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Abstract: Colorectal cancer is one of the most common gastrointestinal malignancies in humans,
affecting approximately 1.8 million people worldwide. This disease has a major social impact and
high treatment costs. Animal models allow us to understand and follow the colon cancer progression;
thus, in vivo studies are essential to improve and discover new ways of prevention and treatment.
Dietary natural products have been under investigation for better and natural prevention, envisioning
to show their potential. This manuscript intends to provide the readers a review of rodent colorectal
cancer models available in the literature, highlighting their advantages and disadvantages, as well as
their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.

Keywords: spontaneous models; induced models; genetically engineered models

1. Introduction

Worldwide, colorectal cancer is the third most common cancer in men and second
in women [1]. Many risk factors have been considered for the development of colorectal
cancer, such as the ingestion of processed meat, alcoholic drinks, body fatness, low intake
of vegetables and fruits, smoking, and other concomitant diseases, such as inflammatory
bowel disease (IBD), Crohn’s disease, and ulcerative colitis [2,3].

Colorectal cancer is characterized by the invasion of neoplastic epithelial cells below
the muscularis mucosae of the colorectal wall [4]. Its evolution is slow and characterized
by different stages. Progressive changes in the amount or activity of proteins that reg-
ulate cell proliferation, differentiation, and cell survival occur, leading to a disorder in
cell replication that contributes to the development of proliferative lesions, such as ade-
noma [5]. Subsequently, the intestinal epithelium undergoes a malignant transformation
to invasive carcinoma [4,5]. Besides adenomas, hyperplastic polyps, serrated adenomas,
flat adenomas, and dysplastic lesions are also observed in the colon as other types of
preneoplastic lesions [5]. In humans, colorectal cancer is histologically classified as an
adenocarcinoma [4,6]. In Figure 1 we can observe the progression from normal intestinal
epithelium to carcinoma.
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Figure 1. Schematic representation of adenoma–carcinoma multistep model. The normal cells of colon epithelium progress
sequentially to a hyperproliferative epithelium, premalignant adenoma, and then carcinoma.

About 97% of colorectal cancers are spontaneous, and the remaining are due to one of
two autosomal dominant inherited diseases: hereditary non-polyposis colorectal cancer
(HNPCC) and familial adenomatous polyposis (FAP) [4,5]. The genetic mechanisms of
spontaneous CRC are present in the adenoma–carcinoma sequence. Carcinogenesis is
initiated with inactivating mutations in the tumor suppressor adenomatous polyposis
coli (APC) gene, followed by an accumulation of mutations in the genes K-RAS, PI3K,
DCC, SMAD2, SMAD4, and lastly the mutation in the tumor suppressor gene TP53 that
determines the progression from the non-invasive to the invasive CRC [7].

Laboratory rodents are commonly used as animal models in experimental research
because they are easy and cheap to maintain, their physiology and genetics are well studied,
and they are mammals like humans [8]. They allow us to understand and follow the
progression of diseases, enable the discovery and development of new preventive strategies,
which can be later used in clinical trials. An ideal animal model of human disease should
be simple, not expensive, and mimic the disease in terms of morphology, biochemical
alterations, and biological behavior [4,9]. Several works have reviewed the use of animal
models of CRC [10]. However, this manuscript not only intends to augment the information
on rodent models of CRC, highlighting their advantages and disadvantages, but also to
review their applications and how they can be used to evaluate natural compounds,
nutrition habits, and drugs.

2. Rat and Mouse Colon and Rectum: Anatomy and Histology

The rat and mouse intestine are similar to that of humans concerning development,
structure, and functions [9]. The large intestine comprises the cecum, the colon, the rectum,
and anus, and it is responsible for the absorption of water and salt from feces [11] (Figure 2).

The cecum is a curved blind sac responsible for bacterial fermentation and empties
into the proximal/right colon. Even though the rodents’ colon and rectum represent a
percentage of the total size of the large intestine similar to the humans, the cecum is much
bigger in rats, which may be attributed to the high fiber content of their diet [12]. The colon
continues toward the pyloric region of the stomach and has the same histological structure
of the gastrointestinal tract: mucosa, submucosa, inner circular and outer longitudinal
tunica muscularis, and serosa [1]. Despite histological similarities, rats and mice do not
have adipose tissue in the submucosa, unlike humans who have it in abundance. The colon
can be divided into ascending (it leads cranially to the thoracic cavity), transverse colon
(from the left to the right side), and descending colon (on the right side of the abdominal
cavity). The rodents’ middle and distal colon corresponds to the human left colon [13].
The rectum is relatively short and indistinct from the distal colon. The anorectal junction
has no stratified columnar epithelium, and the anal canal is lined by keratinized stratified
squamous epithelium [11].



Vet. Sci. 2021, 8, 59 3 of 29

Figure 2. Schematic representation of some parts of the human (A) and rodent (B) digestive system, where is possible to
observe the distinct portions of the large intestine: cecum, colon (ascendant, transverse, and descendent), rectum and anus,
and its topographic anatomy. Human and rodent in supine position.

3. Rodents as Models of Colorectal Cancer

Although there is no ideal animal model that replicates all human disease aspects, the
rodents are accepted as good models to study colorectal carcinogenesis because of their
physiological similarity with humans, reproducible tumor induction, and the possibility to
study the disease biopathology and test strategies for cancer prevention and treatment [4].

An ideal rodent model of colorectal cancer should develop carcinomas in the colon and
rectum, with a high incidence in a short period, allow non-invasive monitoring of disease
progression, and follow the histological and molecular characteristics of human colorectal
cancer [8,13]. The models available to study colorectal cancer include spontaneous, induced,
genetically engineered, xenograft, and syngeneic models (Figure 3).

Figure 3. Rodent models available to study human colorectal cancer.

3.1. Spontaneous Models

Spontaneous development of colorectal cancer in rats and mice is rare, although some
cases were reported in the literature. In 1969 it was reported that C57BL mice developed
adenomas in the colon [9], and in 1975 Miyamoto and colleagues showed that 30–40%
of animals from the Wistar-Furth/Osaka strain developed adenocarcinomas [14]. More
recently, in 2009, Newark and colleagues showed that C57BL/6J developed cancer in
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the large intestine with an incidence of 1% [15]. These models are not very used due to
unpredictability and low reproducibility [4]. In 40% of the spontaneous rat models, the
period of latency is approximately eight months [16,17].

