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Abstract In the context of the SAMPL5 challenge water-

cyclohexane distribution coefficients for 53 drug-like

molecules were predicted. Four different models based on

molecular dynamics free energy calculationswere tested.All

models initially assumed only one chemical state present in

aqueous or organic phases.Model A is based on results from

an alchemical annihilation scheme; model B adds a long

range correction for the Lennard Jones potentials tomodel A;

model C adds charging free energy corrections; model D

applies the charging correction from model C to ionizable

species only.Model A andB perform better in terms ofmean-

unsigned error (MUE ¼ 6:79\6:87\6:95 log D units -

95 % confidence interval) and determination coefficient

ðR2 ¼ 0:26\0:27\0:28Þ, while charging corrections lead

to poorer results with model D (MUE ¼ 12:8\12:63

\12:98 and R2 ¼ 0:16\0:17\0:18). Because overall

errors were large, a retrospective analysis that allowed co-

existence of ionisable and neutral species of a molecule in

aqueous phase was investigated. This considerably reduced

systematic errors (MUE ¼ 1:87\1:97\2:07 and R2 ¼
0:35\0:40\0:45). Overall accurate logD predictions for

drug-like molecules that may adopt multiple tautomers and

charge states proved difficult, indicating a need for

methodological advances to enable satisfactory treatment by

explicit-solvent molecular simulations.

Keywords SAMPL5 � Distribution coefficient � logD

Introduction

To help assess the predictive power of computational

methods for molecular modelling the Statistical Assess-

ment of the Modeling of Proteins and Ligands (SAMPL)

was created almost 10 years ago [1, 2]. In 2015 the 5th

SAMPL challenge was announced and comprised of two

main objectives: the blinded prediction of binding affinities

of a set of host-guest complexes and the prediction of

distribution coefficients for a library of 53 drug-like

molecules. Since there is significant interest in using

molecular simulation methods to support structure-based

design of ligands for biomolecules [3], reliable predictions

of host-guest binding affinities and distribution coefficients

of drug-like molecules are important. These systems serve

as a stepping stones towards reliable molecular modelling

of more challenging biomolecules. A companion article

describes results from our group for host-guest binding

affinity predictions [4], and this report describes our efforts

to predict distribution coefficients for these 53 drug-like

molecules using molecular simulation methods.

This is the first time since the start of the SAMPL

challenges, that a blinded prediction of distribution

coefficients was included in the challenge. Distribution

coefficients are an important quantity in medicinal

chemistry [5, 6] and their measurements give useful

information on potential ADME properties of drug-like

small molecule. Experimentally it is straightforward to

measure partition coefficients, namely the logarithm of

the ratio of the un-ionized species between an organic

phase, e.g. octanol, and an aqueous phase, i.e water,

calculated as [7–10]:
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logP ¼ log
½A�o
½A�w

; ð1Þ

where ½A�o is the concentration of the solute in the organic

phase, and ½A�w the concentration in the water phase. How-

ever, the partition coefficient neglects to account that dif-

ferent forms of molecule A may co-exist as a mixture of

protomeric and tautomeric states. Taking this into consid-

eration leads to definition of a distribution coefficient, logD:

logD ¼ log
½A�o þ ½A�þo
½A�w þ ½A�þw

 !
; ð2Þ

where ½A�o and ½A�
þ
o are the concentration of the neutral and

protonated species (all possible protonation states) in the

organic phase, while ½A�w and ½A�þw are the concentration of

the neutral and protonated species in the water phase.

For the SAMPL5 challenge, the objective was to deter-

mine logD for a set of 53 small molecules, by using state-of

the art computational approaches. The experimental mea-

surements were carried out at Genentech, according to a

protocol previously described by Lin and Pease [11, 12].

The choice of organic solvent in the present experimental

series was cyclohexane. Since distribution coefficients are

implicitly related to solvation free energies, such a challenge

also provides an insight into solvation free energy estima-

tions and therefore loans itself to be addressed using

molecular mechanics trajectory based alchemical free

energy methods. This was the method of choice in this paper

with computations carried out using the Sire/OpenMM 6.3

(SOMD) [13, 14] software. SOMD is a simulation tool that

allows to run alchemical free energy calculations on GPUs,

where OpenMM serves as the MD engine and Sire provides

a set of molecular libraries on top of that. The choice of

using trajectory based alchemical methods was partially

motivated by the previously reported success with simple

molecules such as caffeine (80) that were treated with

general molecular mechanics force fields [15]. The moti-

vation was also to understand at which point these methods

currently fail when faced with larger and more chemically

complex molecules such as rifampicin (83) or reserpine

(65). The SI includes all structures corresponding to the

numbered molecules discussed in the manuscript.

Theory and methods

Computing distribution coefficients: model A, B, C,

and D

The distribution coefficient logD is given by Eq. 2.

Working with ionizable species gives rise to the compli-

cation that multiple protonation states need to be

considered. To simplify protocols the approximation was

made that a given molecule is predominantly in a single

state (that may or may not be charged) in the water phase

and in a neutral charge state in the organic phase. This

approximation will be referred to as the dominant species

approximation. A schematic diagram of the dominant

species approximation can be found in Fig. 1a. This means

a change in Gibbs free energy of a molecule A between a

water phase and an organic phase (here cyclohexane),

neglecting changes in activity coefficients, is given by:

DGw!cyc ¼ �b�1 ln
½A�neutcyc

½A�domw

; ð3Þ

where b is the inverse temperature given by b ¼ 1=kBT ,

½A�neutcyc is the concentration of a neutral species in cyclo-

hexane, and ½A�domw is the concentration of the dominant

species in water at pH 7.4. This leads to a definition of

Fig. 1 A Diagram of the dominant species approximation, B Dia-

gram of the two-species approximation. Symbols are defined in the

main text

1102 J Comput Aided Mol Des (2016) 30:1101–1114

123



logD, that depends on the free energy change between the

organic phase and water phase of molecule A.

� 1

2:303
bDGw!cyc ¼ log

½A�neutcyc

½A�domw

¼ logD: ð4Þ

The next task is to compute DGw!cyc from a series of

simulations. The basic idea is summarized in Fig. 2 with a

series of thermodynamic cycles. The goal is to compute the

free energy of solvation in water and cyclohexane, such

that:

DGw!cyc ¼ DGcyc � DGw � DGv!v: ð5Þ

Each of the individual solvation free energies are computed

using an annihilation method performed twice as shown in

Fig. 2 and given by:

DGmodel A
solv ¼ DGelec

solv þ DGvdW
solv � ðDGelec

vac þ DGvdW
vac Þ

þ DGFUNC; ð6Þ

where the identifier solv is either cyclohexane or water.

