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This paper presents a new state-space method for spectral estimation that performs decimation by any factor, it makes use of the full
set of data and brings further apart the poles under consideration, while imposing almost no constraints to the size of the Hankel
matrix (model order), as decimation increases. It is compared against two previously proposed techniques for spectral estimation
(along with derived decimative versions), that lie among the most promising methods in the field of spectroscopy, where accuracy
of parameter estimation is of utmost importance. Moreover, it is compared against a state-of-the-art purely decimative method
proposed in literature. Experiments performed on simulated NMR signals prove the new method to be more robust, especially for
low signal-to-noise ratio.

1. Introduction

Various applications in the field of digital signal processing,
including speech processing [1] as well as spectroscopy, that
is, quantification of NMR signals, are employing complex
damped sinusoidal models in order to represent a signal as a
sum of exponentially damped complex-valued sinusoids [2–
8]. The generalized model we use is given by

s(n) =
p∑

i=1

(
bie j(ϕ0+ϕi)

)
e(−di+ j2p fi)n

=
p∑

i=1

giz
n
i , n = 0, . . . ,N − 1,

(1)

where p is the number of complex damped sinusoids that
comprise the measured signal. The objective is to estimate
the frequencies fi, damping factors di, amplitudes bi, and
phases ϕ0 + ϕi, i = 1, . . . , p. ϕ0 is the zero order phase,
whereas ϕi represents extra degrees of freedom.

The new method proposed here is called DESE D
(DEcimative Spectral Estimation by factor D), which can
perform decimation by any factor and exploits the full data
set, whereas it is not obliged to reduce the size of the
Hankel matrix as D increases, allowing the use of size N/2

approximately. The advantage of DESE D relies on the fact
that it can benefit from the higher pole resolution obtained
by decimation [9], while at the same time is not bound to
use smaller sizes of Hankel matrices, as other decimative
approaches are. The new method makes use of Singular
Value Decomposition. The DESE D is a generalization of
the DESE2 method proposed in [10], which performs
decimation by factor 2.

The new method has been tested and compared to TLS-
ESPRIT and LS-ESPRIT, that lie among the most promising
methods for parameter estimation solving the same overde-
termined system of equations in a total least squares and
least squares sense, respectively. Moreover, their decimative
versions are being presented and compared with DESE D for
the same decimation factors. In addition, the new method
has been tested against a purely decimative method existing
in the literature. In the sections that follow the proposed
DESE D method as well as the methods against which it
is tested are presented and the superior performance of
DESE D is shown through Monte-Carlo-based experiments.
This can be explained from signal processing theory where
it is proved that decimation increases spectral resolution as
it brings the frequencies of the sinusoids further apart. The
MonteCarlo technique is used to alleviate the random effects
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of the noisy poles. It is also expected the improvement due to
decimation to be more important at low signal-to-noise ratio
SNR.

Note that the subspace estimation method TLS-ESPRIT
[11] that we are using does not act on the covariance matrix
but on the corresponding data matrix, the latter presenting
some numerical advantages. Similarly, we are using in this
paper the LS-ESPRIT method [12], which is also acting
on the data matrix in a Least Squares sense (instead of
Total Least Squares). The same method in NMR literature
is known as HSVD (Hankel Singular Value Decomposition)
[13]. We use the names TLS-ESPRIT and LS-ESPRIT as more
suitable for the signal processing the literature. Also note that
the conventional decimation method we are referring to as
CONDE D [9, 14, 15] can be also seen as a decimated version
of the ESPRIT. However, the TLS-ESPRIT and LS-ESPRIT
decimate in a different way than CONDE D, according to the
principles introduced for the DESE D method.

Section 2.1 introduces DESE and presents a derivation
for the decimation factor D case. Section 2.2 contains the
algorithmic presentation for DESE D, while special cases
are discussed in Section 2.3. The relation between DESE D
and a previously proposed conventional decimative spectral
estimation method (CONDE D) along with its algorithmic
presentation is described in Section 2.4. In Section 3 aspects
regarding the decimative versions of two existing spec-
tral estimation methods the TLS-ESPRIT and LS-ESPRIT
methods are presented. More specifically, the TLS-ESPRIT
algorithm is briefly presented in Section 3.1, while its deci-
mative version called TLS-ESPRIT D is shown in Section 3.2.
Similarly, Section 3.3 presents the LS-ESPRIT algorithm
and Section 3.4 its decimative version, called LS-ESPRIT D.
In Section 3.5 computational considerations for DESE D
versus the other methods are discussed. Experimentation
and results are found in Section 4, while concluding remarks
follow in Section 5.

2. The DESE D Method

2.1. Derivation. In [10] we have presented a derivation
for the DESE 2 (decimation factor 2) method. A different
derivation by employing the well-known Vandermonde
decomposition as well as generalization to the decimation
factor D case is presented in this paper.