3.2. Induced Models

Colorectal tumors can be induced in rodents through the administration of chemical
carcinogens alone or in combination [5]. There are two types of chemical carcinogenic
agents: direct and indirect. Direct carcinogens do not need to be metabolized to induce
cancer, while the indirect agents are administered in their inactive form and only acquire
carcinogenic activity when biotransformed and converted into their active form in the
liver [5,6].

3.2.1. Chemically Induced Models

In 1941, Lorenz and Stewart were the first to induce intestinal mouse tumors by feeding
them with dibenzanthracene or methylcholanthrene [4], leading to the development of
adenocarcinoma of the small intestine [4]. Later, in 1947, Lisco and colleagues induced
carcinomas in the rat colon through feeding with radioactive yttrium [17]. Some years later,
in 1963, Laquer and colleagues stated hydrazines are colonic carcinogens. Rats developed
adenocarcinomas after feeding with a large quantity of cycad flour, which have hydrazine
called cycasin, a form of methylazoxymethanol (MAM) [18,19].

Over the years, experimental research was conducted to discover chemical carcino-
gens specific for colorectal cancer such as 3,2′-dimethyl-4-aminobiphenyl (DMAB), alkyl-
nitrosamines such as N-methyl-N-nitrosourea (MNU) and N-methyl-N-nitrosoguanidine
(MNNG), 1,2-dimethylhydrazine (DMH), azoxymethane (AOM), and 2-amino-1-methyl-6-
phenylimidazo (4,5-b) pyridine (PhIP) [20].

These carcinogens can be indirect-acting agents (DMAB, DMH, AOM, and PhiP),
which need an enzymatic reaction to be converted into an active form, or direct-acting
carcinogens (MNU and MNNG) that do not need biological catalysis [5].

3,2′-Dimethyl-4-Aminobiphenyl (DMAB)

Walpole and colleagues, in 1952, described the first induction of intestine cancer in
male rats by subcutaneous administration of DMAB dissolved in arachis oil, at a mean total
dose of 2.8 g/kg, for 141 days [21]. After that, other researchers evaluated the carcinogenic
potential of this compound [22]. Of these works, the one made by Reddy et al. [23] stands
out; they showed that 30% of F344 rats fed with a low-fat diet and 75% of animals fed with
a high-fat diet developed colon cancer after being injected with DMAB (50 mg/kg), once a
week, for 20 weeks. DMAB forms carcinogenic DNA adducts through the N-hydroxylation
by cytochrome P450, followed by O-acetylation and hydrolysis, reacting with DNA [23].

Nevertheless, this model has some disadvantages because multiple DMAB adminis-
trations are needed [23–25] and it has low specificity, leading to the development of tumors
in various other tissues, such as salivary glands, mammary glands, urinary bladder, ear,
and skin [6]. The studies performed using this model may be consulted in Table 1.
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Table 1. Studies using the DMAB model to study different therapeutic approaches for colorectal cancer.

Animal Strain and Gender Carcinogenic Administration
Route

Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

F344 male rats

s.c. 100 mg/kg b.w. Copper-zinc (CU), manganese (Mn),
and iron (Fe)

p.o. (0.8 or 5.1 µg CU/g diet; 0.6 or
17 µg Mn/g diet and 37 or 140 µg
Fe/g diet) 3.5 wks before DMAB

and for 8 wks

Increased neoplastic lesions by low
doses of copper and manganese

relative to iron [25]

s.c. 100 mg/kg b.w. 1/wk for 2 wks Selenium (nutritionally essential
trace element)

p.o. (0, 0.1 or 2.0 mg selenium/kg
diet as selenite, selenate or

selenomethionine) 4 wks before
DAMBP for 12 wks

Dietary administration of selenium
in the form of the inorganic salts

selenite and selenate reduced colon
ACF [26]

s.c. 100 mg/kg b.w. Celecoxib (selective
cyclooxygenase-2 inhibitor)

Diet supplemented (0, 500, 1000, or
1500 ppm celecoxib) 2 wks before

DMABP and for 2 days

Chemopreventive effect for
colorectal cancer in a dose-response

manner [27]

Gavage 50 or 5 mg/kg b.w. 1/wk
for 4 wks Acetaminophen Diet supplemented (1000 ppm)

2 wks before DMAB and for 6 wks
Protective effect on the development

of colorectal carcinogenesis [28]

ACF: aberrant crypt foci; b.w.: body weight; p.o.: per os; s.c.: subcutaneous injection; wk: week; wks: weeks.
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N-Methyl-N-Nitrosourea (MNU) and N-Methyl-N-Nitrosoguanidine (MNNG)

Since 1967, after discovering that oral administration of alkylnitrosamide induced
adenocarcinomas in the glandular stomach in rats, other works were performed envisioning
to address the carcinogenic potential of MNNG and MNU [4,13]. MNU and MNNG are
direct DNA alkylating agents; they transfer a methyl group to nucleobases leading to the
accumulation of genetic mutations [13]. Intra-rectal instillation of MNNG during 20 weeks
at a dose of 1–3 mg/rat/week induced colon cancer in 100% of F344 rats [13,18,20]. Female
ICR/Ha Swiss mice instilled with 0.3 mg of MNU intrarectally, three times a week for
10 weeks, developed tumors in the distal colon, rectum, and anus with an incidence of
78% [29]. The intrarectal administration allows a more selective induction in the distal
colon and rectum, which is a huge advantage of this model. However, a precise technique is
needed, and the quantification of drug volume is difficult [18,20]. In addition, the animals
need to be kept in an inverted position for one minute after administration to prevent the
return of the compound to the anus [19,20].

This model can be used to evaluate the therapeutic effects of several compounds on
colorectal cancer development. More details about colorectal cancer studies using the MNU
model to evaluate the influence of diet, drugs, and natural compounds can be consulted in
Table 2.
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Table 2. Studies using the MNU model to evaluate the effects of different therapeutic strategies for colorectal cancer.