The different free energy terms correspond to the

discharging step, i.e. DGelec
solv and DGelec

vac in either solvent

and vacuum respectively and the vanishing step in which

the Lennard Jones terms are turned off in the annihilation

protocol. The vanishing free energies in solvent and vac-

uum are given by DGvdW
solv and DGvdW

vac , respectively. The

correction term DGFUNC is used to account for using Bar-

ker-Watts reaction field (BWRF) electrostatics in the water

and cyclohexane phase (see below). The term DGv!v is the

free energy change for converting molecule Aneut into Adom

in vacuum. This term is null if neut and dom are the same

species. This term was also neglected for the cases where

neut and dom species differ for the SAMPL submissions

and the consequences are discussed in the results section.

In the actual simulations an alchemical approach is used

to achieve the discharging and vanishing step (Fig. 2) [16].

To this end, an artificial parameter, k, is introduced that

modifies the potential of the molecule linearly to account

for the decoupling. k is defined over the interval [0,...,1],

creating intermediate states, referred to as alchemical

states, between each transformation. Using the multistate

Fig. 2 Thermodynamic cycle

for logD calculation. First the

atoms’ partial charges are

turned off retrieving DGelec
w ,

DGelec
vac and DGelec

cyc in water,

vacuum and cyclohexane phase

respectively. This step is

referred to as the ’discharging

step’ in the main text. Then, van

der Waals terms are switched

off and DGvdW
w , DGvdW

vac and

DGvdW
cyc are calculated in each

phase. This step is referred to as

the ’vanishing step’ in the main

text. The diagram assumes no

change in protonation state

between solvated and vacuum

phases
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Bennet’s acceptance ratio (MBAR) [17], a free energy

difference between k ¼ 0 and k ¼ 1 can be used to eval-

uate the appropriate terms of Eq. 6.

In both solvated phases, the system’s Coulombic inter-

actions are calculated based on BWRF. Thus, two different

dielectric constant are adopted for water and cyclohexane

simulations. However, for simulations in vacuum a reac-

tion-field is inappropriate and instead a Coulombic poten-

tial without cutoffs was employed. Because a reaction-field

is applied to all intra and intermolecular pairwise interac-

tions, this leads to an inconsistent description of the

intramolecular electrostatic interactions of the solute in the

solvated and vacuum simulations.

Therefore to enable meaningful comparison of com-

puted free energy changes, a free energy correction term

DGFUNC was evaluated to treat intramolecular Coulombic

interactions consistently between solvated and vacuum legs

of the thermodynamic cycle depicted in Fig. 2. The

DGFUNC term is obtained via post-processing the k ¼ 0:0

trajectories of the discharging step of a solvated simulation

and use of the Zwanzig relation [18]:

DGFUNC ¼ �b�1 lnhexp½�bðUic;ncðrÞ � Uic;simðrÞÞ�isim;
ð7Þ

where Uic;ncðrÞ is the solute intramolecular electrostatic

potential that depends on the coordinates r of the solute and

Coulomb’s law. Uic;simðrÞ is the intramolecular electro-

static potential term as computed during the simulation

with a BWRF cutoff. Evaluation of the free energies

according to Eq. 6 and then using these to evaluate logD

according to Eq. 4 will be referred to as model A.

Model B is given by:

DGmodel B
solv ¼ DGmodel A

solv þ DGcyc
LJLRC � DGw

LJLRC: ð8Þ

Equation 8 is an extension to model A that takes a long

range dispersion corrections DGsolv
LJRC, derived by Shirts

et al. [19], into account. This dispersion correction can

readily be computed from a simulated trajectory using the

Zwanzig relation:

DGsolv
LJLRC ¼ �b�1 lnhexp½�bðULJ;longðrÞ � ULJ;simðrÞÞ�isolv

þ ULJ;ana;

ð9Þ

where ULJ;long is the Lennard Jones energy calculated by

increasing the long range cutoff and ULJ;ana is an analytical

correction for extending the long range cutoff to infinity.

By post-processing each end state trajectory in the van-

ishing step of either solvated phase, the Lennard Jones

potential, ULJ;long, is recalculated for each snapshot of all

the solute and solvent molecule with an increased cutoff

radius that is set to rc;long ¼ 0:95minðLx; Ly; LzÞ=2 where

Lx, Ly, Lz are the box edges length at the beginning of the

simulation. The scaling factor accounts for small fluctua-

tions in box size that could have produced reduced box

edges in the generated trajectory. The additional contri-

bution of the long range potential ULJ;ana to Eq. 9 is eval-

uated as follow:

ULJ;ana ¼ 8pq
XNsol

i

XNsolv

j

�ijr12ij
9r9c;long

�
�ijr6ij
3r3c;long

" #
; ð10Þ

where q is the solvent density in mol�Å�3
, Nsol is the total

number of atoms of the solute molecule, Nsolv the number

of solvent molecules, �ij is the Lennard Jones well depth,

expressed in kcal �mol�1, and rij is the Lennard Jones

distance, in Å, calculated with the Lorentz-Berthelot

combining rule [20]. The Lennard Jones parameters for

both the cyclohexane solvent and water are discussed

elsewhere. Equation 10 is derived by assuming that the box

size is infinitely large and that the radial distribution

function gðrÞ ¼ 1 for distances greater than rc;long.

Model C takes corrections for the discharging free

energy step into consideration. This is based on the work

by Reif and Oostenbrink [21], Rocklin et al. [22], and

earlier work from Kastenholz and Hünenberger [23, 24].