Let SH be the L × M Hankel signal observation matrix
of our deterministic signal of p exponentials s(n), n =
0, . . . ,N − 1

SH =
[
s̃0 s̃1 · · · s̃M−1

]
(2)

with L − D ≤ M, p < L − D and L + M − 1 = N . Note
that s̃n are the column vectors of SH , for n = 0, 1, . . . ,M −
1. In particular s̃Tn = [s(n), s(n + 1), . . . , s(n + L − 1)], with
s(n) being the nth sample of the signal s. Let the L−D ×M
matrices S↓D and S↑D be the D order lower shift (top D rows
deleted) and theD order upper shift (bottomD rows deleted)
equivalents of SH . The best choice for L and M is discussed in
Section 2.2.

Theorem 1. Assuming that the signal s in (1) has unique poles
(multiplicity one) and it is noise free, there is an (L−D) order
matrix X , such that,

XS↑D = S↓D (3)

and all the signal’s decimated poles (i.e., the poles of the signal
multiplied by the factorD), are equal to the nonzero eigenvalues
of X .

A solution of (3) is given by X = S↓D pinv(S↑D) and
contains the decimated poles of the signal where pinv denotes
the Moore-Penrose pseudoinverse.

Proof. The first claim of the theorem is true because SH is
constructed of p complex damped sinusoids and therefore
any row of S↓D can be written as a linear combination of the
rows of S↑D.

We want then to prove that p of the eigenvalues of the
matrix

X = S↓D pinv(S↓D) (4)

are equal to the decimated signal pole estimates zDi , i =
1, . . . , p.

Let us consider the well-known Vandermonde decompo-
sition of SH :

SH = AGBT , (5)

where superscript T denotes transpose and the L× p matrix
A, p× p matrix G and M× p matrix B are defined as follows:

A =
(
αH(z1) · · ·αH

(
zp
))

, aH(z) =
(
z0z1 · · · zL−1

)T
,

B =
(
bH(z1) · · · bH

(
zp
))

, bH(z) =
(
z0z1 · · · zM−1

)T
,

G = diag
(
g1, . . . , gp

)
.

(6)

We can then easily write S↓D = A↓DGBT and S↑D = A↑DGBT
where A↓D and A↑D are defined from A, similarly to the way
S↓D and S↑D are defined from SH .

Hence, (3) can be written as

(XA↑D − A↓D)GBT = 0 ⇐⇒ XA↑D = A↓D. (7)

The latter system of linear equations has an infinite number
of solutions given by

X = A↓D
(
AH↑DA↑D

)−1
AH↑D + ΔH , (8)

where superscript H denotes Hermitian conjugate and
ΔHA↑D = 0. Let us consider now the p× p diagonal matrix
ΦD containing the decimated signal poles zDi , i = 1, . . . , p.
It is easy then to see that A↓D = A↑DΦD. Moreover, A↑D =
A↓DΦ−1

D resulting in ΔHA↓D = 0.
Hence, since ‖X‖2

F = ‖X0‖2
F + ‖ΔH‖2

F (‖ · ‖F denotes the
Frobenius norm), the minimum-norm solution to (7) which
we compute is

X0 = A↓D
(
AH↑DA↑D

)−1
AH↑D. (9)
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Furthermore, knowing that A↓D = A↑D ΦD it is also
valid that AH↑D A↓D = AH↑D A↑DΦD which leads to
(AH↑DA↑D)

−1
AH↑DA↓D = ΦD.

By setting W = A↓D and Y = (AH↑DA↑D)
−1
AH↑D it

is straightforward to see that X0 = WY and ΦD = YW .
According to the theorem in [16] the nonzero eigenvalues
of WY are equal to the nonzero eigenvalues of YW.
Consequently, the p nonzero eigenvalues of X0(rank(A↑D) =
p) are equal to the eigenvalues of ΦD, that is, the decimated
poles.

The novelty of the above theorem relies on the general-
ization of the simpler problem for D = 1 as described in
[17] to any factor D. In general, decimation may introduce
aliasing effects that one should take into account in the
algorithm. This is easy to do when prior knowledge (exact
or approximate) for the frequencies of the complex damped
sinusoids is available. In this case, one can undo the effects
of aliasing that might occur when high decimation is used
by employing filtering techniques (as described in [18])
to extract the useful sinusoids prior to estimating their
parameters. Alternatively, when the frequencies are clustered
together one faces the so-called “high resolution” scenario
described in [9].

The Proposed Method in the Presence of Noise. In case of real
life signals (i.e., signals impaired with additive noise) the
peaks are embedded in noise and the rank of matrix SH is full.
The equality (3) does not hold any longer because the signal
does not obey linear models. If the number of complex peaks
to estimate is p, the matrix S↑D can be enhanced by reducing
its rank to p.

