa CreFH1 recombinant protein—a common
modification in heterologous expression. The MW of the second peak can only be assigned
to a dimer. It has the molecular weight of the whole protein plus half the mass of a metal
(most probably Cu with an average mass of 63.55). This corresponds to the +2 charge state
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of a monometalated dimer, because a monomer cannot incorporate half a metal. Coincident
with the native PAGE results, when CreFH1 was incubated with Cu2+, this dimeric peak
had a stronger intensity. In the second panel, we observed additional dimeric forms with
an MW of 28,445, which can be assigned to the methionine loss of two monomers plus
two metals.
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molecular mass marker (GE Healthcare Protein and Peptide Molecular Weight Markers). (B) ESI-MS
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The dimerization of CreFH1 (CreFH1a:CreFH1b complex) was analyzed in greater
depth by docking studies using Haddock 2.4 [66]. Results show that the most efficient
energy model is the one shown in Figure 5, with a score of −56.9 ± 15.6, suggesting
that it is a good model. We found that the main amino acids possibly involved in the
stabilization of the dimeric structure were mainly the acidic residues belonging from the α1
and β1 regions, such as Asp77, Glu84, Glu88 and Asp93, which could have interacted in
electrostatic interactions with basic residues from the other chain, such as Arg70 and Lys82.
In addition, there was a hydrogen bond interaction between Glu88 and Thr75, which also
stabilized the dimer (Figure 5C). It is important to note that most of the acidic amino acids
in the α1 and β1 regions are highly conserved among the frataxins of different organisms
(see Figure 1B).
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2.4. Attenuation of Fenton Reaction by CreFH1

Previous studies demonstrated that frataxin from S. cerevisiae and Arabidopsis thaliana
has the ability to attenuate Fenton reaction, decreasing the oxidative damage induced by
iron [15,36]. Based on this information, it was proposed that frataxin could act as an iron
chaperone, attenuating metal-induced oxidative stress. In order to evaluate the existence of
this activity in CreFH1, the inhibition of the production of malondialdehyde was measured
spectrophotometrically at 532 nm.

In the presence of dRibose, Fe2+ and H2O2, with or without BSA, about 0.55 nmol
of malondialdehyde was obtained (Figure 6). However, in the presence of CreFH1, the
production of malondialdehyde decreased about 40% compared with the control without
the protein. Similar results were obtained in the presence of CreFH1h, containing the
N-terminal His6 tag, indicating that the histidine residues did not affect the attenuation
reaction. AtFH was used as a positive control, showing a decrease of around 50% in the
amount of malondialdehyde produced (Figure 6), as reported previously [36]. Results
showed that CreFH1 inhibited the production of malondialdehyde, attenuating Fenton’s
reaction, suggesting that it could be involved in the protection against metal-induced
oxidative stress.

2.5. Effect of Metals and H2O2 in E. coli Overexpressing AtFH and CreFH1

In order to study the influence that algae frataxin would have on metal metabolism,
we tested the effect of frataxin overexpression on the restoration of the normal growth
phenotype of E. coli cells. Thus, E. coli BL21-RIL cells overexpressing AtFH or CreFH1, or
transformed with the empty pET28 vector as a negative control, were plated in LB agar
supplemented with kanamycin and different metals. In the presence of Cu2+, Zn2+ and
Ni2+, cells expressing AtFH or CreFH1 showed better growth than the negative control,
while this effect was lower in the presence of Fe2+ or Fe3+ (Figure 7). In contrast, the
overexpression of AtFH or CreFH1 had no effect on cell growth when Cr and As were
supplemented (not shown).
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Figure 7. Effect of different metals on E. coli cells overexpressing CreFH1. E. coli cells transformed
with the empty vector; AtFH and CreFH1 were spotted in 1/10 serial dilutions on LB agar plates
supplemented with kanamycin (control), Fe(NH4)2(SO4)2 2 mM, Fe(III) EDTA 1 mM, Zn2SO4 1 mM,
NiCl2 1 mM and CuSO4 1 mM. Cells were incubated overnight at 37 ◦C.
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Furthermore, in order to evaluate the role of CreFH1 in protection against oxidative
stress, we also evaluated the restoration of normal growth of E. coli cells overexpressing
frataxin homologues in the presence of hydrogen peroxide. Figure 8 shows that both groups
of E. coli cells, those expressing AtFH and those expressing CreFH1, grew better than the
control; however, the effect was more evident in the cells expressing AtFH. Our data agree
with Fenton’s oxidative degradation results, suggesting a protective role of CreFH1 against
H2O2-induced oxidative stress.
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Figure 8. Effect of H2O2 on E. coli cells overexpressing CreFH1. BL21-RIL cells transformed with the
empty vector; AtFH and CreFH1 were incubated for 1 h with 20 mM H2O2. As a negative control, all
strains were incubated without H2O2. An amount of 5 µL of each culture (1/10 serial dilutions) was
spotted on LB agar plates supplemented with kanamycin and incubated overnight at 37 ◦C.