Animal Strain and Gender Carcinogenic Administration
Route

Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects [Ref]

F344/NSlc female rats i.r. 2 mg 3x/wk for 3 wks

Ursodeoxycholic acid (UDCA) and
5-aminosalicylic acid (5-ASA)

(non-steroid anti-inflammatory
drug)

p.o. (0%, 0.11 or 0.02%) for 30 wks Inhibited colorectal cancer
development [29]

Sprague Dawley female rats i.r. 10 mg/Kg 3x/wk for 4 wks Omega 3 polyunsaturated fatty acid
(Omega-3PUFA) i.g. (2 g/kg) daily for 4 wks Attenuated CRC by blocking

PI3K/AKT/Bcl-2 [30]

F344 male rats

i.r. 2 mg/rat 3x/wk for 4 wks

4-[3,5-
Bis(trimethylsilyl)benzamido]benzoic
acid (TAC-101) (retinobenzoic acid

derivative)

p.o. (0.8 or 8 mg/kg for 1 or 4 wks)
for 20 wks

Inhibited colorectal cancer
development [31]

i.r. 4 mg on days 1 and 4 Calcium and cholic (bile acid) d.t. (0.2% cholic acid or 1.6%
calcium) for 28 wks

Increased colorectal tumor
development by bile acid and no
protective effect of calcium [32]

b.w.: body weight; d.t.: diet supplement. i.g.: intra-gastrically; i.r.: intra-rectal administration; p.o.: per os; wks: weeks.
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1,2-Dimethylhydrazine (DMH)

DMH is an alkylating agent that needs liver metabolic activation to become a carcino-
gen. Therefore, DMH is oxidized in the liver into azoxymethane and is then hydroxylated to
form methylazoxymethanol (MAM). MAM is converted to formalin and methyldiazonium
ion that are responsible for DNA, RNA, and protein alkylation [4,33].

The induction of colon cancer in rats with this compound was described for the first
time in 1967 by Druckrey and colleagues, through its subcutaneous administration, at a
dose of 21 mg/kg [20,34]. They showed that DMH cancer induction in the distal portion
of the colon is histopathologically similar to humans [16,33]. These results were later
confirmed by other authors [6,13,19].

DMH can be administered through different routes, including subcutaneous, intraperi-
toneal, oral, and intrarectal [4]. For example, a subcutaneous injection of 20 mg/kg DMH,
once a week, for 20 weeks induces colonic adenomas in about 60% of male F344 rats [21].
Oral administration of 20 mg/kg showed a lower tumor incidence in male Wistar rats,
depending on the nature of the diet [35]. Intrarectal administration of 250 mg/kg of DMH
in Sprague-Dawley rats induced multiple colorectal adenocarcinomas with a latency period
of 34 weeks [36]. Of the routes of administration presented, subcutaneous seems to be
the one that leads to high incidence and consequently the most used in chemopreventive
studies [4]. More information about other studies with this model may be consulted in
Table 3.

Although DMH-induced colon tumors in rodents are similar to human colon tu-
mors [21], this model has disadvantages, e.g., multiple injections of DMH are necessary
to induce tumors, it is characterized by at least six months of the latency period, and no
hepatic metastases were observed until now (Figure 4C) [20].

Azoxymethane (AOM)

In 1970, Druckrey and colleagues showed for the first time the ability of azoxymethane
(AOM) to induce intestinal tumors. Other works were then published confirming that
AOM is a potent inducer of carcinomas of the large intestine in various strains of rats, such
as F344, and mice, such as C57BL/6J and SWR/J, among others [21,37,38].

AOM is a metabolite of DMH that has been more frequently used in the induction of
colon tumors than DMH, given some of its advantages over the original compound, such as
its increased efficacy and greater chemical stability [37]. Like DMH, AOM is also an indirect
carcinogenic compound, and it is activated in the liver by N-oxidation through cytochrome
P450 2E1, producing metabolites such as methylazoxymethanol and methyl-diazoxide,
which induce inflammation [39]. AOM seems to be a more effective carcinogen than DMH
because it requires fewer reactions to be activated [6].

AOM induces rodent colon carcinogenesis when administered over 6–8 weeks via sub-
cutaneous or intraperitoneal injection, with a latency period ranging from 20 to 30 weeks [13].
The distribution of tumors developed in the small intestine and colon (predominantly in
the distal colon) is similar to that observed in the human colon [21,40]. Histological and
histochemical properties of AOM-induced tumors are similar to those described in humans,
being classified as adenomas and adenocarcinomas. Using this induction model, it was
possible to identify metastases in lymph nodes and the liver similar to those described in
humans [6,38].

Details concerning studies using AOM induction model to understand the influence
of diet, drugs, or natural compounds in colorectal cancer can be consulted in Table 4.
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Table 3. Studies using the DMH model to study different therapeutic approaches for colorectal cancer.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

Wistar male rats

i.p. 40 mg/kg b.w. 2x/wk for 2 wks Hyperbaric oxygen (HBO2)
HBO2 alone or DMH + HBO2; 15 daily

90 min HBO2 sessions every 24 h at
2.0 atm absolute pressure

HBO2 had a protective effect in
colorectal cancer, demonstrated by the

decrease in COX-2 [41]

s.c. 40 mg/kg b.w. 2x/wk for 2wks Astaxanthin p.o. (15 mg/kg b.w.) 1 wk before and
after DMH for 16 wks

Positive effects against colorectal
cancer [42]

s.c. 30 mg/kg 1x/week for 18 wks Aspirin (a non-steroidal
anti-inflammatory drug)

Gavage (0, 5, 30 or 60 mg/kg diet) daily
for 18 wks Reduced tumor incidence [43]

s.c. 50 mg/kg b.w. 1 wk after diet
supplemented and physical activity

Probiotic soy product and physical
exercise

Gavage (3 mL/kg b.w./day fermented
or unfermented soy products) and t.r.

(60 min/day at 3–5% inclination at
355 m/min or 17–20 m/min) alone or in

combination for 6 wks

No inhibition of colorectal cancer by the
ingestion of fermented soy products or
physical activity or by a combination of

both [44]

s.c. 40 mg/Kg b.w. for 8 wks Epigallocatechin gallate (EGCG) p.o. (50, 100 or 200 mg/Kg b.w.; once
daily) for 8 wks

EGCG inhibited the formation of
DMH-induced CRC by regulating key
pathways, namely p53 and PI3K-Akt

signaling pathways and I-kappaB
kinase/NF-kappaB signal pathways,

apoptosis signal pathways and MAPK
cascades, involved in tumorigenesis [29]

Wistar female rats

s.c. 20 mg/kg b.w. for 20 wks High fiber diet and aspirin

Exp1: gavage (10 or 30 mg/kg/day b.w
aspirin) Exp.2: diet supplemented with

high fiber (16% crude fiber) from the
beginning and for 32 wks

Protective effects of high fiber diet and
aspirin. The aspirin effect is

dose-related [45]

s.c. 20 mg/Kg b.w. for 5 wks Methanolic extract of Muntingia
calabura L. leaves (MEMC)

p.o. (100 or 200 mg/Kg b.w.) all days till
the 15 week

MEMC offered a protective role against
experimentally induced CRC via

suppressing hyperproliferation and
inflammation [46]
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Table 3. Cont.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

