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Abstract
Background: Hidden Markov Models (HMMs) have proven very useful in computational biology
for such applications as sequence pattern matching, gene-finding, and structure prediction. Thus far,
however, they have been confined to representing 1D sequence (or the aspects of structure that
could be represented by character strings).

Results: We develop an HMM formalism that explicitly uses 3D coordinates in its match states.
The match states are modeled by 3D Gaussian distributions centered on the mean coordinate
position of each alpha carbon in a large structural alignment. The transition probabilities depend on
the spread of the neighboring match states and on the number of gaps found in the structural
alignment. We also develop methods for aligning query structures against 3D HMMs and scoring
the result probabilistically. For 1D HMMs these tasks are accomplished by the Viterbi and forward
algorithms. However, these will not work in unmodified form for the 3D problem, due to non-local
quality of structural alignment, so we develop extensions of these algorithms for the 3D case.
Several applications of 3D HMMs for protein structure classification are reported. A good
separation of scores for different fold families suggests that the described construct is quite useful
for protein structure analysis.

Conclusion: We have created a rigorous 3D HMM representation for protein structures and
implemented a complete set of routines for building 3D HMMs in C and Perl. The code is freely
available from http://www.molmovdb.org/geometry/3dHMM, and at this site we also have a simple
prototype server to demonstrate the features of the described approach.

Background
HMMs have been enormously useful in computational
biology. However, they have only been used to represent
sequence data up to now. The goal of the present work is
to make HMMs operate fundamentally with 3D-structural
rather than 1D-sequence data. Since HMMs have proven
worthwhile in determining a characteristic profile for an
ensemble of related sequences, we expect them to be use-
ful in building a rigorous mathematical description of

protein fold family. Our work rests on three elements of
background theory: 1D HMMs, 3D structural alignment
and 3D core structures.

One-dimensional HMMs
Profile hidden Markov models (profile HMMs) are statis-
tical models of the primary structure consensus of a
sequence family. Krogh et al [1] introduced profile HMMs
to computational biology to analyze amino acid sequence
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similarities, adopting HMM techniques that had been
used for years in speech recognition [2]. This paper had a
propelling impact, because HMM principles appeared to
be well suited to elaborating upon the already popular
"profile" methods for searching databases using multiple
alignments instead of single query sequences [3]. In this
context an important property of HMMs is their ability to
capture information about the degree of conservation at
various positions in an alignment and the varying degree
to which indels are permitted. This explains why HMMs
can detect considerably more homologues compared to
simple pairwise comparison [4,5]. Since their initial use in
modeling sequence consensus, HMMs have been adopted
as the underlying formalism in a variety of analyses. In
particular, they have been used for building the Pfam
database of protein familes [6-8], for gene finding [5], for
predicting secondary structure [9] and transmembrane
helices [10]. Efforts to use sequence-based HMMs for pro-
tein structure prediction [11], fold/topology recognition
[12-14] and building structural signatures of structural
folds [15] were also reported recently. However, no one
yet has built an HMM that explicitly represents a protein
in terms of 3D coordinates. A further key advantage of
using HMMs is that they have a formal probabilistic basis.
Bayesian theory unambiguously determines how all the
probability (scoring) parameters are set, and as a conse-
quence, HMMs have a consistent theory behind gap pen-
alties, unlike profiles.

A typical HMM (see Figure 1) consists of a series of states
for modeling an alignment: match states Mk for consensus
positions; and insert Ik and delete states Dk for modeling
insertions/deletions relative to the consensus. Arrows

indicate state-to-state transitions, which may occur
according to the corresponding transition probabilities.
Sequences of states are generated by the HMM by follow-
ing a path through the model according to the following
rules:

• The path is initiated at a begin state M0; subsequent
states are visited linearly from left to right. When a state is
visited, a symbol is output according to the emission
probability of that state. The next state is visited according
to current state's transition probabilities.

• The probability of the path is the product of probabili-
ties of the edges traversed. Since the resulting sequence of
states is observed and underlying path is not, the part of
the HMM considered "hidden" is the path taken through
the model.