To do so we employ the SVD of S↑D and we retain the
p largest singular values based on the assumption that the
noise energy is lower than the energy of the p sinusoids of
the signal s. The resulting matrix S↑De has rank p. Then
X is computed from XS↑De ≈ S↓D which gives rise to
an overdetermined system of equations with the following
solution X = S↓D pinv(S↑De).

Note that since matrix S↑De has rank p, X is also of rank
p (minimum of ranks of S↑De and S↓D) and this guarantees
that only p of the eigenvalues of X is nonzero and corre-
sponds to the decimated signal pole estimates. This yields
the desired decimated estimates of frequencies and damping
factors from the angles and magnitudes, respectively, of the
eigenvalues of X . These decimated estimates are converted
to their nondecimated equivalents fi (frequency estimates)
and di (damping factor estimates) and a computation in a
total least squares sense of estimates gi then takes place. In
this way, complex-valued linear parameter estimates of gi
are calculated, from which amplitude bi and phases ϕ0 + ϕi
estimates are determined as the magnitudes and angles of gi,
respectively.

2.2. DESE D Algorithmic Presentation. Let SH be the L ×M
Hankel signal observation matrix of our deterministic signal
of p exponentials s(n), n = 0, . . . ,N − 1, with L − D ≤
M, p < L −D and L + M − 1 = N , where D denotes the
decimation factor.

The proposed algorithm, involves the following five steps.

Step 1 (DESE D). We compute the L ×M matrix SH of (2)
from the N data points s(n) of (1).

Step 2 (DESE D). We compute the S↓D and S↑D as the D
order lower shift (top D rows deleted) and the D order upper
shift (bottom D rows deleted) equivalents of SH .

The best results are obtained when we use the (L−D)×M
matrices S↓D and S↑D as square as possible [11, 19–21].

Step 3 (DESE D). We compute the enhanced version S↑De of
S↑D in the following way. We employ the SVD of S↑D, S↑D =
U↑DΣ↑DV↑HD and we truncate to order p by retaining only
the largest p singular values.

Step 4 (DESE D). We compute matrix X = S↓D pinv(S↑De).

The eigenvalues λ̂i of X give the decimated signal pole
estimates, which in turn give the estimates for the damping
factors and frequencies of (1).

Step 5 (DESE D). The last step is to compute the phases
and the amplitudes. This is done by finding a least squares
solution to (1), with zi replaced by the estimates and s(n)
given by the signal data points.

Matrix X of Step 4 in the above described version of
DESE D, is computed in a least squares sense. We could
however, compute matrix X in a total least squares sense
using the Theorem 3.10 presented in [17]. We can, hence,
obtain the DESE D TLS method, presented in [22], where
the obtained results suggest that DESE D and DESE D TLS
perform rather similarly for small noise standard deviations,
whereas DESE D seems slightly more robust for large
noise standard deviations than its total squares counterpart.
This is the reason why only DESE D was included in the
experimentation reported here.

2.3. DESE D Special Cases. The above presented method can
also serve as a state-space method for spectral estimation,
if seen and implemented with no decimation whatsoever
(D = 1). In this case, matrices S↓1 and S↑1 are, respectively,
the first-order lower shift (top row deleted) and first-order
upper shift (bottom row deleted) of the original Hankel SH
of (2) with L − 1 ≤ M, p < L − 1 and L + M − 1 = N .

A variation of such a nondecimative method, called CSE,
was proposed in [23]. In this case both matrices S↓1 and S↑1

(of Step 2) were enhanced (truncated to order p) with the use
of SVD. Thus, Steps 3 and 4 presented above are replaced by
the following step.

Step 3 (a). We compute the enhanced version S↓1e of S↓1

in the following way. We employ the SVD of S↓1, S↓1 =
U↓1Σ↓1V↓H1 and we truncate to order p by retaining only the
largest p singular values.

In the same way, we compute the enhanced version S↑1e
of S↑1.

Step 4 (a). We compute matrix X = (S↓1e)pinv(S↑1e).
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The eigenvalues λ̂i of X give the signal pole estimates,
which in turn give the estimates for the damping factors and
frequencies of (1). Note that the CSE method was also proven
to be more robust in terms of bad runs when compared to
TLS-ESPRIT; however, compared to DESE 1, similar results
were obtained while the complexity was increased due to the
second enhancement.

When only one enhancement is performed (to matrix
S↑1), the nondecimative method (D = 1, for DESE D)
is identical to a method proposed in [24], the MATPEN
method.

For MATPEN(=DESE 1), Step 4(a) is replaced by X =
S↓1pinv(S↑1e).

The eigenvalues λ̂i of X give the signal pole estimates,
which in turn give the estimates for the damping factors and
frequencies of (1).