F344 male rats

Exp.1: s.c.20 mg/kg b.w. daily for 16
wks; Exp.2: s.c. 20 mg/kg b.w. daily for

12 wks
Cellulose, calcium and folic acid

p.o. (Exp.1: 10% cellulose for 30 wks;
Exp.2: 250 or 500 mg/100 g diet calcium
+ 0 or 0.1 mg/100 g folic acid for 22 wks)

Protective effects of cellulose and
reduced tumor number and multiplicity

of calcium [47]

i.p. 40 mg/kg b.w. once weekly for
4 wks Adlay bran ethanol extract (ABE-Ea)

p.o. (8.64, 17.28 or 34.56 mg/day
ABE-Ea) 1 wk before 1st DMH and for 9

or 18 wks
Inhibited preneoplastic lesions [48]

i.p. 30 mg/kg weekly for 10 wks Calcium and vitamin 3 in low or
high-fat diet

p.o. (0.5 or 1%supplemental calcium and
1000 or 2000 IU/kg diet vitamin 3 in
combination with a low-fat diet, 0.5%
corn oil, or high-fat diet, 20% corn oil)

2 wks before DMH and for 20 wks

Preventive effects only in a high-fat
diet [49]

s.c. 100 mg/kg b.w. 2x/wk for 2 wks Arabinoxylan-oligosaccharides (AXOS)
(prebiotic)

p.o. (60 g/kg diet) 10 days before DMH
and for 13 wks Chemopreventive effect [50]

Sprague-Dawley male rats

Gavage 30 mg/kg Aspirin (non-steroidal anti-inflammatory
drug)

Exp.1: s.c.(100 mg/kg/day aspirin) 1 wk
before and after DMH and for 1 wk;

Exp.2: s.s. (50 mg/kg/day aspirin) 4 wks
after DMH and for 36 wks)

Reduced tumor incidence when aspirin
was administered 1 wk before or after
DMH but no effect when administered

4 wks after [51]

s.c. 30 mg/kg b.w. for 6 wks
etoricoxib (selective cycloxygenase-2

inhibitor) and diclofenac (a preferential
cycloxygenase-2 inhibitor)

Gavage (0.6 mg/kg b.w. ectoricoxib and
8 mg/kg b.w. diclofenac) daily for 6 wks

Chemopreventive effect of both
compounds [52]

s.c. 20 mg/kg b.w. 2x/wk for 4 wks Soy isoflavones p.o. (1, 10, 50, 150 or 500 mg/kg diet)
1 wks after DMH and for 12 wks

Inhibited colorectal cancer in
dose-independent manner [53]

s.c. 20 mg/kg b.w. weekly from day 3
and for 12 wks

β-carotene (derived from carrots)
sodium ascorbate (L-ascorbic acid) and

cellulose

Diet supplemented (0.005% β-carotene
or 0.02% sodium ascorbate or 1.5%

cellulose) 12 wks before and for 28 wks

Only β-carotene showed an inhibitory
effect of carcinogenesis [54]

s.c. 20 mg/kg 1x/wk 13 wks Wheat bran Diet supplemented (fiber-free diet or
20% wheat bran supplement) for 31 wks Increased colorectal carcinogenesis [55]

s.c. 20 mg/kg b.w. 6x/wk Milk and calcium
Diet supplemented (37 g/kg diet of milk

and 40 mg/kg rat/day of calcium
carbonate)

Protective activity by milk
supplementation [56]

Sprague-Dawley male and female rats s.c. 21 mg/kg 1x/week for 18 wks Calcium d.w.(3.2 g/L calcium lactate) daily from
the start until 25–34 wks Inhibited colorectal cancer [57]

b.w.: body weight; d.w.: drinking water; i.p.: intraperitoneal injection; p.o.: per os; s.c.: subcutaneous injection; t.r.: treadmill running; wk: week; wks: weeks.
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Figure 4. Representative photomicrographs of mouse/rat colon and rectum. (A) Rat colon with
no alterations. (B) Mouse anorectal junction, with no alterations. (C) Mouse colon showing mild
inflammatory infiltrate at the mucosa (DMH induction CRC model). (D) Rat colon with the presence
of focal mild epithelial dysplasia (DMH induction CRC model). (E) Rat colon adenoma, character-
ized by a benign epithelial tubulopapillary neoplastic proliferation, non-invasive (DMH induction
CRC model). (F) Mouse rectum, adenocarcinoma, characterized by a carcinomatous proliferation,
associated with stromal invasion and inflammation (DMH induction CRC model). HE staining.
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Table 4. Studies using the AOM model to evaluate several therapeutic strategies for colorectal cancer.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

F344 male rats

s.c. injections 15 mg/kg b.w./wk once a week
for 2 wks

Ursodeoxycholic acid and cholic acid
(bile acids)

p.o.(0.2% or 0.4% cholic acid, 0.2% or 0.4%
ursodeoxycholic acid, 0.2% cholic acid + 0.2%

ursodeoxycholic acid) for 30 wks

Higher dose of ursodeoxycholic acid reduced the
incidence of colorectal tumors [58]

s.c. 15 mg/kg bw once weekly for 2 wks Celecoxib (a non-steroidal
anti-inflammatory drug)

p.o. (500, 1000 or 1500 ppm) before exposure
to AOM, during treatment, and until

termination of the study at 52 wks
Chemopreventive activity in all tumor stages [59]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks
iNOS inhibitor L-N6 -(1-iminoethyl) lysine

tetrazole-amide (SC-51), celocoxib
(nonsteroidal anti-inflammatory)

p.o. (10, 30 or 100 ppm SC-51; 500 ppm
celocoxib; 30 or 100 ppm SC-51 + 500 ppm

celocoxib) for 8 wks

The combination of SC-51 with celocoxib was more
effective in colorectal cancer prevention than the

compounds alone [60]

s.c. 15 mg/kg b.w. 1x/wk for 3 wks

Rebaudioside A, oleanolic acid, costunolide
and soyasionin A2 (terpenoids), liquiritin