Structural alignment
Structural alignment involves finding equivalences
between sequential positions in two proteins (Figure 2).
As such, it is similar to sequence alignment. However,
equivalence is determined on the basis of a residue's 3D
coordinates, rather than its amino acid "type." A number
of procedures for automatic structural alignment have
been developed [16-24]. Some of these are based on iter-
ative applications of dynamic programming, where each
iteration minimizes the RMS distances between the newly
aligned atoms. Others maximize the overlap of distance
matrices, and yet others are based on heuristics such as
hashes. Structural alignment has been used to find non-
obvious similarities in protein structure – e.g. the globin-
colicin similarity [25] – to cluster the whole structure
databank [26-28], to refine measures of structural annota-
tion transfer [29], and to assist homology modeling [30].

The next step after pairwise structural alignment is multi-
ple structural alignment, simultaneously aligning three or
more structures together. There are currently a number of
approaches for this [18,23,31,32]. Most of these proceed
by analogy to multiple sequence alignment [33-35],
building up an alignment by adding one structure at a
time to the growing consensus. Multiple structural align-
ment is an essential first step in the construction of consen-
sus structural templates, which aim to encapsulate the
information in a family of structures. It can also form the
nucleus for a large multiple sequence alignment – i.e.,
highly homologous sequences can be aligned to each
structure in the multiple alignment.

Core structures
Given a structural alignment of a family of proteins, a set
of atoms with essentially fixed relative positions in all
member of the family can be determined [36,37]. This set
is called the invariant core for the given family. Cores are

Typical 1D HMM topology (adapted from [7])Figure 1
Typical 1D HMM topology (adapted from [7]). Squares, dia-
monds and circles represent match (Mk), insert (Ik) and 
delete (Dk) states, respectively. Arrows indicate state-to-
state transitions, which may occur according to the corre-
sponding transition probabilities.
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meant to characterize protein families statistically, based
on positional variation in observed main chain atoms
among members of structural family.

Computing a core structure involves the following steps:
Superimposition (structural alignment) of an ensemble of
protein structures from the same family, calculation of
structural deviation between coordinates from ensemble
structures, iterative removal of non-core atoms based on
high positional variation, calculation of ellipsoid volumes
representing positional variance of alpha carbon posi-
tions at every core center.

Difficulty in adapting 1D HMM Formalism to 3D
There have been a number of recent attempts to make
HMMs be useful for structural studies [9,10]. However,
none of the suggested schemes are fundamentally three-
dimensional (coordinate dependent), since all of them
are based on building a 1D HMM profile representing a

sequence alignment and structural information only
enters in the form of encoded symbols (i.e. H for helix and
E for sheet). Adding in real 3D structure is non-trivial. This
reflects the fact that the structure is fundamentally differ-
ent from the sequence not only in increased dimensional-
ity, but also due to the transition from discrete to
continuous representation. For matching a query structure
of the model, the conventional dynamic programming
that underlies normal HMMs will not work since struc-
tural alignment is "non-local". Normal dynamic program-
ming assumes that determining the best match between
query and model in a given "local" region of the align-
ment potentially will not affect the optimum match
sequentially before this region. Thus, one can break up the
whole sequence comparison problem into sub-problems
that can be readily solved. However, this does not apply in
structure comparison. The optimum match in one region
of the alignment R potentially can affect the optimum
superposition between two structures and this in turn can

Structural alignment of two protein backbones (PDB ids: 1ECD.pdb and 1HLB.pdb)Figure 2
Structural alignment of two protein backbones (PDB ids: 1ECD.pdb and 1HLB.pdb). Aligned parts are shown in yellow.
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affect the optimum alignment globally, in regions sequen-
tially distant from R.