2.4. DESE D versus Other Decimative Methods. The draw-
backs of conventional decimative methods are related to the
size of the data set and to the overdetermined model order
that can be used. Already proposed decimative methods (e.g.,
[9]), even though they make use of the full data set available,
are obliged to reduce the maximum possible matrix size as D
increases. Hence, they relate the size of the Hankel matrix n
with D, according to n = N/(2D).

This implies that the efficiency of the overdetermined
model is reduced. On the contrary, DESE D does not present
this drawback and allows the use of matrix size n =
(N + 1)/2 − D/2, that change very slowly with respect to
decimation factor D.

The DESE D has been tested against a decimation
method proposed in [9, 14, 25], which we call below
CONDE D (CONventional DEcimative method for decima-
tion factor D).

The method makes use of the auto- and cross-covariance
matrices of the input signal, and decimated sequences of
the input signal. Then, averaged covariance matrices are
used for parameter estimation of the complex damped
sinusoids. Next, it employs Singular Value Decomposition of
the resulting matrix to truncate to order p and proceeds with
estimation of the frequency and damping factor in a total
least squares sense.

The method’s algorithmic presentation for decimation
factor D involves the following five steps.

Step 1 (CONDE D). We compute the L × M (L = M =
N/(2D)) Hankel matrix Ck that corresponds to the kth
decimated signal, ck(n) = s(k : D : N), where D is the
decimation factor, from the N data points s(n) of (1).

Step 2 (CONDE D). We compute a global matrix C by
concatenating Ck, k = 1, . . . ,D as shown below:

C = [C1 : C2 : · · · : CD]. (10)

We then compute a global covariance matrix R = CCH .

Step 3 (CONDE D). We compute the eigen analysis of R =
UΛUH to deduce U , which in turn is truncated to order p,
thus, yielding Up.

Step 4 (CONDE D). We compute the solution Q of U↑pQ =
U↓p, in a total least squares sense, where U↓p(U↑p) are
derived from Up by deleting its top (bottom) row. The

eigenvalues λ̂i of Q give the decimated signal pole estimates,
which in turn give the estimates for the damping factors and
frequencies of (1).

Step 5 (CONDE D). The last step is to compute the phases
and the amplitudes. This is done by finding a least squares
solution to (1), with zi replaced by the estimates and s(n)
given by the signal data points.

3. Decimative Versions of
TLS-ESPRIT and LS-ESPRIT

The new concept of using all data samples available while
practically imposing no constraints between the size of
HANKEL matrix and decimation factor D, included in the
DESE D method, can be implemented in other state-space
spectral estimation methods, thus, deriving a new family of
methodologies.

The subsections that follow present the TLS-ESPRIT and
LS-ESPRIT methods along with their decimative versions
TLS-ESPRIT D and LS-ESPRIT D, respectively.

3.1. The TLS-ESPRIT Algorithm. The TLS-ESPRIT method,
reported in [11], consists of using the Hankel matrix,
performing an SVD decomposition and reducing the size of
matrices to order p. Damping factors di and the frequencies
fi are estimated in a total least squares sense. Phases and
amplitudes are estimated using the least squares method.

Step 1 (TLS-ESPRIT). We compute the SVD of the L × M
Hankel matrix SH of (2) from the N data points s(n) of (1):

SH = UL×LΣL×MVH
M×M , (11)

where L ≤ M. The best results are obtained when we use
L =M(+1) = N/2.

Step 2 (TLS-ESPRIT). We truncate U ,Σ,V to order p and
compute Sp = UpΣpVH

p where Up, Σp, VP are the first p

columns of UL×L, ΣL×M , VH
M×M .

Step 3 (TLS-ESPRIT). We compute the solution Q of
U↑pQ = U↓p, in a total least squares sense, where U↓p(U↑p)
are derived from Up by deleting its top (bottom) row. The

eigenvalues λ̂i of Q give the signal pole estimates, which
in turn give the estimates for the damping factors and
frequencies of (1).

Step 4 (TLS-ESPRIT). The last step is to compute the phases
and the amplitudes. This is done by finding a least squares
solution to (1), with zi replaced by the estimates and s(n)
given by the signal data points. It is worth noting that
TLS-ESPRIT and CONDE 1 (no decimation whatsoever) are
identical.
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3.2. The TLS-ESPRIT D Algorithm. By using the notion
introduced by DESE D that implies minor reduction of the
Hankel matrix size with respect to decimation factor D, the
decimative version of TLS-ESPRIT can be easily derived.
More precisely, appropriate formation of matrixUp—similar
to that of matrix SH in the proposed DESE D-, creates the
TLS-ESPRIT D decimative version for decimation factor D.
Its algorithmic presentation is shown below. Please note that
Steps 1and 2 are identical in the two approaches.

Step 1 (TLS-ESPRIT). We compute the SVD of the L × M
Hankel matrix SH of (2) from the N data points s(n) of (1):

SH = UL×LΣL×MVH
M×M , (12)

where L ≤ M. The best results are obtained when we use
L =M(+1) = N/2.