3. Discussion

Frataxin is a highly conserved protein during evolution, and is necessary for the proper
functioning of mitochondria in eukaryotic organisms. Much work has been undertaken
on the characterization of frataxin in humans because its deficiency is the cause of the
autosomal recessive disease Friedreich’s ataxia [1,2,46]. Likewise, there are several reports
regarding yeast that show that this protein has an essential role in iron metabolism, partici-
pating in the synthesis of Fe-S clusters and heme groups in mitochondria [2,14,15,48,67].
Although there are several works on the characterization of frataxins in different organisms,
such as bacteria, plants, yeasts and humans, there is little information on these proteins in
photosynthetic organisms, such as algae [2,9,32,33,35,47,68]

In our laboratory, we have reported the characterization of frataxin homologs from
Arabidopsis and maize plants [32,33,35,36]. We proposed that plant frataxin is involved
in the synthesis of Fe-S and heme groups in mitochondria [36]. In addition, we recently
reported that AtFH shows ferrochelatase activity, which would confirm its participation in
heme metabolism [17]. Furthermore, we recently showed that AtFH interacts with other
proteins, such as AtNFS1 and AtIDS11, forming a multiprotein complex, as proposed
in other organisms [29]. The AtNFS1-AtISD11-AtFS complex modulates the desulfurase
activity of AtNFS1, and could also be important in mitigating oxidative damage in plant
mitochondria, suggesting that it would have an important role in the early stages of
Fe-S cluster synthesis in the organelle [29,69]. Other studies showed that frataxins from
Arabidopsis and corn would have dual localization in mitochondria and chloroplasts [34,35].
Although maize was the first organism where the presence of two frataxins located in both
organelles was described, there are other species where the presence of more than one
frataxin gene was reported, such as Glycine max (soybean) and Sorghum bicolor. Thus, it was
proposed that plant frataxins would have a relevant role not only in the correct function of
plant mitochondria but also in that of chloroplasts [34,35].

In this study, we identified the presence of a gene that codes for a frataxin homolog
in C. reinhardtii (CreFH1). We found that the CreFH1 gene encodes a 172 aa protein that
presents significant identity with respect to other eukaryotic frataxin homologues (between
41% and 51%). The main difference is in the N-terminus, which would code for a transit
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peptide most probably targeting mitochondria, and which would result in a mature protein
of 120 amino acids.

The proposed 3D model of CreFH1 contains an N-terminal alpha helix, α1, five
antiparallel β-sheet segments, two minor β-sheet segments and a C-terminal alpha helix α2.
These secondary structures are similar to those reported for other frataxins, such as those
from E. coli [50], S. cerevisiae [48] and humans [47]. In addition, we found that the conserved
N-terminal acidic residues in the α1/β1 regions of CreFH1 generated a negatively charged
surface, as reported for other homologs (Figure 2B) [8,47]. These carboxylate side chains
of aspartic and glutamic residues serve as ligands for metal binding in many Fe-binding
proteins, suggesting that these regions could be involved in this process [8]. Moreover, these
amino acid residues could also participate in electrostatic interactions that mediate protein–
protein interactions. It was shown that electrostatic interactions play a more important role
in protein binding than they do in folding [58,59].

The small-scale synthesis of the protein and its subsequent purification showed the
presence of a single protein band, confirmed by SDS-PAGE and MALDI-TOF peptide
fingerprint analysis. However, while CreFH1 showed a 3D structure similar to other
homologues, there were some structural and biochemical differences. The ESI-MS spectra
and PAGE results showed that CreFH1 had the ability to form dimers, especially in the
presence of cations, such as Fe3+ and Cu2+. The presence of dimers was not altered by
the addition of DTT (data not shown), as occurs with the maize frataxins, ZmFHs [35,57].
ZmFHs change their oligomerization state in the presence of DTT (with a higher proportion
of the monomeric form) due to the presence of a C-terminal cysteine residue, conserved in
most plant frataxins (C193 in ZmHF1, C194 in ZmFH2 and C180 in AtFH). This residue is
oxidized by metals forming dimers connected by disulfide bridges, which are reduced by
DTT rendering the frataxin monomer. However, this residue is replaced by a valine (V165)
in CreFH1, which is consistent with the lack of effect of DTT on the oligomerization state of
this protein.