Here corrections on the free energy estimation for a

BWRF atom based cutoff for the discharging step were

derived. Net charge free energy calculations are affected

by several finite size artefacts [21, 22]. To be computa-

tionally efficient periodic boundary conditions along with

an effective Coulombic potential are employed, which

introduces artefacts that can be sizable for simulations of

charged species [25, 26]. Additionally, solvent models

typically do not exactly reproduce the experimental

dielectric permittivity, i.e. for TIP3P water under the

conditions simulated here the dielectric constant is 82

[27] as opposed to an experimental value of 78.3. To

correct for these source of errors a correction term DGPOL

was calculated as:

DGPOL ¼ DGCoul
NP � DGCoul

RF ; ð11Þ

where DGCoul
NP is the electrostatic free energy due to

Coulombic interactions under non-periodic conditions, as

obtained by solving the Poisson equation with the soft-

ware APBS [28]. DGCoul
RF is the electrostatic free energy

obtained solving the Poisson equation under BWRF and

periodic boundary conditions, using a custom code kindly

given to us by Hünenberger [29]. A second source of

error occurs in the present molecular simulations due to

the use of an atom-based cutoff to compute solute-solvent

interactions. This summation scheme causes an apparent

solvation of negatively charged species and a de-solvation

of positively charged molecules [21, 23, 24]. For atom-

based BWRF conditions a DGPSUM correction term was

evaluated as:
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DGPSUM ¼� NA

6�0
Qmolcs

2ð�BW þ 1Þ
2�BW þ 1

� hNSðrcÞi
4p r3c

3

 !"

þ 3

2�BW þ 1

�
; ð12Þ

where NA is Avogadro number, �0 is the experimental

permittivity for the solvent, �BW is the dielectric constant of

the water model used, cs ¼
PN

i¼1 qiri is the trace of the

quadrupole-moment tensor of the solvent model, where the

sum is over all N atoms in a solvent molecule, qi is the

charge of the i-th atom in a solvent molecule, ri is the

coordinate vector, Qmol is the net charge of the solute, rc is

the reaction field cutoff length and hNsðrcÞi is the average

number of solvent molecules within rc. This leads to a free

energy evaluation of model C according to:

DGmodel C
solv ¼ DGmodel B

solv þ DGPOL þ DGPSUM: ð13Þ

Model D is the same as model C, but applying the cor-

rection introduced for model C only to charged species.

Two-species assumption

After the results of the competition were revealed an

attempt was made to improve on the estimations obtained

by introducing an alternative to the dominant species

approximation. Generally, assuming all activity coeffi-

cients to be unity, the distribution coefficient logD is given

by:

logD ¼ log

PNq

i

PNtaut

j ½Aj�icycPNq

k

PNtaut

l ½Al�kw

 !
; ð14Þ

where the sums are extends over all the possible protona-

tion ðNqÞ and tautomeric state ðNtautÞ i and j in cyclohexane

and k and l in water phase, for a molecule A. Then, the

concentration of the most populated species in water at pH

7.4 is given by:

½A�domw ¼ f chemicalizeðAdom
w Þ � ½A�tot; ð15Þ

where f chemicalizeðAdom
w Þ is the fraction of the dominant

species Adom
w predicted by the software ChemAxon [30] at

pH 7.4. ½A�tot is by convention set to 1M. Note that the

fraction of dominant species is determined by considering

potentially multiple equilibria between different charged

states and tautomers.

We now assume that the only other species in solution is

the conjugate pair of Adom
w , which will be denoted Acon

w . If

there are multiple ionisable sites Acon
w is taken to be the

conjugate pair that is expected to have the highest popu-

lation on the basis of the pKa values of each ionisable site.

Thus:

½A�conw ¼ 1� f chemicalizeðAdom
w Þ � ½A�tot: ð16Þ

Since only two species are considered, Eq. 14 reduces

to:

logD ¼ log
½A�concyc þ ½A�domcyc

½A�conw þ ½A�domw

 !
: ð17Þ

And since pH, ½A�conw and ½A�domw are known, an effective

pKaeff can be defined:

pKaeff ¼ pH� log
½A�domw

½A�conw

: ð18Þ

where for simplicity in the notation it has been assumed

that the dominant form is the base and the conjugate form

the acid. Although Acon
w and Adom

w are conjugate pairs, the

term effective pKa is used because the relative concen-

trations of the two species are set by f chemicalizeðAdom
w Þ, a

quantity that was derived by considering co-existence of

more than two species.

Rearrangement of Eq. 18 and insertion in Eq. 17 leads to:

logD ¼ log PAcon 1þ 10�pKaeff

10�pH

 !�1
0
@

þPAdom 1þ 10�pH

10�pKaeff

� ��1
!
;

ð19Þ

where PAcon ¼ ½A�concyc

½A�conw
and PAdom ¼ ½A�domcyc

½A�domw

. Equation 19 may be

solved by computing P values for Acon and Adom from

calculated transfer free energies for each species, and

knowledge of effective pKa and pH values. This approach

will be referred to as the two-species assumption since it

enables the consideration of up to two chemical states of a

molecule in each phase.

For molecules that contain a single ionisable site and

have no alternative tautomeric forms pKaeff ¼ pKa, and if

additionally PAcon � PAdom then Eq. 19 simplifies to the

more commonly used approximation [31]:

logD ¼ log PAcon 1þ 10�pKa

10�pH

� ��1
" #

: ð20Þ

Datasets

The Minnesota Solvation Database [32] is a collection of

3037 experimental solvation and transfer free energies.

Therefore, it constitutes a useful resource to study new

methods for free energy calculations. In the present study

14 small molecules were selected from this database,

shown in Fig. 1 of the supplementary information (SI),

chosen based on similar moieties present in the SAMPL5
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dataset. This data set was then used to asses accuracy of

solvation free energy calculations use Sire/OpenMM

[13, 14], with the different proposed methods for the

SAMPL5 study and therefore served as an initial test

dataset. This was of interest since solvation free energies

are used to eventually compute logD. No distribution

coefficient data between cyclohexane and water was

available for the chosen molecules from Minnesota Sol-

vation Database [32] and therefore it was difficult to assess

the accuracy of the dominant species approximation for the

logD calcualtions prior to submission. The SAMPL5

dataset consists of 53 drug-like molecules, depicted in

Fig. 2 of the SI, and was provided by the organisers as

mol2 or sdf files. Experimental facilities for the distribution

coefficient dataset were generously provided by Genen-

tech, and measurements were done according to the pro-

tocol described by Lin and Pease [11, 12].