Step 2 (TLS-ESPRIT). We truncate U ,Σ,V to order p and
compute: Sp = UpΣpVH

p where Up, Σp, V p are the first p

columns of UL×L, ΣL×M , VH
M×M .

Step 3 (TLS-ESPRIT D). We compute the solution Q of
U↑DQ = U↓D, in a total least squares sense, where
U↓D(U↑D) are derived fromUP by deleting its topD (bottom

D) rows, respectively. The eigenvalues λ̂i of Q give the
decimated signal pole estimates, which in turn give the
estimates for the damping factors and frequencies of (1).

Step 4 (TLS-ESPRIT D). The last step is to compute the
phases and the amplitudes. This is done by finding a least
square solution to (1), with zi replaced by the estimates and
s(n) given by the signal data points. Note that in [26], a
different decimated version of TLS-ESPRIT (=HTLS in NMR
literature) is presented, which is not treated in this paper.

3.3. The LS-ESPRIT Algorithm. If instead of computing in a
total least squares sense the solution Q of U↑pQ = U↓p, one
employs the least squares solution, one uses LS-ESPRIT [12].

In this case, Step 3 TLS-ESPRIT of the Section 3.1 above
is replaced by the following.

Step 3 (LS-ESPRIT). We compute the solution Q of U↑pQ =
U↓p, in a least squares sense, where U↓p(U↑p) are derived
from Up by deleting its top (bottom) row. Hence, Q =
pinv(U↑P)U↓P .

The eigenvalues λ̂i of Q give the signal pole estimates,
which in turn give the estimates for the damping factors and
frequencies of (1).

3.4. The LS-ESPRIT D Algorithm. One can easily derive LS-
ESPRIT D, as it was done for TLS-ESPRIT D, by appropriate
formation of matrix Up for decimation factor D and by
solving in a least squares sense for matrix Q.

In this case, Step 3 TLS-ESPRIT D of the Section 3.2
above is replaced by the following.

Step 3 (LS-ESPRIT D). We compute the solution Q of
U↑DQ = U↓D, in a least squares sense, where U↓D (U↑D)

are derived from Up by deleting its top D (bottom D) rows,

respectively. Hence, Q = pinv(U↑D)U↓D. The eigenvalues λ̂i
of Q give the decimated signal pole estimates, which in turn
give the estimates for the damping factors and frequencies of
(1).

3.5. Computational Considerations for DESE D. Regarding
the computational complexity, DESE D involves one large
SVD (singular value decomposition) and one large EVD
(eigenvalue decomposition). Note that the pinv operation
in Step 4 of the DESE D algorithm is of no computational
load, since the SVD of the matrix involved in the pseudoin-
verse operation is already available from the previous step
(Step 3 DESE D). Moreover, only p of the eigenvalues of
matrix X involved in the EVD, are nonzero, which can con-
siderably reduce the complexity of the large EVD in DESE D
if a fast algorithm is used. On the other hand, the TLS-
ESPRIT D/LS-ESPRIT D decimative versions require one
large SVD and one small EVD. Consequently the difference
of the complexity of DESE D versus TLS-ESPRIT D/LS-
ESPRIT D cannot be considered as a drawback for DESE D.
Regarding the complexity of CONDE D, the fact that it uses
lower dimension Hankel matrices (as decimation increases)
improves its computational characteristics with respect to the
other methods.

4. Experimental Results

All methods, namely, DESE D, CONDE D, LS-ESPRIT D,
and TLS-ESPRIT D have been tested via simulations on a
typical two peak reference signal, and two typical 31P NMR
signals, in order to evaluate both robustness and accuracy of
parameter estimation in the problem defined by (1). All the
experiments have been conducted using the Matlab software.

The first signal is a two-peak signal often used in the
literature (reference signal), the exact parameter values of
which are presented in Table 1, while the sampling frequency
is considered 1.

The second signal is a representative example simulating
a typical 31P NMR signal of perfused rat liver. This 31P
NMR signal comprises a fifth-order model function given in
Table 2 by whichN data points uniformly sampled at 10 KHz
are exactly modeled.

Moreover, the third signal is also a representative example
simulating a typical 31P NMR signal which comprises an
eleventh-order model function given in Table 3 by which N
data points uniformly sampled at 3 KHz are exactly modeled.

The data points of all signals are perturbed by white
Gaussian noise whose real and imaginary components have
standard deviation σv.

Root mean-squared errors of the estimates of all signal
parameters are computed using either 500 noise realizations
or 3000 noise realizations (excluding failures) for different
noise levels. A failure occurs when not all peaks are resolved
within specified intervals lying symmetrically around the
exact frequencies and when the estimated damping factors
are nonpositive.