(flavonoid), phyllodulcin and hydrangenol
(isocumarins)

p.o. (200 ppm of each) for 5 wks Costunolide is the most effective chemopreventive
agent [61]

s.c. 29.6 mg/kg b.w.
Piroxicam (a non-steroidal anti-inflammatory

drug) and D, L-α-difluoromethylornithine
(DFMO)

p.o. (25, 75 and 150 ppm piroxicam or 400,
1000 and 4000 ppm DFMO) 1 wk after AOM

for 26 wks

A combination of piroxicam and DFMO was more
effective in the inhibition of colorectal cancer than

compounds alone [62]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks Phenylethyl-3-methylcaffeate (PEMC) p.o. (750 ppm) 2 wks before AOM for 52 wks Inhibited colonic tumors [63]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks; start
2 wks after diet Celocoxib (COX-2 inhibitor) p.o. (1500 ppm) for 50 wks Chemopreventive activity [64]

s.c. 15 mg/kg b.w. at 7 and 8 wks of rat age S-methylmethane thiosulfonate (S-MMTS)
(isolate from cauliflower) and sulindac

p.o. (80 ppm S-MMTS, 160 ppm sulindac or
40 ppm S-MMTS + 160 ppm sulindac) 14 wks

after AOM for

A combination of S-MMTS and sulindac was more
effective in the inhibition of colorectal cancer than

compounds alone [65]

s.c. 15 mg/kg 1x/wk for 2 wks Naproxen and NO-naproxen (nonspecific
nonsteroidal anti-inflammatory drugs)

p.o. (200 or 400 ppm naproxen and 300 or
600 ppm nitric oxide-naproxen) 3 days after

AOM for 8 wks
Chemopreventive effects [66]

15 mg/kg i.p. 1x/wk for 2 wks Lovastatin (statin) and exisulind (selective
apoptotic antineoplastic drug)

p.o. (50 ppm lovastatin, 100, 250 or 1000 ppm
exisulind alone or in combination with

50 ppm lovastatin) for for 4 wks

Chemopreventive effects of lovastatin but not
exisulind [67]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks
CP-31398 (p53-modulating agent) and

celocoxib (non-steroidal anti-inflammatory
drug)

Diet supplemented (1, 150 or 300 ppm
CP-31398, 300 ppm celecoxib or 1500 ppm
CP-31398 + 300 ppm celecoxib) 2 wks after

AOM and for 48 wks

A combination of compounds enhanced colorectal
cancer chemopreventive efficacy [68]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks Aspirin (a non-steroidal anti-inflammatory
drug)

p.o. (0, 200 or 400 ppm) daily 2 wks before
AOM and for 52 wks

Inhibited incidence and multiplicity of colorectal
carcinomas [69]
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Table 4. Cont.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

s.c. injection 15 mg/kg b.w. 1x/wk for 2 wks Prebiotic germinated barley foodstuff (a
mixture of insoluble protein and dietary fiber)

Diet supplemented with prebiotic germinated
barley foodstuff for 4 wks Anti-tumorigenicity activity [70]

i.p. 15 mg/kg b.w.
Aspirin (a non-steroidal anti-inflammatory

drug) and α-Difluoromethylornithine
(DFMO) (ornithine decarboxylase inhibitor)

p.o. (Exp1.: 0, 200, 600 or 1800 mg/kg/diet of
aspirin or 1000 mg/kg diet of DFMO; 8 days

before 1st AOM; Exp.2: 200, 600, 1800
mg/kg/diet aspirin or 1000 or 3000

mg/kg/diet of DFMO or 1000 mg/kg/diet
DFMO + 200 or 600 mg/kg/diet aspirin; 8
days before 1st) for 43 wks after last AOM

The combination of aspirin and DFMO after AOM
reduced colorectal tumors [71]

s.c. 15 mg/kg b.w 1x/wk for 2 wks Vitamin D, acetylsalicylic acid (a non-steroid
anti-inflammatory drug) and calcium

Diet supplemented (0, 2500, 5000 or 7500 ppm
calcium; 0 or 300 ppm acetylsalicylic acid

alone or combination with 0 or 0.02 µg/kg
diet vitamin D) 20 days before AOM and for

18 wks

Increased incidence of tumors with high levels of
calcium alone or in combination with vitamin D;
Vitamin D with acetylsalicylic acid also increased

tumor incidence [72]

s.c. 8 mg/kg b.w./wk for 10 wks Dietary wheat bran and dehydrated citrus
fiber (in form of orange peel)

Diet supplemented (0 or 15% wheat bran or
citrus fiber) for 20 wks Reduced the risk of colorectal tumors [24]

s.c. 15 mg/kg 1x/wk for 2 wks) Tea extracts, Polyphenols and
epigallocatechin gallate (EGCG)

d.w. (360 or 3600 ppm black and green tea
extracts; 360 or 1800 ppm EGCG; 360 or 1800
black tea polyphenols and 360 or 3600 green

tea polyphenols) at 6 wks and for 43 wks

No effect in tumor incidence [73]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks)

Aspirin, celecoxib, (cyclooxygenase-2
inhibitor), and atorvastatin

(3-hydroxy-3-methylglutaryl CoA reductase
inhibitors)

Diet supplemented (150 ppm atorvastatin,
600 pp celecoxib, 400 ppm aspirin, 100 ppm

atorvastatin + 300 ppm celecoxib or 100 ppm
atorvastatin + 200 ppm aspirin) one day after

AOM and for 42 wks

Inhibited the incidence and multiplicity of colorectal
carcinomas alone or in combination [74]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks Grape seed extract (GSE)
Diet supplemented (0.25 or 0.5% (w/w) GSE)
1 wk before AOM, 4 wks last AOM or during

all study and for 16 wks

Chemopreventive efficacy against early steps of
colorectal carcinogenesis [75]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks)
Celecoxib (cyclooxygenase-2 inhibitor) in

diets high in mixed lipids (HFML) or fish oil
(HFFO)

Diet supplemented (0, 250, 500, or 1000 ppm
celecoxib with HFML or HFFO diet) one day

after AOM and for 26 wks

Preventive effect of low doses of celecoxib in HFFO
diet [76]

F344 female rats

i.p. 20 mg/kg b.w. Polyethylene-glycol (PEG) (non-fermented
polymer)

Diet supplemented (3 g/kg b.w/day) 7 days
after AOM and for 105 days Chemopreventive effects [77]

i.p. 20 mg/kg b.w. Heme in food (in form of chicken, beef, black
pudding)

Diet supplemented (600 g/kg diet chicken,
beef and black pudding) 7 days after AOM

and for 100 days

Increased colorectal carcinogenesis for all
compounds [78]

s.c. 8 mg/kg b.w./wk for 10 wks Alfalfa, pectin and wheat bran Diet supplemented (0 or 15% alfalfa, pectin
and wheat bran) for 40 wks after 1st AOM