Combining 1D HMMs with 3D Cores to construct 3D 
HMMs
To get around this difficulty, we develop a way of doing an
alignment-free superposition initially and then adding
conventional HMM scoring. In our approach, the core
structures are made from "ellipsoidal" Gaussian distribu-
tions centered on aligned Cα positions. If each Gaussian
distribution is normalized to 1, we have a probability dis-
tribution based on coordinates. Hence, if we want to use
HMMs on protein structures instead of sequences, core
models provide a nice representation for the match states.
In fact, we can think of the cores as "structural profiles",
with each core ellipsoid representing a statistical distribu-
tion of potential coordinates, just as in sequence profiles,
each match state represents a probability distribution of
each of the 20 amino acids occurring in that position. In
practice for a sequence profile, state emission distribu-
tions correspond to tables of probabilities of each amino
acid appearing. Likewise, in 3D HMMs match states corre-
spond to the probability of a given Cα position falling
within a prescribed volume. This can be readily calculated
from coordinate differences: if an aligned Cα from the
query appears close to the ellipsoid centroid, it scores
well; if it is farther away, it scores poorly.

A path through a HMM is a sequence of states such that
there exists an edge from each state in the path to the next
state in the path. A path through the 3D HMM gives a
probability distribution of each structural position, based
on the probabilities of the atom positions in the corre-
sponding states. The probability of the structure given a
core target is the product of the probabilities of the Cα
positions in each state. The probability of an HMM gener-
ating a structure is the sum, over all the paths in the HMM,
of the probability of the path times the probability of the
structure given the path.

Transition probabilities of the new model are based on
the probabilities of the coordinates of a given atom within
a coordinate distribution (ellipsoid), where the probabil-
ities are calculated based on the relative distance of the
query atom from each ellipsoid centroid. For regions not
associated with the core transition probabilities are
derived from a multiple alignment in a similar fashion to
those in 1D sequence HMMs, and we employ a Bayesian
approach to merge them together.

We, therefore, suggest a combined approach. A separate
HMM is computed for each core structure we want to use.
Every core ellipsoid corresponds to the match state in the
HMM. The sizes of the ellipsoids are related to the HMM
transition probabilities: the larger size corresponds to a
greater indel probability, whereas the smaller one indi-
cates a more conserved core position and thus increased
probability of transition to the corresponding match state
(and a lower probability of falling into an indel state).
Next, a query protein structure is aligned with a core and
relative interstructural distances are computed. These
deviations between the query and the core model can be
converted to the emission probabilities in the match states
of the HMM, and an overall score can finally be com-
puted. This score represents the log likelihood that the
protein structure was generated by the HMM, and not
some other disordered model, called the null model. In
practical terms, this score can be used to identify the new
protein as a potential member of a protein family, and
thus classify it.

Results and Discussion
To demonstrate the power of our three-dimensional prob-
abilistic constructs for protein structure analysis, we per-
formed the following calculations. First, we built 3D
HMMs for globin and IgV fold families from the sets of
aligned representative structures. Eighteen structures were
chosen to create a 3D HMM for the globin family and four
structures to represent the IgV domains. We selected a
small number of representatives for the IgV HMM in an
attempt to establish a statistically meaningful threshold
for the minimal size of a typical training set. We scored all
available globin and IgV SCOP domains against our

Discretization of the coordinate probability distribution in one dimensionFigure 3
Discretization of the coordinate probability distribution in 
one dimension.
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Separation of scores for IgV (red) and globin (blue) domains scored against globin 3D HMMFigure 4
Separation of scores for IgV (red) and globin (blue) domains 
scored against globin 3D HMM.

Histogram of RMSD values for globin domains (yellow) and IgV domains (blue) calculated for the alignment of these domains against the IgV coreFigure 5
Histogram of RMSD values for globin domains (yellow) and 
IgV domains (blue) calculated for the alignment of these 
domains against the IgV core. RMSD values were calculated 
for the alignment of these domains against the globin core. 
RMSD histogram scores for globin domains are shown in yel-
low, for IgV domains in blue and their overlap in green.
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Separation of scores for NAD(P)-binding domains (red) and FAD-binding domains (blue) scored against FAD 3D HMMFigure 6
Separation of scores for NAD(P)-binding domains (red) and 
FAD-binding domains (blue) scored against FAD 3D HMM.