The presence of a peak in the mass spectrum corresponding to the monomer is in
agreement with what was observed in the native PAGE analysis. As mentioned above,
CreFH1 has the ability to partially oligomerize in the absence of metals; however, we found
that the presence of Fe, or more especially of Cu, increased the proportion of the dimeric
forms of the protein. Our data are in agreement with the properties of other frataxins, such
as YFH1 from S. cerevisiae and CyaY from E. coli, which do not aggregate in vivo, but form
multimers in vitro after the addition of Fe [70,71].

From the 3D structure of the E. coli CyaY, it was postulated that there would be three
possible metal-binding sites [72]. Sites 2 and 3 are poorly conserved in CreFH;, however, it
was postulated that there are four residues possibly involved in Fe binding at site 1, a His7
of one subunit, with the Glu19, Asp22 and Asp23 residues of another subunit [72]. The
first three residues are conserved in CreFH1 (His69, Glu81, Glu84), while Asp23 is replaced
by an alanine (Ala83) in CreFH1. The model of the CreFH1a:CreFH1b dimer obtained
by molecular docking was in agreement with these data, and shows that these residues
would be at the interaction interface between both subunits. On the other hand, the high
number of acidic residues present at the interface between the CreFH1 monomers could
have an essential role in stabilizing the dimeric structure, as described for the CyaY and HF
oligomers [72]. In addition, another seven residues (Ser4, Glu5, Phe6, Arg20, Leu21, Trp24
and Asp31) of CyaY, whose NMR spectra are altered by titration with iron (with one or two
atoms, with ferrous and ferric ions) are conserved or conservatively substituted in CreFH1
(Asn66, Asp67, Tyr68, Lys82, Leu83, Tyr86 and Asp96 respectively) [8]. The conservation of
amino acids directly affected by the presence of Fe, or those in which a mutation inhibits Fe
binding or affects the formation of Fe-S centers in pathway proteins, suggests that CreFH1
behaves similarly to CyaY, although it remains to collect more experimental evidence.

Hydrogen peroxide, as with many metals, is known to be highly oxidizing and toxic to
all organisms, and these are protected by the combined action of peroxidases and catalases,
which rapidly degrade it [73]. When the H2O2 scavenging capacity, or the ability to tolerate
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high metal concentrations, is exceeded, there are metabolic defects that can lead to enzyme
damage, especially iron and sulfur enzymes, in addition to DNA damage [74].

When we supplemented E. coli cells with CreFH1, we observed that the cells had a
higher growth capacity in the presence of H2O2 and/or metals, such as Cu, Fe, Zn and
Ni. Furthermore, in vitro experiments showed that CreFH1 could attenuate the Fenton
oxidative reaction. These results are in agreement with the evidence of a protective role
of CreFH1 against oxidizing agents in algae, as has been described for other frataxin
homologues [6,32,35,36]. From our results, we can postulate that CreFH1 would be involved
in the homeostasis of different metals, and therefore, would play an important role in
acclimatization to oxidative stress in algae.

Thus, this is the first study on the structural and functional characterization of an
algae frataxin. CreFH1 has an overall structure similar to described frataxins from other
organisms. This is reflected in the analysis of its amino acid sequence and its 3D structure.
This protein has some particular characteristics, such as the possibility of increasing the
degree of dimerization in the presence of metals. It was also shown to be effective in
attenuating oxidative stress in E. coli cells. From our data, we can confirm that CreFH1
is a functional protein in C. reinhardtii and that it possibly fulfills similar functions in this
organism to those described for other frataxins, as a Fe donor, modulating the activity of
Fe-S proteins and in the protection against oxidative stress.