Inhibited colorectal tumor incidence, especially by
pectin or wheat bran [79]

BALB-c female mice i.p. 15 mg/kg1x/wk for 2 wks Kefir (a probiotic fermented milk product) p.o. (5 mL/kg b.w. fermented kefir milk) for
8 wks

Decreased and prevented the growth of colorectal
tumors [80]
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Table 4. Cont.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

Sprague-Dawley male rats

s.c. 15 mg/kg 1x/wk for 2 wks, 28 days after
diet supplementation

Amylose maize starch and butyrylated
high-amylose maize starch

Diet supplemented (10% of high-amylose
maize starch or 10% butyrylated alone or in
combination) start at day 0 until euthanasia

The compound combination reduced the risk of
developing colorectal cancer [81]

i.p. 15 mg/kg 1x/wk for 4 wks indomethacin and copper-indomethacin
(non-steroidal anti-inflammatory drug)

i.p. (3.0 mg/kg indomethacin or 3.8 mg/kg
copper-indomethacin) daily

Both compounds showed chemopreventive activity,
but indomethacin was more effective [82]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks R-Flurbiprofen (non-steroidal
anti-inflammatory drug)

Gavage (30 mg/kg b.w./per day) 6 days a
week, 1 wk before AOM and for 30 wks

Protective effects against colorectal cancer
development [83]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks, at day 45
of rat’s life Soy isoflavones

p.o. (0, 40 100 mg/kg diet) from birth,
including pregnancy and lactation, until

26 wks of life. AOM at day 45

Lifetime exposure suppressed colon tumors
growth [84]

s.c. 15 mg/kg b.w. 1x/wk for 2 wks

Probiotic bacteria “bifidobacterium lactis”
(B. lactis) and carbohydrate “resistant starch”
(from a commercial source called Hi-maize

958 or Hi-maize S260)

Diet supplemented (100 g/kg/diet of
Hi-maize 958 or Hi-miaze 260 and 1%

lyophilized culture of B. lactis)

Protective effects by the combination of the two
products [85]

s.c. 15 mg/kg b.w. for three weekly doses Xanthohumol (a polyphenol isolated from
Humulus lupulus L.)

Gavage (5 mg/kg b.w.) every alternate day
for 8 wks

Inhibited cell proliferation and induced
apoptosis [86]

Wistar rats i.p. 15 mg/kg L-lysine, propolis, or gum arabic
Gavage water (150 mg/kg L.-lysine,

100 mg/5 mL/kg propolis or 5 mL/kg gum
arabic) daily for 16 wks

Gum arabic and propolis reduced the total number
of aberrant crypt foci, L-lysine neither protected

against nor enhanced colorectal cancer [87]

b.w.: body weight; d.w.: drinking water; i.p.: intraperitoneal injection; p.o.: per os; s.c.: subcutaneous injection; wk: week; wks: weeks.
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Azoxymethane (AOM) and Dextran-Sodium Sulfate Model (DSS)

Because colon cancer is associated with long-standing IBD, such as ulcerative colitis
and Crohn’s disease, the risk of colorectal cancer development increases with the extent and
duration of disease [19]. Chronic and repeated mucosal inflammation may result in tumors
through several mechanisms, such as induction of genetic mutations, increased cryptal cell
proliferation, changes in crypt cell metabolism, changes in bile acid, and alterations in the
bacterial flora [5]. In 2003, Tanaka and colleagues developed a colitis-related mouse model
of colorectal cancer initiated with AOM and promoted by dextran-sodium sulfate (DSS) [88].
DSS is an inflammatory compound that causes damages to the epithelial lining of the colon
and induces colitis. Using this model, male Crj: Cd-1 (IRC) mice were intraperitoneally
injected with AOM (10 mg/kg of body weight) and, one week later, received 2% of DSS in
drinking water for seven days. Twenty weeks later, 88% of animals had colonic dysplasia,
and the incidence of adenoma and adenocarcinoma was 100% [88]. This model allows
the reduction in the number of AOM administrations, avoiding prolonged exposure to
this compound, and still allows a reduction in the latency period. After this finding,
other researchers have associated DSS with other compounds (PhIP and DMH), with
tumor induction in a shorter period than the AOM/DSS model [19,89,90]. Concerning the
AOM/DSS-induced model, different mice strains present diverse sensitivity; for example,
the incidence and multiplicity of adenocarcinomas appear to be higher in the BALB/c
mouse strain [91].

The AOM/DSS model mimetics human colorectal cancer pathogenesis, with a similar
location (distal colon) and initiation by a polypoid growth. However, this model has a very
low tendency to metastasize, which constitutes a limitation [92]. This model has been used
in several chemopreventive studies of colitis-related colon carcinogenesis [88] (Table 5).

2-Amino-1-Methyl-6-Phenylimidazo (4,5-b) Pyridine (PhIP)

The PhIP is a heterocyclic amine isolated from cooked fish and meat, which can be used
to induce tumors in the colon, prostate, and mammary gland [93]. After administration,
it is rapidly absorbed by the gastrointestinal tract and widely distributed through the
body [19]. Then it is bio-transformed by the liver cytochrome P450 s, being converted in
the amino group to a hydroxyamino group, which is then activated by forming esters with
acetic acid, sulfuric acid, and proline. These esters are responsible to induce carcinogenic
DNA adducts and genetic alterations leading to colorectal cancer [94]. The work performed
by Ito and colleagues was the first to induce colon tumors in rats with this compound [95].
F344 rats from both sexes were fed with 400 ppm PhIP for up to 52 weeks and presented a
high incidence of colon carcinomas [95]. PhIP did not induce colon cancer in mice, it just
induced the formation of colonic aberrant crypt foci and lymphomas [4,9]. The mechanisms
responsible for the non-induction of cancer in mice are not well understood [94]. This model
has been used to evaluate the therapeutic effects of several compounds on colorectal cancer.
Detailed information concerning mouse and rat models’ studies using PhIP induction can
be consulted in Table 6.
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Table 5. Colorectal cancer chemopreventive studies using the AOM/DSS model.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

CF-1 male mice s.c. AOM 10 mg/kg body wt + 1 wk later
d.w. 1.2% DSS for 7 days Aspirin (acetylsalicylic acid) Diet supplemented (0.02% aspirin) 1 wk

before AOM and for 20 wks
Suppressed inflammatory colitis

symptoms and tumor multiplicity [96]