For the two peak reference signal (Figure 1), the half-
widths of the intervals are, respectively, 0.0094 Hz and
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Table 1: Exact parameter values of the standard two peak reference signal with ϕi = 0.

Peak i fi (Hz) di (rad/s) bi ψ(a)
i

1 0.2 0.01 1 0

2 0.22 0.02 1 0
(a)
ψi = ϕ0180π expresses the phase in degrees.

Table 2: Exact parameter values of the five peak simulated 31P NMR signal, modelled by (1) with ϕi = 0.

Peak i fi (Hz) di (rad/s) bi ψ(a)
i

1 −1379 208 6.1 15

2 −685 256 9.9 15

3 −271 197 6.0 15

4 353 117 2.8 15

5 478 808 17.0 15
(a)
ψi = ϕ0180π expresses the phase in degrees.

Table 3: Exact parameter values of the eleven peak simulated 31P NMR signal, modelled by (1) with ϕi = 0.

Peak i fi (Hz) di (rad/s) bi ψ(a)
i

1 −86 50 75 135

2 −70 50 150 135

3 −54 50 75 135

4 152 50 150 135

5 168 50 150 135

6 292 50 150 135

7 308 50 150 135

8 360 25 150 135

9 440 285.7 1400 135

10 490 25 60 135

11 530 200 500 135
(a)
ψi = ϕ0180π expresses the phase in degrees.

0.0106 Hz and were deduced from the Cramer-Rao lower
bounds of the two peaks at the noise standard deviation
where these intervals are touching each other. These values
are only used to determine when a failure (bad run) occurs.
They depend on the signal parameters and the noise energy
and show how far one can go before the two peaks cannot be
resolved.

For the five-peak 31P NMR signal (Figure 2), the half-
widths of the intervals are, respectively, 82, 82, 82, 43, and
82 Hz, the values being derived from the Cramer-Rao lower
bounds of the closest peaks 4 and 5 at the noise standard
deviation where these intervals are touching each other. The
number of complex damped sinusoids to be estimated is set
to 5. The Cramer-Rao lower bounds are derived from the
exact parameter values and σv.

For the eleven peak 31P NMR signal (Figure 3), the half-
widths of the intervals are 8.6, 7.3, 8.6, 3.2, 3.2, 3.4, 3.6, 7.4,
5.5, 2.3, and, 7.7 Hz, for peak 1 to 11, respectively. These
values are derived from the Cramer-Rao lower bounds of the
closest peaks 4 and 5 at the noise standard deviation where
these intervals are touching each other.

Comparative results between all methods are presented
below for different noise standard deviations.
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Figure 1: Fast Fourier transform (magnitude) of the two peak
signal.

For all methods, we have used N = 128 and M = N/2 =
64 except for CONDE D, for which M = 32(21) for D =
2(3), respectively.
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Figure 2: Fast Fourier transform (magnitude) of the five peak
simulated 31P NMR signal.
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Figure 3: Fast Fourier transform (magnitude) of the eleven peak
simulated 31P NMR signal.

In Figure 4 failure rates (bad runs) in 500 realizations are
depicted as a function of noise standard deviation for the
two peak reference signal. In this graphical representation,
results are presented for methods DESE2, LS-ESPRIT2, TLS-
ESPRIT2, and CONDE2.

The same quantity, namely, number of bad runs in
500 realizations, is depicted in Figure 5 for the eleven
peak simulated 31P NMR signal, for methods DESE2 & 1,
CONDE2 & 1, LS-ESPRIT2 & 1, and TLS-ESPRIT2.

Note that DESE2 and DESE1 have fewer bad runs than
the other methods under consideration. This is even more
evident as the noise increases.

Moreover, we have conducted further experiments to
improve the statistical behavior of RMSE figures when the
number of bad runs tends to be very large. We decided to
increase considerably the number of Monte Carlo trials to
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Figure 4: Number of Bad runs in 500 realisations for σv ∈ (0, 2.6]
for the two-peak reference signal for methods DESE2, LS-ESPRIT2,
TLS-ESPRIT2 and CONDE2.

insure that the number of good runs that are taken into
account to deduce the RMSE is big enough.

In Figure 6 the number of bad runs for 3000 trials are
presented for the five peak simulated 31P NMR signal, for
σv ∈ (0, 2.6], for methods DESE2, DESE3, LS-ESPRIT2,
CONDE2, and CONDE3. The same quantity is depicted in
Figure 7 for methods DESE2, DESE1, TLS-ESPRIT2, and
CONDE1 (=TLS-ESPRIT).

Note that here again DESE2 and DESE3 present fewer
bad runs than the other methods, which becomes more
evident as the noise increases. In general, DESE3 performs
better in terms of robustness than DESE2 as expected,
because it brings the peaks even more further apart due to
the decimation factor 3 instead of 2, while the matrix size
remains practically unchanged.