4. Materials and Methods
4.1. Algal Strains and Culture Conditions

Chlamydomonas reinhardtii wild-type strain CC-1690 was obtained from the Instituto
de Biología de la Pontificia Universidad Católica de Valparaíso. Cells were grown at
24 ◦C in a modified TAP medium: 2.42 g Tris-base; 25 mL of TAP salts solution (7 mM
NH4Cl, 0.83 mM MgSO4.7H2O, 0.45 mM CaCl2.2H2O); 1 mL of Pi solution (1.65 mM
K2HPO4, 1.05 mM KH2PO4); 1 mL of Hunter solution (0.13 mM Na2EDTA.2H2O, 0.13 mM
ZnSO4.7H2O, 0.18 mM H3BO3, 0.04 mM MnCl2.4H2O, 0.033 mM FeSO4.7H2O, 0.12 mM
CoCl2.6H2O, 0.01 mM CuSO4.5H2O, 4.5 uM (NH4)6MoO3); 1 mL HAc and H2O (up to 1 L).
The pH was adjusted to pH = 7. Cells were incubated with moderate shaking (120 rpm)
and illumination with a 16 h light/8 h dark cycle (100 µmol s−1m2 photosynthetic active
radiation) in Erlenmeyer flasks.

4.2. Cloning, Expression and Purification of the Chlamydomonas Reinhardtii Frataxin
Homolog CreFH1

The genomic, transcript and CDS sequences of the CreFH1 gene (Cre12.g538350t1.1)
from C. reinhardtii were obtained from Phytozome v12 [42]. Total RNA from a C. reinhardtii
culture grown in TAP medium for 8 days was extracted with Trizol reagent (Invitrogen,
Carlsbad, CA, USA), yielding about 100 mg of tissue/mL. cDNA was obtained by reverse
transcription from 2 µg of RNA. The reaction mix contained 200 U of M-MLV RT (Promega,
Fitchburg, WI, USA), 15 µg of Random Primers pd(N) (Amersham Biosciences, UK),
0.5 mM dNTPs, 1X buffer 5X M-MLV (Promega, Fitchburg, WI, USA), 25 U RNAse Inhibitor
(Promega, Fitchburg, WI, USA) and H2O DEPC to complete 25 µL. The reaction was
incubated at 42 ◦C for 1 h.

CreFH1 mature CDS without the transit peptide coding sequence of 52 amino acids was
cloned into a pET28 plasmid (modified with a TEV cleaving site before the MCS) [75] to produce
the plasmid pCREFH1. Primers used to amplify the sequence by PCR were creffw (5′ AAT-
GAATTCAATGGCACGGAGAG 3′) and crefrv (5′ ATTCTCGAGTCACTCCAGCTGC 3′,
EcoRI and XhoI restrictions sites are underlined).

E. coli BL21-RIL cells harboring pCREFH1m plasmid were grown at 37 ◦C in LB
medium containing Kanamycin (30 mg/mL) to an OD600 = 0.5. Protein production was
induced by the addition of 1 mM IPTG and subsequent incubation for 3 h at 30 ◦C. Cells
were harvested by centrifugation, resuspended in 20 mM Tris-HCl (pH 7.5), disrupted by
sonication and centrifuged at 10,000× g for 15 min at 4 ◦C.
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For the purification of CreFH1, the soluble extract was loaded into a HiTrap chelating
column (GE Healthcare Bio-Sciences Corp, Uppsala, Sweden) and the column was washed
with 10 mL of 20 mM Tris-HCl (pH 7.5) and 20 mM imidazole. The recombinant protein
was eluted with an imidazole gradient (20 mM to 400 mM) in 20 mM Tris-HCl (pH 7.5).
Purified fractions were diluted with 20 mM Tris-HCl (pH 7.5) and 20% (v/v) glycerol and
stored at −40 ◦C. In some experiments, the purified fractions containing CreFH1 were
treated with TEV protease in a reaction buffer containing 50 mM Tris–HCl, pH 8.0, 0.5 mM
EDTA and 1 mM DTT, at 4 ◦C overnight. TEV protease was removed by incubation with a
Ni2+ resin, and the CreFH1 was recovered in the soluble fraction [76].

4.3. Native and SDS-PAGE Analysis

Native PAGE was carried out in Mini Protean II Cell (BioRad, Hercules, CA, USA)
using 8%, 10% and 12% (w/v) acrylamide/bisacrylamide separating gels with 8% (w/v)
stacking gels as described [77]. Purified recombinantCreFH1 samples were incubated
at room temperature for 1 h or 3 h with metals (Fe(III)-EDTA, ZnSO4, CuSO4). As a
negative control, CreFH1 was incubated with distilled water. After incubation, samples
were mixed with loading buffer [62.5 mM Tris-HCl (pH 6.8), 25% (v/v) glycerol, 1% (w/v)
bromophenol blue]. Three µg of protein samples were loaded per well. The electrophoresis
was performed with a buffer containing 25 mM Tris-HCl (pH 8.3) and 192 mM glycine.
After placing the electrophoresis cell on ice, a voltage of 100 V was applied for 1 h, followed
by a voltage of 150 V until the electrophoretic run was completed. Gels were stained with a
solution containing 0.3% (w/v) Coomassie Brilliant Blue (R-250), 45% (v/v) methanol and
10% (v/v) acetic acid.