Separation of scores for Thioredoxin domains (red) and Fla-vodoxin domains (blue) scored against Thioredoxin 3D HMMFigure 7
Separation of scores for Thioredoxin domains (red) and Fla-
vodoxin domains (blue) scored against Thioredoxin 3D 
HMM.
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constructed models. The separation of scores appeared to
be quite good (Figure 4). Globin 3D HMM and IgV 3D
HMM turned out to be capable of distinguishing the que-
ries from its own class with 98.2% and 96.6% accuracy,
respectively. We explain minor overlaps of the scores by
incompleteness of the chosen training sets as well as by
our inability to achieve optimal superposition at the struc-
tural alignment stage for certain cases. To the contrary, the
corresponding RMSD values calculated for the alignment
of all IgV's and globin domains against the IgV core
(match states from the IgV 3D HMM) resulted in quite sig-
nificant overlap and appeared to be much less informative
for structural classification (Figure 5). We use RMSD val-
ues as a benchmark because the procedure involving
structural alignment of the query against the core remains
the same in both RMSD and 3D HMM calculations,
whereas the improvement of the 3D HMM scores separa-
tion comes exclusively from the HMM scoring scheme.

To further test performance of our method we performed
more challenging, (α/β) vs (α/β) and (α+β) vs (α+β) clas-
sification-type calculations: FAD/NAD(P)-binding
domains (SCOP fold 51904) vs NAD(P)-binding
domains (SCOP fold 51734), Flavodoxin fold (SCOP fold
#52171) vs Thioredoxin fold (SCOP fold #52832) and
Ferrodoxin fold (SCOP fold #54861) vs Lysozyme fold
(SCOP fold #53954). Each model was built by choosing
from five to ten non-identical (less than 95% sequence
identical) representatives, which had RMSD no greater

than 3 Angstroms (within the set) and the minimal avail-
able length of sequence consensus. Insert-insert transition

probabilities  and  were manually set

equal to 0.95 in order to minimize the insertion penalties
at the terminal ends of the model (to model the flanking
ends of the longer structures which didn't enter the train-
ing set). Thus, our "minimal core" models effectively
scored the best superimposed part of the query with
respect to the core centroids. Note, that in the correspond-
ing RMSD calculation, the flunking ends do not affect the
RMSD value, because only the distances for the deter-
mined query ↔ model equivalence pairs enter the score.
Overlap of the 3D HMM log scores for these calculations
never exceeded 15% in the calculations (Figures 6,7,8),
whereas the RMSD scores overlapped more than 65%
(not shown).

We also scored all 95% or less sequence-identical
domains against the 3D HMM for Thioredoxin fold (Fig-
ure 9). One can readily see that the scores for all non-
Thioredoxin folds are located mostly to the right of the
scores typical for the Thioredoxin fold.

Finally, we performed a different classification-type calcu-
lation: given a 3D HMM built for the ferrodoxin family
from four representative structures, we scored the same
globin and IgV domains against it. Even though none of
the queries belonged to the ferrodoxin 3D HMM, the
separation of HMM scores for the two folds was still as
high as in the previous calculations, namely 97.5%. This

Separation of scores for Lysozyme domains (red) and Ferro-doxin domains (blue) scored against Lysozyme 3D HMMFigure 8
Separation of scores for Lysozyme domains (red) and Ferro-
doxin domains (blue) scored against Lysozyme 3D HMM.
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Separation of scores for Thioredoxin (red) and all other less than 95% identical SCOP domains (blue) scored against Thioredoxin 3D HMMFigure 9
Separation of scores for Thioredoxin (red) and all other less 
than 95% identical SCOP domains (blue) scored against 
Thioredoxin 3D HMM.
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suggests that a given model may be useful not only for
binary classification but also for dividing up fold space in
more distance oriented terms. On the other hand, the cor-
responding RMSD values ranged from 4 to 11 Angstroms
with no detectable separation at all. This can be readily
understood: a 3D HMM is designed in such a way that dif-
ferent spatial regions are assigned different spatial penalties
in the form of the coordinate-dependent emission, inser-
tion and deletion probabilities. Therefore, when aligned
with the core of the ferrodoxin HMM, queries from differ-
ent families would encounter different and very specific
for each family score penalties for appearing in the
"wrong", family-specific regions of space. RMSD values
for such alignments can be almost identical for the two
families; however, the corresponding HMM scores will,
most probably, appear confined within relatively small
and, in general, separable intervals. In contrast, two que-
ries, one with seemingly large RMSD score and another
one with a much smaller value, may still rightfully belong
to the same 3D HMM class, provided that the first query
has its high RMSD structural parts appearing in the
"allowed" (low-penalty) spatial regions. With help of this
highly useful 3D HMM feature, one should be able to
develop a scale of scores for various structural groups of
interest, which can be further used for classification of the
unknown structures (or parts of structures) in the same
manner as chemical shifts for different functional groups
are used in NMR structure determination experiments.