In Figure 8 root mean square errors of the frequency
estimates are presented for DESE2 and TLS-ESPRIT and for
σv ∈ (0, 2.6], for peaks 1 and 4 of the five peak simulated 31P
NMR signal, for 3000 trials. Peak 4 of this signal is considered
the most difficult to estimate since it is relatively close to
peak 5.

The same quantities (also for 3000 trials) for methods
DESE2 versus LS-ESPRIT2 are presented in Figure 9, for
DESE2 versus CONDE2 in Figure 10, and for methods
DESE3 versus CONDE3 in Figure 11.

These graphs show the same trend, according to which,
the DESE D technique outperforms the other methods for
both peaks 1 and 4, especially for low SNR. In particular,
the difference in performance is more evident in the case of
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Figure 5: Number of Bad runs in 500 realisations for σv ∈ (0, 2.6]
for the eleven peak simulated 31P NMR signal for methods DESE2,
DESE1, CONDE2, CONDE1, LS-ESPRIT2, LS-ESPRIT1, and TLS-
ESPRIT2.

peak 4, which is more difficult to estimate due to its short
distance from peak 5. Figures 8 to 11 show that DESE D has
always better or at least similar performance compared to
the other techniques. More detailed results involving noise
standard deviation, number of bad runs, and root mean-
squared errors of frequency, damping factor, amplitude, and
phase estimates for all signals are presented in tabular forms
in [27].

It is worth noting that the increased number of trials
improves the statistical behavior of the RMSE variance.

The above results suggest in all cases that the DESE D
approach performs similarly to the other methods for high
S/N ratio. However, for low S/N ratio, despite the similarity
of the root mean-squared errors of the estimated parameters,
the DESE D technique performs better due to its lower
failure rate.

Note that the calculation of the root mean-squared error
does not take into account failures and it is normal that
methods with small number of bad runs will present larger
error than those with big number of bad runs.

5. Conclusion

In this paper DESE D, a new state-space decimative method,
for spectral estimation was presented. It makes use of
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Figure 6: Number of bad runs in 3000 realisations for σv ∈ (0, 2.6]
for the five peak simulated 31P NMR signal for methods DESE2,
DESE3, LS-ESPRIT2, CONDE2 and CONDE3.
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Figure 7: Number of bad runs in 3000 realisations for σv ∈ (0, 2.6]
for the five peak simulated 31P NMR signal for methods DESE2,
DESE1, TLS-ESPRIT2 and CONDE1 (=TLS-ESPRIT).
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Figure 8: Frequency root mean square errors in 3000 realisations
for Peaks 1 and 4 of the five peak simulated 31P NMR signal, for
methods DESE2 & TLS-ESPRIT and for σv ∈ (0, 2.6].
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Figure 9: Frequency root mean square errors in 3000 realisations
for Peaks 1 and 4 of the five peak simulated 31P NMR signal, for
methods DESE2 & LS-ESPRIT2 and for σv ∈ (0, 2.6].

decimation by any factorD and SVD, to estimate frequencies,
damping factors, amplitudes, and phases of complex damped
sinusoids. DESE D makes use of the full data set available
and, unlike conventional decimation methods, it imposes no
constraints to the size of the Hankel matrix, as decimation
increases. It was tested in spectroscopy, one of the most
demanding applications of digital signal processing in terms
of accuracy. DESE D was compared to a state-of-the-
art decimative method, along with other state-of-the-art
nondecimative ones together with their derived decimative
counterparts. Examples on a two-peak reference signal as

0 0.5 1 1.5 2 2.5 3

16

14

12

10

8

6

4

2

0

Fr
eq

u
en

cy
 R

M
S 

er
ro

r 
fo

r 
pe

ak
 1

 a
n

d 
4

of
 t

h
e 

fi
ve

 p
ea

k 
si

gn
al

18

Noise standard deviation

DESE2 peak 1
DESE2 peak 4

CONDE2 peak 1
CONDE2 peak 4

Figure 10: Frequency root mean square errors in 3000 realisations
for Peaks 1 and 4 of the five peak simulated 31P NMR signal, for
methods DESE2 & CONDE2 and for σv ∈ (0, 2.6].
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Figure 11: Frequency root mean square errors in 3000 realisations
for Peaks 1 and 4 of the five peak simulated 31P NMR signal, for
methods DESE3 & CONDE3 and for σv ∈ (0, 2.6].

well as on two typical 31P NMR signals were presented and
it was shown that DESE D performs better than the other
methods, especially for low signal-to-noise ratio.
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estimation in the presence of moving-average noise using
decimation,” Signal Processing, vol. 63, no. 3, pp. 211–220,
1997.