Purified recombinant CreFH1 was analyzed by SDS-PAGE using 12% (w/v) gels, as
described by Laemmli [78] in a Mini Protean II Cell (Bio-Rad). After electrophoresis, gels
were stained by Coomassie Brilliant Blue. Total protein concentrations were determined by
Bradford method, measuring absorbance at 595 nm and BSA as a reference standard [79].
The relative protein levels were determined by densitometric analysis using GelPro analyzer
program (Media Cybernetics, Bethesda, MD, USA).

4.4. ESI-TOF MS Molecular Mass Determinations

All samples were analyzed under the following conditions: 20 µL of protein solution
injected at 40 µL min−1; a capillary counterelectrode voltage of 5 kV; desolvation tempera-
ture between 90 and 110 ◦C. The carrier buffer was a 5:95 mixture of acetonitrile:ammonium
acetate/ammonia (15 mM, pH 7.0). The equipment used was a Micro TOF-Q instrument
(Bruker, Billerica, MA, USA) interfaced with an Agilent Series 1200 HPLC pump, both
controlled using the Compass Software. Calibration was attained with ESI-L Low Con-
centration Tuning Mix (Agilent Technologies, Santa Clara, CA, USA). All the spectra were
recorded at least 3 times in order to ensure the reproducibility of the experiments. In all
cases, the spectra were perfectly matched among different experiments.

4.5. Oxidative Degradation Assays

The ability of CreFH1 to attenuate Fenton’s reaction was determined by measuring
the inhibition of the production of malondialdehyde after the addition of thiobarbituric
acid, as previously described [36]. Briefly, a mixture of 15 µM Fe(II), 8 µM H2O2 and 5 mM
2-deoxyribose (Fluka Analytical) was incubated in Hepes-KOH (pH 7.0) in the absence
or in the presence of recombinant CreFH1. As a positive control, recombinant AtFH was
used [36]. The final volume of the reaction was 100 µL. After 30 min of incubation at 25 ◦C,
100 µL of 1% (w/v) thiobarbituric acid and 100 µL of 4% (v/v) phosphoric acid were added
to the reaction mixture. The samples were incubated for 10 min at 100 ◦C. After cooling on
ice, 75 µL of 10% (w/v) SDS was added to each tube. The amount of malondialdehyde was
determined spectrophotometrically, by measuring absorbance at 532 nm.
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4.6. Effect of Metals and H2O2 on E. coli Cells Overexpressing AtFH or CreFH1

E. coli BL21-RIL strains were transformed with pET28-AtFH, pCREFH1m and the
pET28 empty vector. Cells were grown in LB medium containing Kanamycin (30 mg/mL)
at 37 ◦C to an OD600 = 0.5. Protein production was induced by the addition of 0.5 mM IPTG
and subsequent incubation for 3 h at 30 ◦C. After induction, OD600 was measured, and the
cultures were diluted to OD600 = 1.

To analyze the effect of metals, 1/10 serial dilutions of the E. coli cultures were plated
in LB agar medium supplemented with Kanamycin (30 mg/mL) and the following metals:
Fe(NH4)2(SO4)2 2 mM, Fe(III)-EDTA 2 mM, CuSO4 1 mM, Zn2SO4 1 mM, NiCl2 1 mM y
(NH4)2CrO4 100 µM. To analyze the effect of H2O2, 1 mL of each culture was incubated
with 20 mM H2O2 for 1 h. As a negative control, all cultures were incubated without
H2O2. 1/10 serial dilutions were plated in LB agar medium supplemented with Kanamycin
(30 mg/mL). The cells were grown overnight at 37 ◦C, and then photographed.

4.7. Additional Methods

The 3D structural models were obtained at the @TOME v.3Platform [60,80]. Models
were evaluated with Verify3D structure analysis program [53–55]. Superpositions of protein
structures were analyzed using the SuperPose server v. 1.0 [61,81]. Docking predictions
were made using HADDOCK 2.4 [66] with default settings and using as active residues
the conserved ones that would be involved in the oligomerization of the human, yeast and
bacterial frataxins [66].
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