Simulation setup

All molecules were parametrized with the general Amber

force field (GAFF) [33], solvated in both cubic boxes of

TIP3P water molecules [34] and GAFF cyclohexane. Each

system was initially energy minimized for 100 cycles by

using the steepest descent method with harmonic positional

restraints using a force constant of 10 kcal �mol�1 Å�2

applied to the whole water molecules or cyclohexane

molecules respectively, allowing the solute to relax. Sec-

ondly, an NVT equilibration of 200 ps at 298 K, following

an NPT equilibration at 1 atm with Amber module San-

der [35] were carried out. Finally, a 2 ns simulation in the

NPT ensemble was run with Sire/OpenMM 6.3 (rev 15.1)

[13, 14], to reach a final density of 1 g/cc and 0.7 g/cc for

water and cyclohexane respectively. Then, coordinate files

were retrieved with CPPTRAJ [36]. This was the protocol

used for all uncharged species in the dominant species

approximation. From the mol2 file the topology and the

coordinates for vacuum simulations were created with the

help of tleap. For each molecule only the most populated

state was considered, based on pKa calculation with Che-

mAxon [30] at pH 7.4 for the dominant species approxi-

mation. Where necessary, molecules were protonated with

Maestro (v.10.1.012, rel 2015-1, Schrödinger) [37]. Then,

Antechamber 14 [35] was run to obtain AM1-BCC charges

[38]. In the case of charged species the molecules were

then re-solvated and underwent the same procedure as

described above for the uncharged species.

In the case of the test dataset, consisting of the 14

chosen molecules of the Minnesota Solvation Database

[32], all initial structures were sketched with Maestro,

parametrized with the general Amber force field [33], and

solvated in rectangular boxes of TIP3P water molecules

and GAFF cyclohexane, with a minimum distance between

the solute and the box edges of 12 Å.

Alchemical free energy production simulations

Each discharging step was divided into nine equidistant k
windows. For the vanishing step, 11 equidistant k windows

were used, and an additional window was added at 0.950,

to capture large fluctuations in the free energy changes

towards the end of the decoupling process. Each k window

was run for 2 ns in the organic and aqueous phase, except

molecules 7, 13, 19, 24, 42, 56, 65, 71, 88, and 92, whose

vanishing step was run for 6 ns, to improve the precision of

the computed free energy changes. Additionally, for vac-

uum simulation each k window was run for 0.8 ns. A

velocity-Verlet integrator was employed with a time step of

4 fs using a hydrogen mass repartitioning scheme (HMR)

[39] by constraining all bonds. All simulations were per-

formed at 298 K and 1 atm in an NPT ensemble, using an

atom-based Barker Watts reaction field [40] with a

dielectric constant of 82 for the water phase and a dielectric

constant of 1.0 for the cyclohexane phase. The non-bonded

interactions cutoff was set to 12 Å and periodic boundary

conditions were imposed. An Andersen thermostat with a

coupling constant of 10 ps�1 [41] assured the temperature

control, while a Monte Carlo barostat was used for pressure

control, attempting isotropic box edge scaling every 25

time steps.

Estimation of logD for models A, B, C and D

All solvation free energy estimates for the Minnesota

test data set were done using MBAR [17]. The estimates

are based on a single simulation and errors are obtained

from the asymptotic variance estimator as implemented in

pymbar [42], where uncorrelated samples were drawn from

the generated trajectories using the timescale module in

pymbar. Errors were then propagated using standard rules

of error propagation. Propagated errors are reported as

error bars in the results section only for the Minnesota

database data.

All free energy estimates for the SAMPL5 dataset from

both the discharging and vanishing step needed for the

computation of logD for any of the methods were done

using MBAR [17]. A different methodology was used to

estimate errors for this dataset. Here all solvation free

energies in both water and cyclohexane were computed

twice using different initial assignments of velocities

drawn from the Maxwell-Boltzmann distribution. Com-

puted distribution coefficients are reported as the average

of the two independent simulations for which logD was

calculated, and statistical uncertainties were calculated

according:
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errðDGÞ ¼ rffiffiffi
n

p ; ð21Þ

where r is the standard deviation of both runs and n ¼ 2,

unless otherwise stated. These are the error bars reported in

the results section for all of the SAMPL5 challenge data.

The computed distribution coefficients according to

each model are then correlated to experimental values

using the determination coefficient R2 and the accuracy of

the computed value itself is measured using the mean

unsigned error (MUE). To gain insight into the distribution

of the two different measures a bootstrapping scheme is

used in which each point is considered to be a normal

distribution with its mean given by the computed free

energy and r the associated computed error. Ten thousand

samples are then drawn from the artificial normal distri-

butions for each data point and correlated with the exper-

imental values, giving rise to a distribution of R2 and MUE.

The resulting distributions are typically not symmetric

around the mean and uncertainties in the dataset metrics

are reported with a 95% confidence interval written in the

follow way z�\l\zþ, where z� is the lower bound and

zþ the upper bound of the confidence interval and l the

mean of the distribution. All simulation input files and post

processing scripts needed for reproducing the results as

well as results files can be found in a github repository

https://github.com/michellab/Sire-SAMPL5.

Results

Solvation free energies of the Minnesota dataset

Figure 3 shows a scatter plot of the solvation free energies

in water DGw and cyclohexane DGcyc for all neutral

molecules of the dataset chosen from the Minnesota sol-

vation database [32], reported in Table 1.

Both models A and B yield similar results for neutral

molecules in water, with R2 ¼ 0:96\0:97\0:98 and

MUE ¼ 0:65\0:71\0:77 kcal �mol�1 and

0:52\0:57\0:64 kcal �mol�1 respectively, as shown in

Table 1, and in panel A and B of Fig. 3 respectively.

Inclusion of the two charged molecules trimethylammo-

nium and acetate causes larger deviations from the exper-

imental data as clearly seen when considering the whole

dataset of Table 1, giving rise to a MUE ¼
3:58\3:63\3:69 kcal �mol�1 for model A, while a tiny

improvement is introduced for model B ðMUE ¼ 3:45\
3:51\3:57 kcal �mol�1Þ. The results have worsened

mainly because of the very large discrepancy between the

computed and measured hydration free energy of

trimethylammonium (-24.7 vs -61.4 kcal �mol�1).

The addition of charging corrections (model C) gives

better agreement with experimental data for the whole

dataset, with a MUE ¼ 0:95\1:07\1:19 kcal �mol�1 and

R2 ¼ 0:98\0:99\1:00 and model D results in the best

prediction (MUE ¼ 0:71\0:77\0:84 kcal �mol�1 and

R2 ¼ 0:98\0:99\1:00). Figure 3c shows the results of

adding the charging corrections of model C to all neutral

molecules. Model D is only depicted as the subdataset of

the neutral molecules in Fig. 3, and is the equivalent of

panel B.