C57BL/6 male mice

i.p. AOM 10 mg/kg + 1 wk later d.w. 2%
DSS for 1 wk

Asther glehni Franchet et Sckmidt (common
Korean dietary edible herb)

p.o. (25 mg/kg/day) 1 wk after AOM +
DSS and for 1 wk

Inhibited colitis-associated colon
carcinogenesis [97]

i.p. AOM 10 mg/kg b.w. + d.w. 2% DSS
for 5 days

DA-6034 (7-Carboxymethyloxy-39,49,5-
trimethoxyflavone) (synthetic derivative of

flavonoid eupatilin)
Gavage (30 mg/kg) from day 7 to the end Reduced the number of colon tumors [98]

i.p. AOM 10 mg/kg b.w. + 5 days later d.w.
2.5% DSS followed by 14 days of normal

water x 3 cycles
Pristimerin (a naturally triterpenoid) i.p. (125 ng/kg) every 2 days for 80 days Reduced the number and size of the

tumors [99]

i.p. AOM 10 mg/kg + 1 wk after d.w. 2%
DSS for 1 wk

Chitooligosaccharides (oligomers that are
depolymerized from chitosan) i.g. (300 mg/kg) once a day and 6x/wk

Prevented colorectal cancer through
regulating the gut microbiota and

mycobiota [100]

C57BL/6 female mice

i.p. AOM 10 mg/kg + 1wk later d.w. 2%
DSS for 1x/wk for 3 wks Conjugated linoleic acid (CLA) Diet supplemented (1% CLA) 3 wk before

AOM + DSS and for 13 wks Increased colorectal cancer [101]

i.p. AOM 10 mg/kg b.w. + d.w. DSS 2.5% 1
wk after AOM for two cycle of 7 days

Licorice flavonoids (LFs) (Chinese herbal
medicine)

Gavage (0, 50 or 100 mg/kg) once a day for
10 wks Reduced tumorigenesis [102]

BALB/c female mice i.p. AOM 10 mg/kg + 1 wk after d.w.DSS
2.5% 2.5% of 3 cycles of 1 wk Aloe vera gel p.o. (200 or 400 mg/kg/day) 1 wk before

AOM and for 13 wks
Reduced the multiplicity of colorectal
adenomas and adenocarcinomas [103]

BALB/c male mice i.p. AOM 12.5 mg/kg + 1 wk after dDSS
2.5% in d.w. for 3 cycles of 5 days

Triticum aestivum sprouts ethanol extract
(TAEE)

Gavage (100 or 200 mg/kg/day) for
40 days

Inhibited colon inflammation and
neoplasm formation [104]

CD-1 (ICR) male mice

i.p. AOM 10 mg/kg b.w. + 1 wk after d.w.
DSS 1.5% for 7 days Zerumbone (tropical ginger sesquiterpene) Diet supplemented (100, 250, or 500 ppm)

for 17 wks

Zerumbone suppresses mouse colon
carcinogenesis through mechanisms of

growth, apoptosis, inflammation that are
involved in carcinogenesis in the

colon [105]

i.p. AOM 10 mg/kg b.w. + 1 wk after d.w.
DSS 1% for 7 days

Prenyloxycoumarins, auraptene and
collinin nonsteroidal anti-inflammatory

drugs)

Diet supplemented (0.01 and 0.05% of all
compounds) 1 wk after DSS and for 17 wks Chemopreventive activity [106]
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Table 5. Cont.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

i.p. AOM 10 mg/kg b.w. + 1 wk after d.w.
DSS 1% for 7 days

Ursodeoxycholic Acid (UDCA) and
Sulfasalazine (anti-inflammatory agents)

Diet supplemented (0.016, 0.08 or 0.4%
UDCA, 0.05% sulfasalazine or 0.5% UDCA
+ 0.05% sulfasalazine) 1 wk after DSS and

for 20 wks

UDCA showed more suppressing effects
on colorectal cancer [107]

i.p. AOM 10 mg/kg b.w. + d.w. DSS 2.5% 1
wk after AOM and for 7 days Dried açaí berry powder Diet supplemented (2.5 or 5%) for 14 wks Reduced the incidence of colorectal

cancer [108]

i.p. AOM (10 mg/kg b.w.) + d.w. DSS 1.5%
1 wk after AOM and for 7 days

Fucoxanthin (a xanthophyll present in
marine brown algae) Gavage (6 or 30 mg/kg) Reduced the number of colorectal

polyps [109]

CD-1 (ICR) female mice i.p. AOM 10 mg/kg b.w. + 1 wk after d.w.
DSS 2% for 7 days

Nimesulide (a cyclooxygenase-2 inhibitor),
troglitazone and bezafibrate (ligands for

peroxisome proliferator-activated
receptors)

Diet supplemented (0.04% nimesulide,
0.05% troglitazone and 0.05% bezafibrate)

1 wk after DSS and for 14 wk

Suppressed development of colorectal
cancer [110]

129SvJxC57BL6 male and
female mice

i.p. AOM 12.5 mg/kg + 5 days later d.w.
DSS 2% for 5 days followed by a 2-wk rest

period and again 5 days of DSS

Chalcone lonchocarpin isolated from
Lonchocarpus sericeus

i.p. (2.5 mg/mL) 4 wks after the last DSS
cycle and for 4 days Reduced tumor proliferation [111]

b.w.: body weight; d.w.: drinking water; i.g.: intragastrically; i.p.: intraperitoneal injection; p.o.: per os; s.c.: subcutaneous injection; wk: week; wks: weeks.
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Table 6. Studies using PhIP model to study several strategies for colorectal cancer.

Animal Strain and Gender Carcinogenic Administration Route Drugs or Compounds Evaluated
(Classification) Dose/Treatment Therapeutic Effects (Ref)

F344 male rats

p.o. 200 ppm for the first 20 wks Tomato + broccoli powder in
AIN93G diet

control, PhIP alone, PhIP + diet with 10%
of tomato and broccoli powder for

20 wks and without PhIP for 32 wks

A diet rich in tomato + broccoli can
reduce or prevent dietary

carcinogens-induced cancer. Tomato +
broccoli group reduced incidence and/or

severity of cancer lesions [112]

Gavage 75 mL/kg b.w. 5 times a week
for 2 wks

Yogurt powder (milk fermented by
Lactobacillus delbrueckii subsp. Bulgaricus

strain 2038 and Streptococcus salivariu
subsp. thermophilus strain 1131)

Diet supplemented (10.4646% yogurt
powder) 14 days before PhIP and for

14 days

Yogurt appears to have
tumor-suppressing properties [113]