[10] S. E. Fotinea, I. Dologlou, and G. Carayannis, “Decimation
and SVD to estimate exponentially damped sinusoids in the
presence of noise,” in Proceedings of the IEEE Interntional
Conference on Acoustics, Speech, and Signal Processing (ICASSP
’01), vol. 5, pp. 3073–3076, Salt Lake City, Utah, USA, May
2001.

[11] S. Vanhuffel, H. Chen, C. Decanniere, and P. Van Hecke,
“Algorithm for time-domain NMR data fitting based on total
least squares,” Journal of Magnetic Resonance A, vol. 110, no. 2,
pp. 228–237, 1994.

[12] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT—a subspace
rotation approach to estimation of parameters of cisoids in
noise,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 5, pp. 1340–1342, 1986.

[13] W. W. F. Pijnappel, A. van den Boogaart, R. de Beer, and D. van
Ormondt, “SVD-based quantification of magnetic resonance
signals,” Journal of Magnetic Resonance, vol. 97, no. 1, pp. 122–
134, 1992.

[14] B. Halder and T. Kailath, “Efficient estimation of closely
spaced sinusoidal frequencies using subspace-based methods,”
IEEE Signal Processing Letters, vol. 4, no. 2, pp. 49–51, 1997.

[15] P. Stoica, J. Li, and X. Tan, “On spatial power spectrum
and signal estimation using the Pisarenko framework,” IEEE
Transactions on Signal Processing, vol. 56, no. 10, pp. 5109–
5119, 2008.

[16] Roger A. Horn and Charles R. Johnson, Matrix Analysis,
Cambridge University Press, 1985.

[17] S. Van Huffel and J. Vandewalle, The Total Least Squares Prob-
lem. Computational Aspects and Analysis, vol. 9 of Frontiers
in Applied Mathematics, Society for Industrial and Applied
Mathematics, Philadelphia, Pa, USA, 1991.

[18] T. Sundin, L. Vanhamme, P. Van Hecke, I. Dologlou, and S.
Van Huffel, “Accurate quantification of 1H spectra: from FIR
filter design for solvent suppression to parameter estimation,”
Journal of Magnetic Resonance, vol. 139, no. 2, pp. 189–204,
1999.

[19] I. Dologlou and G. Carayannis, “LPC/SVD analysis of signals
with zero modeling error,” Signal Processing, vol. 23, no. 3, pp.
293–298, 1991.

[20] P. Stoica and Y. Selén, “A review of information criterion
rules,” IEEE Signal Processing Magazine, vol. 21, no. 4, pp. 36–
47, 2004.

[21] S.-E. Fotinea, I. Dologlou, and G. Carayannis, “On the use
of decimation for efficient spectral estimation,” International
Journal of Computer Mathematics and Its Applications, vol. 8,
pp. 84–100, 2006.

[22] S.-E. Fotinea, I. Dologlou, and G. Carayannis, “A new
decimative spectral estimation method with unconstrained
model order and decimation factor,” in Total Least Squares
and Errors-in-Variables Modeling: Analysis, Algorithms and
Applications, S. Van Huffel and P. Lemmerling, Eds., pp. 321–
330, Kluwer Academic Publishers, 2002, ISBN: 1-4020-0476-1.

[23] S. E. Fotinea, I. Dologlou, N. Hatzigeorgiu, and G. Carayan-
nis, “Spectral estimation based on the eigenanalysis of
companion-like matrices,” in Proceedings of the IEEE Intern-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’00), vol. 1, pp. 257–260, Instabul, Turkey, June 2000.

[24] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating
parameters of exponentially damped/undamped sinusoids in
noise,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, no. 5, pp. 814–824, 1990.

[25] G. Morren, P. Lemmerling, and S. Van Huffel, “Decimative
subspace-based parameter estimation techniques,” Signal Pro-
cessing, vol. 83, no. 5, pp. 1025–1033, 2003.

[26] G. Morren, P. Lemmerling, and S. Van Huffel, “Decimative
subspace-based parameter estimation techniques applied to
magnetic resonance spectroscopy signals,” in Proceedings of the
23rd Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBS ’01), pp. 2319–2322,
Istanbul, Turkey, October 2001.

[27] S.-E. Fotinea, I. Dologlou, and G. Carayannis, “Detailed
results for the work presented in “Decimative Spectral Esti-
mation based on the eigenanalysis of Hankel matrices”,” ILSP
Internal Report, 2001.


	Introduction
	The DESE_D Method
	Derivation
	The Proposed Method in the Presence of Noise

	DESE_D Algorithmic Presentation
	DESE_D Special Cases
	DESE_D versus Other Decimative Methods

	Decimative Versions ofTLS-ESPRIT and LS-ESPRIT
	The TLS-ESPRIT Algorithm
	The TLS-ESPRIT_D Algorithm
	The LS-ESPRIT Algorithm
	The LS-ESPRIT_D Algorithm
	Computational Considerations for DESE_D

	Experimental Results
	Conclusion
	References