Looking at the cyclohexane solvation free energies of

model A and model B a similar trend with MUE ¼
0:68\0:74\0:80 kcal �mol�1 and MUE ¼ 0:68\0:76

\0:85 respectively, along with an R2 ¼ 0:74\0:77\0:81

and R2 ¼ 0:69\0:74\0:79 can be observed, shown in

A

B

C

Fig. 3 Computed solvation free energy in water (blue circles) and in

cyclohexane (red triangles) for neutral compounds selected from the

Minnesota Solvation Database [32] according to models A (A), B (B),
and C (C). Model D is not shown since only neutral species are

plotted, meaning that model D is equivalent to model B. The grey

dashed line assumes a perfect correlation and the yellow shaded

interval corresponds to an error of 1 kcal �mol�1
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panel A and B of Fig. 3 using red triangles. In contrast,

model C shows a higher mean unsigned error ðMUE ¼
1:50\1:57\1:65 kcal �mol�1Þ along with a lower deter-

mination coefficient ðR2 ¼ 0:37\0:43\0:49Þ, see

Fig. 3c. In this case charging corrections fail to improve

the estimations. As pointed out by Beauchamp et al. [43],

the solvation of polar solutes in a non-polar solvent such as

cyclohexane is expected to be systematically underesti-

mated since the lack of polarisability yields a cyclohexane

model with a static dielectric constant of cyclohexane of

about 1.0, whereas experimental data indicates a value

closer to 2.0. This is expected to cause a significant error in

the computed solvation free energy of polar solutes in a

non-polar solvent. In light of this argument, the present

results are unexpected since the addition of correction

terms that account for the experimental dielectric constant

of cyclohexane yield results that are significantly worse

(Table 1 model C) than the uncorrected results (Table 1

model A). Closer inspection of Table 1 confirms that sol-

vation free energies of polar solutes in cyclohexane are

Table 1 Computed solvation free energy for Minnesota dataset [32]. DGw is the absolute free energy of hydration and DGcyc the absolute free

energy of solvation in cyclohexane, both expressed in kcal �mol�1. A, B, C and D refer to the model described in section 2. MUE and R2 denotes

the mean unsigned error ðkcal �mol�1Þ and the determination coefficient for the whole dataset. MUE neutral and R2 shows the mean unsigned

error ðkcal �mol�1Þ and determination coefficient for the neutral species only. Model D for solvation free energies in cyclohexane is the same as

model B. The notation z- \l\ z? signifies 95 % confidence intervals computed from the bootstrapping of the data

Molecule DGw A B C D

Cyclohexane 1.2 1.4 ± 0.1 1.2 ± 0.1 1.5 ± 0.1 1.2 ± 0.1

Benzene -0.9 -0.5 ± 0.1 -0.6 ± 0.1 -0.2 ± 0.1 -0.6 ± 0.1

Acetic acid -6.7 -6.2 ± 0.1 -6.3 ± 0.1 -6.7 ± 0.2 -6.3 ± 0.1

Trimethylamine -3.2 -2.6 ± 0.1 -2.8 ± 0.1 -2.1 ± 0.1 -2.8 ± 0.1

Chlorobenzene -1.1 -0.2 ± 0.1 -0.5 ± 0.1 -0.1 ± 0.1 -0.5 ± 0.1

Methanol -5.1 -3.5 ± 0.1 -3.5 ± 0.1 -3.2 ± 0.3 -3.5 ± 0.1

n-Propane 2.0 2.6 ± 0.1 2.5 ± 0.1 2.6 ± 0.1 2.5 ± 0.1

Pyridine -4.7 -3.3 ± 0.1 -3.4 ± 0.1 -3.3 ± 0.1 -3.4 ± 0.1

Phenol -6.6 -5.7 ± 0.1 -5.9 ± 0.1 -4.5 ± 0.6 -5.9 ± 0.1

Acetone -3.9 -3.6 ± 0.1 -3.6 ± 0.1 -3.6 ± 0.1 -3.6 ± 0.1

Aniline -5.5 -5.2 ± 0.1 -5.4 ± 0.1 -4.8 ± 0.4 -5.4 ± 0.1

Trimethylammonium -61.4 -24.7 ± 0.1 -24.8 ± 0.1 -61.4 ± 0.3 -61.4 ± 0.3

Acetate -77.6 -74.8 ± 0.1 -74.9 ± 0.2 -81.1 ± 0.3 -81.1 ± 0.3

MUE 3.58\ 3.63\ 3.69 3:45\ 3:51\ 3:57 0:95\ 1:07\ 1:19 0:71\ 0:77\ 0:84

R2 0:85\ 0:86\0:87 0:85\ 0:86\ 0:87 0:98\ 0:99\ 1:00 0:98\ 0:99\ 1:00

MUE neutral 0:65\0:71\0:77 0:52\ 0:57\ 0:64 0:80\ 0:93\ 1:05 0:52\ 0:57\ 0:64

R2 neutral 0:96\ 0:97\ 0:98 0:96\ 0:97\ 0:98 0:90\ 0:94\ 0:96 0:96\ 0:97\ 0:98

Molecule DGcyc A B C

Cyclohexane -4.4 -4.5 ± 0.1 -4.8 ± 0.3 -4.5 ± 0.1

Benzene -4.2 -3 ± 0.1 -3.2 ± 0.2 -4 ± 0.1

Acetic acid -1.7 -2.7 ± 0.1 -2.8 ± 0.2 -6.3 ± 0.3

Trimethylamine -2.6 -3.1 ± 0.1 -3.2 ± 0.1 -4.2 ± 0.1

Chlorobenzene -5.1 -4.6 ± 0.1 -4.7 ± 0.2 -5.6 ± 0.1

Methanol -1.3 -0.6 ± 0.1 -0.5 ± 0.2 -3.1 ± 0.1

n-Propane -2.1 -1.1 ± 0.1 -1.1 ± 0.1 -1.1 ± 0.1

Pyridine -4.3 -4.2 ± 0.1 -4.4 ± 0.3 -6 ± 0.1

Phenol -5.6 -4.6 ± 0.1 -4.6 ± 0.1 -7.9 ± 0.1

Acetone -2.7 -2 ± 0.1 -1.9 ± 0.2 -4.2 ± 0.1

Aniline -5.5 -4.2 ± 0.1 -4.9 ± 0.2 -7.4 ± 0.2

MUE 0:68\ 0:74\ 0:80 0:68\ 0:76\ 0:85 1:50\ 1:57\ 1:65

R2 0:74\ 0:77\ 0:81 0:69\ 0:74\ 0:79 0:37\ 0:43\ 0:49
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slightly too positive for model A, but significantly too

negative for model C.