Conclusion and future directions
We have created a rigorous three-dimensional HMM rep-
resentation for protein structures. This incorporates the
major elements of HMM theory: a set of directionally con-
nected match, insert, and delete states, transition and
emission probabilities, the optimal Viterbi path, and
forward algorithm. We have not yet considered such
aspects as using Expectation maximization and the Baum-
Welch procedure for optimization of model parameters.
However, currently our procedure is self-contained and
ready for protein structure analysis. Preliminary results
indicate that the new constructs can be quite useful for
protein structure analysis and classification.

Methods
In outline our procedure consists of the following steps:

1. 3D representation for the match states and emission
probabilities;

2. A procedure for superposing a query against the match
states without consideration of transitions;

3. Calculation of transition probabilities from the core
parameters and evaluation of corrections from observed
gaps in a multiple alignment;

4. Modified forward and Viterbi algorithms for calculating
the probability that the query was generated from the 3D
HMM and calculating the best alignment of the query to
the model.

A conventional 1D HMM would comprise steps 3 and 4.
However, because we are dealing with 3D coordinates a
single application of the dynamic programming in the
Viterbi sense is not sufficient to match a query against the
model. The reason is that changing locally the match
between query and model affects the global overall
superposition of the structure. Hence, we have to find a
superposition first in heuristic fashion without considera-
tion of the transitions before scoring with transitions. To
achieve this optimal superposition, we align the centers of
the ellipsoids (match states in the model) with the Cα
coordinates of the query.

Three-dimensional core representation for HMM match 
states
The parametric representation of the core structure is built
by modeling a distribution of atomic positions as a 3D
Gaussian. Having a set of structures, superimposed using
an RMS criteria, we obtain an alignment, which pairs each
atom k in one structure with an equivalent atom in the
others. The mean position rk ≡ (xk,yk,zk) and 3D-covari-
ance matrix for each such center k can be calculated:

We can now use this statistical representation

 to position a query structure

 with respect to the centers of the
obtained core structure. The modified relative distances

 of the m-th query
atom with respect to the k-th core position are obtained by
applying the rotation matrix Rk, which diagonalizes the
covariance matrix σ(k),

where D(k) is a diagonal matrix whose diagonal elements
d(k) are the variances of a 3D distribution of the k-th ellip-
soid that is oriented along the global coordinates. Clearly,
core ellipsoids represent the emission probability distri-
butions for the match states, i.e. the probability that a
query atom is emitted by the match state located at the
center of the corresponding ellipsoid.
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Since the protein backbone is not continuous we have to
discretize our emission probability distributions in order
to obtain finite values for the observed (emitted), finite
series of the query atoms. In the present work we choose

variances ,  and  to make this discretization.

Figure 3 illustrates discretization of a Gaussian distribu-
tion in one-dimensional case. Each distribution is parti-
tioned amongst intervals equal to the corresponding
variance value, i. e.

. The values of the distribution integrated over each inter-
val give the desired values for the discretized emission
probability distribution:

In practical computer implementation the integrals are 
replaced by numerical values of the gamma function Γ (a) 
and incomplete gamma function 

 by using relationship

Note that our discretization procedure effectively parti-
tions the volume of the k-th ellipsoid

, the measure of the penalty for the

deviation from the ellipsoid center, creating a discrete rep-
resentation of the emission probability distribution for
each match state k. The observed emission probabilities
(scores) ekn – i.e. those resulting from the alignment of the
query with the core – will be given as a product of the cor-
responding discretized emission probabilities for each
coordinate:

The component emission probabilities  are deter-

mined from following relation:

where operator  projects out component α from vec-

tor .