Dominant species model distribution coefficients

Next, model A, B, C and D were applied to all 53 molecules

of the SAMPL5 challenge. Figure 4 compares logD pre-

dictions for each model for neutral and charged molecules.

Model D is not shown, because it corresponds to model B

for neutral species and model C for charged ones. Deter-

mination coefficient R2 and MUE are summarized in

Table 2. Solvation free energy results can be found in the

SI.

Both model A and B yield similar results and are not

statistically distinguishable from each other. This is illus-

trated with the bar and whiskers plot in Fig. 3 of the SI.

Considering the whole dataset of molecules no differences

arise between the two models with R2 ¼ 0:26\0:27\0:28

and MUE ¼ 6:79\6:87\6:95 logD units for model A and

MUE ¼ 6:78\6:86\6:95 logD units for model B as

Table 2 shows. The high MUE is mainly due to the ion-

izable species, where model A has a MUE ¼
15:45\15:59\15:74 logD units and model B MUE ¼

15:45\15:68\15:82 logD units. When only considering

the set of neutral species, 83, clearly visible in Fig. 4a and

b, is the largest outlier, with a calculated

logD ¼ 8:24� 1:09, 7:94� 1:19 for model A and B re-

spectively, with respect to the experimentally measured

logD ¼ �1:9� 0:4. Such a discrepancy may be down to

the large size and numbers of functional groups present in

this molecule. Inspection of Fig. 4d and f makes it clear

that predictions for charged species systematically and

significantly deviate from experimental data. In particular,

60, 10, 11, 26 and 15 are systematically wrongly predicted

in all models, with logD values ranging between -40 and -

50 and shown in the bottom left corner of Fig. 4d and f.

The introduction of the charging corrections with model

C do not statistically significantly improve the estimates, as

shown in Fig. 3 of the SI, and the results obtained are not

consistent with experimental values. A clear overestima-

tion of the distribution coefficient is observed, with R2 ¼
0:14\0:15\0:16 and MUE ¼ 14:92\15:01\15:11

logD units for the entire dataset. In particular, both for

neutral molecules and for charged molecules there is an

increase in MUE with respect to model A and model B as

shown in Fig. 4c and f and Table 2. In Fig. 4c the estimate

D

E

F

R2: 0.20< 0.25< 0.32 
MUE: 1.89< 1.99< 2.10 

R2: 0.20< 0.26< 0.33  
MUE 1.83< 1.94< 2.05

R2: 0.00< 0.01< 0.02  
MUE 7.11< 7.22< 7.34

R2:  0.46< 0.47< 0.48  
MUE  15.43< 15.59< 15.73

R2: 0.46< 0.47< 0.48  
MUE  15.53< 15.67< 15.82

R2:  0.56< 0.57< 0.58  
MUE  28.82< 28.96< 29.11

A

B

C

83

83

83

Fig. 4 Scatter plots of

computed logD for molecules

modelled as neutral in water and

in cyclohexane (A–C) and
molecules modelled as charged

in water and neutral in

cyclohexane (D–F) molecules

according to model A (top, blue

circles), model B (middle, green

triangles) and model C (bottom,

red squares); MUE and R2

values are given with 95 %

confidence intervals and MUE

in logD units. The grey dashed

line assumes a perfect

correlation and the yellow

shaded interval corresponds to

an error of 1 logD
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for molecule 83 has clearly worsened after the application

of charging corrections of model C, giving rise to virtually

no correlation. Excluding molecule 83 gives a determina-

tion coefficient of neutral species with model C is R2 ¼
0:22\0:26\0:31 and a MUE of 6:51\6:60\6:70 logD

units. Again, GAFF seems to overly favor solvation of

neutral molecules in hydrophobic media, and the addition

of finite-size electrostatics corrections cause the solvation

free energies to become even more negative. This gener-

ates a systematic bias in distribution coefficient predictions.

A slight improvement is reached with model D, whose

R2 ¼ 0:16\0:17\0:18 and MUE ¼ 12:28\12:63\
12:98 logD for the whole dataset, along with a statistically

significant improvement with respect to model C. Overall,

predictions with charging correction deviated significantly

more from the experimental data, compared to model A and

B.

Another source of error in the dominant species

approximation is the neglect of the term DGv!v present in

Eq. 5 for molecules neutral and dominant species differ in

cyclohexane and water. Attempts to evaluate this term

were not made initially due to a lack of time to meet the

submission deadline. However it is problematic to evaluate

rigorously this term with alchemical methods and a clas-

sical potential energy function. Given these difficulties

and the poor results obtained for charged molecules, further

use of the dominant species approximation is not

recommended.

Two-species approximation

Given the poor performance of the dominant species

approximation, the two-species approximation was retro-

spectively applied to the whole batch of molecules. Fig. 5a

and d shows the scatter plot of logD predictions for

charged species only. A comparison between all models to

understand whether one model is statistically significantly

better than any other is given in Fig. 4 of the SI. Deter-

mination coefficient and MUE are shows in Table 3. Sol-

vation free energy results for charged molecules are

summarized in the SI. The logD predictions for non-ion-

izable compounds are identical to those obtained with the

dominant species approximation.

Considering the whole dataset of molecules, model A

and B present the same trend and a similar statistical dis-

tribution. Comparing the R2 and MUE to the dominant

species approximation, model A and B show a drastic

improvement with a R2 ¼ 0:36\ 0:40\ 0:45 and a

MUE ¼ 1:95\ 2:03\ 2:11 and 1:90\ 1:98\ 2:06 for

model A and B respectively. For the protonated species,

both models have a similar R2 comparable with the dom-

inant species approximation, but an improvement in MUE,

going from 15:45\ 15:59\ 15:74 to 2:00\ 2:11\ 2:24

for model A and from 15:54\ 15:68\ 15:82 to

1:95\ 2:06\ 2:18 for model B. 81 is the largest outliers

for these two models, with a logD ¼ �8:1� 0:5 and

�8:3� 0:6 for model A and B respectively, while the

experimentally measured data is logD ¼ �2:2� 0:3.

Again, charging corrections (model C) do not work well

when applied to the whole dataset, resulting in a high

MUE ¼ 6:57\ 6:67\6:76 and a low R2 ¼ 0:05\
0:07\0:09. In contrast using model D a drastic improve-

ment of the results is observed, resulting in a MUE ¼
1:86\2:01\2:09 and R2 ¼ 0:46\0:53\0:59 for the

protonated species and R2 ¼ 0:35\0:40\0:45 and

MUE ¼ 1:87\1:97\2:05 for the entire dataset.

To test the utility of using effective pKa values in the

above calculations, model D was compared to results

obtained by application of Eq. 20 for all the charged spe-

cies. For the 19 protonated molecules considered model D

and Eq. 20 show a MUE = 2.1 and MUE = 2.3 respec-

tively. The difference is due to 5 molecules that have dif-

ferent pKa and effective pKa values owing to the co-

existence of multiple proto- and tautomers at pH 7.4

(10,11, 15, 60, 63). For these 5 molecules the two-species

approximation performs well with a MUE = 1.0, which is

significantly better than the MUE = 2.4 produced by

Eq. 20. However, given the small size of the dataset, it is

Table 2 Comparison between R2 and MUE for model A, B, C and

D considering the whole dataset (R2 and MUE) or neutral molecules

(R2 neutral and MUE neutral) or protonated species only (R2 charged

and MUE charged) for the dominant species approximation. All MUE

are given in logD units. The notation z- \l\ z? signifies 95 %

confidence intervals taken from the bootstrapping of the data

Model A Model B

R2 0:26\ 0:27\ 0:28 0:26\ 0:27\ 0:28

MUE 6:79\ 6:87\ 6:95 6:78\ 6:86\ 6:95

R2 neutral 0:20\ 0:25\ 0:32 0:20\ 0:27\ 0:34

MUE neutral 1:89\1:99\2:09 1:84\ 1:94\ 2:04

R2 charged 0:46\ 0:47\ 0:48 0:46\ 0:47\ 0:48

MUE charged 15:45\ 15:59\ 15:74 15:54\ 15:68\ 15:82

Model C Model D

R2 0:14\ 0:15\ 0:16 0:16\ 0:17\ 0:18

MUE 14:92\ 15:01\ 15:11 12:28\ 12:63\ 12:98

R2 neutral 0:00\ 0:01\ 0:02 0:20\ 0:27\ 0:34

MUE neutral 7:11\ 7:22\ 7:94 1:84\ 1:94\ 2:04

R2 charged 0:56\ 0:57\ 0:58 0:56\ 0:57\ 0:58

MUE charged 28:81\ 28:96\ 29:13 28:81\ 28:96\ 29:13
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not possible to assert whether the improvements are sta-

tistically significant. Lastly, the relative contributions of P

values for conjugate and dominant species in equation 19

were evaluated. In all cases PAcon � PAdom and the contri-

bution of the second term on the right hand side of equation

19 could be neglected without impact on the calculated

log D values.

Comparison of the two-species approximation results

with other SAMPL submissions indicate significant

improvements. In terms of MUE model D is now compa-

rable to the top ranked submissions, and R values

ð0:59\0:63\0:67Þ are in line with the best performing

molecular dynamics based methods [44], though still

inferior to the top-ranked submissions that used other

methodologies.

Reproducibility of results between different

simulation packages

The consistency and reproducibility of predicted distribu-

tion coefficients were analyzed by comparing results of

model B with those reported by the Mobley group (UCI)

[44], under the same assumption that all the molecules are

neutral. The same input files were used, but free energy

calculations were performed with the software Gromacs

[45] and results are reported in Fig. 6. The SOMD free

energies Fig. 6b, c and logD values Fig. 6a are computed

separately for each of the two runs. Reported values are

averages of the two runs and their standard deviation

according to Eq. 21. Comparing logD predictions, a fair

agreement is observed with R2 ¼ 0:55\0:61\0:67 and

the mean unsigned deviation is MUD = 0:78\0:85\
0:94 logD units. 83 is the largest outlier in the SOMD

prediction with a logD ¼ 7:9� 1:2 while the computation

with Gromacs gives logD ¼ 1:21� 0:09. The next outlier

is molecule 17 with a SOMD logD ¼ 3:7� 0:9 and a

Gromacs logD ¼ 6:25� 0:04, followed by 82 SOMD

logD ¼ 3:6� 0:1 and Gromacs logD ¼ 6:56� 0:05.

Additionally, comparing solvation free energy predictions

between SOMD and Gromacs, differences in cyclohexane

solvation free energy for 82 and 17 are present. In partic-

ular, 82 is the largest outlier, with an absolute difference

between SOMD and Gromacs predictions of 4.2

kcal �mol�1, while 17 shows a difference of 3.3

A B

C

R2 0.48 < 0.53 < 0.58 
MUE 2.00< 2.11< 2.24

R2 0.14< 0.20< 0.25 
MUE 5.50< 5.67< 5.84

R2 0.46< 0.53< 0.59 
MUE 1.86< 2.01< 2.19

D

R2 0.46< 0.52< 0.57 
MUE 1.95< 2.06< 2.18

Fig. 5 Scatter plot of logD

estimation with the two-species

model, for the subset of

molecules predicted to co-exist

in charged and neutral forms in

aqueous phase, according to

model A (blue circles), model B

(green circles), model C (red

circles), model D (purple

circles)

Table 3 Comparison between R2 and MUE for model A, B, C and

D considering the whole dataset (R2 and MUE) or protonated species

only (R2 charged and MUE charged) for the two-species approxi-

mation. All MUE give in logD units. The notation z - \l\ z?

signifies 95 % confidence intervals taken from the bootstrapping of

the data

Model A Model B

R2 0:36\ 0:40\ 0:45 0:35\ 0:40\ 0:45

MUE 1:95\ 2:03\ 2:11 1:90\ 1:98\ 2:06

R2 charged 0:48\ 0:53\ 0:58 0:46\ 0:52\ 0:57

MUE charged 2:00\ 2:11\ 2:24 1:95\ 2:06\ 2:18

Model C Model D

R2 0:05\ 0:07\ 0:09 0:35\ 0:40\ 0:45

MUE 6:57\ 6:67\ 6:76 1:87\ 1:97\ 2:05

R2 charged 0:14\ 0:20\ 0:25 0:46\ 0:53\ 0:59

MUE charged 5:50\ 5:67\ 5:84 1:86\ 2:01\ 2:19
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kcal �mol�1. Nonetheless, the free energy predictions are

overall in better agreement, with R2 ¼ 0:92\0:94\0:96

and MUD = 0:67\0:75\0:84 kcal �mol�1 for hydration

free energy and R2 ¼ 0:83\0:85\0:86 and

MUD = 0:93\1:01\1:10 kcal �mol�1 for solvation free

energy in cyclohexane.