Calculation of transition probabilities from core 
parameters and evaluation of corrections from alignment 
gaps
In addition to setting the values of the match emission
values, volumes of the core ellipsoids can help parameter-
ize the values for the transitions. A larger ellipsoid volume
is associated with a greater chance of having an indel
nearby, thus decreasing the probability of going into the
corresponding match state. Therefore, it is logical to
assume that the probability of transition to the match
state should be inversely proportional to the volume of
the corresponding core ellipsoid. In the present work we
suggest the following values for priors on the transition
probabilities:

where  denotes any state in the model from where tran-
sition is allowed by the inherent HMM topology. One can
easily see that the above formulas produce higher penal-
ties for transitions deviating from highly conserved core
positions (match states).

We use the observed pattern of gaps in a known multiple
sequence alignment as corrections to the above formulas
for the transition probabilities. In particular, gaps in the
sequence alignment corresponding to the non-core
regions designate spaces with the higher insertion
probabilities, whereas missing atoms in each core posi-
tion is a sign of increasing deletion probability. The

sequence alignment corrections  (  representing
any of the Ik, Dk or Mk states) can be introduced by direct
application of pseudocount technique, which is easily for-
malized in Bayesian framework [7]:
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where M is the number of structures in the (training) mul-
tiple alignment;  is the total number of amino acid

symbol absences within a gap immediately preceding a
particular HMM match state k,  is the length of the

gap, and n0 is a so-called pseudocount constant [7], which

scales the correction. In the above formula,  repre-
sents the total number of symbols within the gap (count-
ing both amino acid symbols and amino acid absence
symbols), and  gives the number of amino

acid symbols present in the gap. If the pseudocount con-
stant n0 is set equal to 1, the above formula transforms to
a well-known Laplace rule [7].

The corresponding corrections resulting from the gaps
observed at actual HMM match states are calculated in the
same manner

The final value for the transition probability is the renor-
malized sum of the priors and the corresponding
corrections:

where  denotes any HMM state accessible from state
. The optimization of the obtained probabilities with

respect to maximization of the scores for the training sets
may be necessary for the final tune-up.

Viterbi and Forward algorithms for aligning and scoring the 
query
Once one has two structures (the query and the centers of
the core ellipsoids) optimally aligned in a gap-independ-
ent fashion and has a set of transition probabilities calcu-
lated between the match states, one can use standard
HMM methods to calculate the single best alignment
between the query and the model (the Viterbi algorithm)
and the overall score for matching the query to the model,
integrated over all possible paths through the model (the
forward algorithm). Our implementation of the Viterbi
algorithm is straightforward, following that in Durbin et
al. [7]. However, we rederived the Forward Algorithm
equations [2] for the case of fully interconnected HMM
using matrix calculus notations. This made the computer
implementation more straightforward and faster for struc-
tures. Our forward algorithm equations assume the fol-
lowing form

where π denotes the initial probability distribution
among the possible begin states, A is the transition matrix
of dimension Lm × Lm, el is the vector of emission probabil-
ities for the state l, fl is the vector of forward variables in
the l-th step, 1 is the vector with components all equal to
1, Lq is the length of the observation sequence (query),
and P is the total probability that the observation
sequence was emitted by the given model. Note the

distinction between the scalar product  and

vector multiply operation (Hadamard product)

 that are related as x·y = 1·(x � y).

For the bigger HMMs with number of states 100 and
higher, direct application of the above formulas involves
many multiplications of small numbers (transition and
emission probabilities) and usually results in severe
underflow problems in practical computer
implementations. These can be avoided if one works with
logarithms of the involved quantities, even when one
needs to perform addition or subtraction. Furthermore,
because of the directional nature of the HMM topology
many transition probabilities (those between non-adja-
cent states) are identically zero. Therefore, instead of deal-
ing with the full Lm × Lm transition matrix A we can work
with three 3 × Lm submatrices aM, aD and aI, which repre-
sent transitions from the match, delete and insert states
respectively. The formulas for the HMM scoring based on
the forward algorithm then take the form (with notation
identical to that used in [7]):
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Termination:

Our initialization of  is different from ,
which is given in [7] for a similar HMM profile. A detailed
derivation of the correct initialization condition along
with accompanying examples will be published
elsewhere.
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