In the Gromacs protocol used, alchemical free energies

were computed with 20 k windows both for the discharging

and vanishing step and also using PME [45] for electro-

static calculations. In contrast, SOMD uses nine k windows
for the discharging step and 12 for the vanishing one, along

with Barker-Watts atom based reaction field [40]. These

protocol differences may be the source of variability; fur-

ther investigation beyond the scope of this report is needed

to clarify the origin of the discrepancies.

Conclusions

Alchemical free energy calculations were carried out with

Sire/OpenMM 6.3 (rev. 2015.0.1) [13, 14] to determine the

distribution coefficient for 53 drug-like molecules in the

context of SAMPL5. Overall, model A, B, C and D were

not consistent with experimental values. In particular a

high mean unsigned error is recorded for all models using

the submitted dominant species approximation. A retro-

spective analysis of the organisers shows a Pearson R ¼
0:4� 0:2 for model C and R ¼ 0:6� 0:2 for all models

A,B. In contrast quantum mechanical based methods such

as COSMO-RS [47] fared much better than molecular

mechanical approaches, where the best submission

achieved an average Pearson R ¼ 0:84� 0:04 and a

MUE ¼ 1:7� 0:2 logD units [48]. The two-species

approximation that was introduced after the competition

had finished fares much better than the submitted result and

is much closer to the top performing submissions (results

from model D are R ¼ 0:59\0:63\0:67 and

MUE ¼ 1:87\1:97\2:05).

Two major problems could be identified that signifi-

cantly influenced the outcome of the calculations. Firstly,

pKa estimations indicated that many of the SAMPL5

solutes could adopt multiple protonation states in aqueous

solution at the pH at which measurements were conducted.

Since this greatly complicated the number of simulations to

carry out a dominant species approximation was made

whereby only the (likely) most populated species was

considered in each phase for vacuum to water/cyclohexane

solvation free energy calculations. This turned out to be a

poor approximation since this lead to vastly too negative

logD values for ionizable molecules. In addition, rigorous

evaluation of the gas phase free energy change for con-

verting between neutral and dominant species, initially

neglected, was in fact problematic because of the lack of a

straightforward scheme to account for the contribution of

dummy atoms. Indeed logD predictions from the Mobley

lab (UCI) were generally more accurate owing to their use

of a different (albeit drastic) assumption whereby all

solutes were only considered to exist in aqueous or organic

phases in a neutral form only [48]. Further use of the

dominant species approximation is not recommended.

A retrospective analysis introduced a two-species

assumption that allowed for equilibration of ionised and

neutral forms of an ionisable solute in aqueous and organic

phases. This model greatly reduced errors for charged

molecules, bringing them in line with the results obtained

for non ionisable species. The approach produced small

improvements in accuracy on this dataset in comparison

with the more commonly used pKa correction of log P

values given by equation 20. Further inspection of the

A

B

C

R2: 0.55< 0.61< 0.67  
MUD: 0.78< 0.85< 0.94

R2: 0.92< 0.94< 0.96  
MUD: 0.67< 0.75< 0.84

R2: 0.83< 0.85< 0.86  
MUD: 0.94< 1.01< 1.10 

Fig. 6 Comparison between SOMD and Gromacs logD A red

circles, hydration free energy B blue circles and solvation free energy

in cyclohexane C green triangles. All MUD values of solvation free

energies are given in kcal �mol�1. Dashed red line shows perfect

correlation between datasets and shaded yellow area a 1 logD

(A) and 1 kcal �mol�1 (B and C) deviation bound
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results demonstrated that the contribution of charged spe-

cies ðPAdomÞ to the predicted logD values was negligible.

While this suggests that evaluation of vacuum to cyclo-

hexane transfer free energies of charged species are

unnecessary, it will be interesting to evaluate this assertion

in more complex scenarios where for instance charged

solutes partition into cyclohexane together with clusters of

water molecules. The approach could be further gener-

alised to handle more complex molecules that adopt mul-

tiple charge states, but a drawback is that the results depend

on the values of ionisation and tautomerisation equilibrium

constants. Consequently robust predictions will require

accurate computation of vacuum to solvent transfer free

energies, and also pKa constants.

A second source of error was introduced by finite size

electrostatics corrections. Such correction terms are

essential to yield hydration free energies of cationic

species in agreement with experimental data. Results from

the Minnesota dataset indicate that this correction term

only has a small influence on the hydration free energy of

neutral species in water. However, the effect is more

pronounced when the correction term is applied to polar

solutes in cyclohexane. This was done here to capture

some polarisation effects since the static dielectric con-

stant of GAFF cyclohexane is 1.0, whereas the experi-

mental value is approximately 2.0. Unfortunately, the

present attempt to add this missing physics to GAFF fails

to convince, since the accuracy of logD predictions sys-

tematically worsens. A possible explanation is that the

GAFF force field as used here is unbalanced and favors

solvation of solutes in a non-polar solvent. Indeed, eval-

uation of the logD results for non-ionisable solutes where

finite-size electrostatics correction terms were not applied

suggests that the partitioning between water and cyclo-

hexane is generally overly favourable for the organic

phase.

In conclusions, predictions of logD values by molecular

simulations proved particularly difficult in SAMPL5 owing

to the need to deal with pKa corrections and with short-

comings of non-polarisable force-fields for modelling

transfer between polar/non-polar solvents. For future

efforts and with a view to improve the robustness of

molecular simulation protocols, it would be useful to

devise datasets that enable testing of these separate sources

of errors. This could be done by separating datasets into

compounds predicted to adopt a single protomer/tautomer

form in aqueous and organic phases, and ionisable com-

pounds that may adopt multiple charged states. In the first

case, log D and log P are equivalent and their evaluation

does not require pKa considerations. Ideally forcefields

validated on this category of compounds could be then

combined with pKa estimators to address the more

challenging (albeit common) situation where multiple

species contribute to a logD value.
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