Gavage daily 100 mg/kg b.w. for 2 wks
White tea, green tea,

epigallocatechin-3-gallate (EGCG) and
caffeine

d.w. (2% white tea, 2% green tea,
0.5 mg/mL EGCG or 9.5 mg/mL

caffeine) 1 wk after last PhiP and for
16 wks

Inhibition of tumor initiation mostly by
white tea, caffeine and EGCG [114]

i.g. 100 mg/kg2x/wk for 10 wks
Nobiletin (5,6,7,8,3,4 -hexamethoxy
flavone) (polymerthoxy-flavonoid

extracted from citrus fruits)

Diet supplemented (0.05% nobiletin) for
50 wks

Chemopreventive activity of early
carcinogenesis changes [115]

Gavage 150 mg/kg for 5 alternate days White tea d.w. (2% wt/vol white tea) for 2 wks Inhibition of preneoplastic lesion
development [116]

i.g. 200 mg/kg 2x/wk for 10 wks) Fujiflavone (a commercial isoflavone
supplement)

Diet supplemented (0.25% fujiflavone)
for 50 wks

Preventive effects on colorectal cancer
[117]

Gavage 50 mg/kg b.w. Clorophyllin (CHL) indole-3-carbinol
(I3C)

p.o. (0.1% I3C and 0.1% CHL), before
and during PhiP exposure or 1 wk after

PhIP and for 16 wks

Protective effects for CHL and I3C on
colorectal carcinogenesis [118]

F344 female rats Diet supplemented 0.02%

caffeine, α-tocopherol (lipophilic
antioxidant), and

n-tritriacontane-16,18-dione (TTAD)
(β-diketone derivative)

p.o. (0.1% caffeine, 0.5% α-tocopherol or
0.1% TTAD) for 54 wks

Increase the incidence of colorectal
tumors by caffeine; α-tocopherol and

TTAD had no effect on colorectal
tumors [119]

Sprangue-Dawley male rats Gavage 10 mg/kg b.w. Chinese cabbage (Brassica chinensis) p.o. (20% freeze-dried cabbage powder)
10 days before PhIP and for 20 h

Preventive effect on initiated colorectal
tumors [120]

b.w.: body weight; d.w.: drinking water; h: hours; i.g.: intragastrically; p.o.: per os; wk: week; wks: weeks.
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3.3. Genetically Engineered Models

Genetically engineered models allow the study of genetic predisposition to colorectal
cancer development, and its interaction with environmental and modifying factors. These
models mimic the genetic alterations of spontaneous and hereditary forms of colorectal
cancer [9]. Through the study of hereditary colorectal syndromes, such as FAP and HNPCC,
it was possible to discover the mutations under colonic carcinogenesis and replicate genetic
lesions in mice and rats by developing genetically engineered models [9].

3.3.1. Adenomatous Polyposis Mouse Models (APC)

It was demonstrated that human colorectal cancer is a multi-step genetic process and
that the mutation of the APC gene occurs at the beginning of the carcinogenesis process.
The APC gene is responsible for the regulation of β-catenin, cytoskeleton organization, cell
cycle regulation, apoptosis, and cell adhesion. When mutated in the germline, this gene is
associated with FAP [5,121].

Moser and colleagues discovered that C57BL/6 mice treated with ethylnitrosourea
developed a mutation that predisposes to spontaneous development of intestinal cancer,
naming the model as ApcMin mouse [122]. The Min mouse model is the only animal model
of cancer that contains a single genetic alteration capable of producing a fully penetrating,
consistent, and organ-specific tumor phenotype. The adenomas developed rapidly, with
lesions identified within 60 days, and high tumor multiplicity. This model allows the
study of multiple pathways impacting tumorigenesis and enables numerous entry points
for basic or applied studies [10]. Over the years, this model has been tested, improved,
characterized, and used to understand the role of the APC gene in colorectal cancer and
also in chemopreventive studies [14] (Table 7).

Other mouse models with target genetic modifications at different locations on the
APC gene have been generated, such as ApcMin/850, Apc∆716, Apc1638N, Apc1638T,
Apc∆468, and Apc∆474 [10], that allow the study of the colorectal cancer mechanisms,
create models more similar to those changes found in humans, and test the role of specific
regions in the APC gene on cancer development [9,10].
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Table 7. Studies using the APCMin/+ model to evaluate the effect of several compounds in colorectal cancer.

Animal Strain/Gender Drugs or Compounds Evaluated (Classification) Dose/Treatment Therapeutic Effects (Ref)

Min mice/n.d.

α-phenyl-tert-butyl nitrone (PBN) and 4-hydroxyl-PBN
(4-O-PBN) (nitrones) d.w. (100 ng/kg/day PBN or 4-O-PBN) for 3–4 months Anti-cancer activity of PBN more significant than

4-O-PBN [123]

Bilberry (Vaccinium myrtillus), lingonberry (Vaccinium
vitis-idaea), cloudberry (Rubus chamaemorus), cloudberry

seeds or cloudberry pulp, or pure ellagic acid
p.o. (1564 mg/kg of each) for 10 wks. Chemopreventive potential [124]

Atorvastatin (hydroxy-3- methylglutaryl CoA reductase
(HMGR) inhibitor) and celecoxib (cyclooxygenase-2

(COX-2) inhibitors)

p.o. (0 or 100 ppm atorvastatin or 300 celecoxib alone or in
combination) for 80 days

Inhibited intestinal tumorigenesis by atorvastatin and
increased chemopreventive activity in combination with

celecoxib [125]

Piroxicam (a non-steroidal anti-inflammatory drug) p.o. (200 ppm piroxicam) for 100 or 200 days of rat age Reduced tumor multiplicity [126]

Annurca Apple polyphenol extract d.w. (60 µmol/L) in combination with a western diet or
balanced diet for 12 wks Chemopreventive potential [127]

Fermented brown rice and rice bran (FBRA)

Exp.1: diet supplemented (5 or 10% FBRA) for 20 wks;
Exp2: diet supplemented (5 or 10% FBRA and 2% DSS in
d.w. for 1 wk) for 12 wks; Exp3: diet supplemented (10%

FBRA and 1.5% DSS in d.w. for 1 wk) for 7 wks

No effect on tumor development by FBRA alone but in
combination with DSS suppressed the multiplicity of

colon tumors [128]

Sulforaphane (SFN) (isothiocyanate) Diet supplemented (600 ppm SFN) for 1, 3, or 5 days Chemopreventive potential [129]

Bilirubin, bovine serum albumin (BSA) and sodium
taurocholate (NaTC)

p.o (0.5 mM BSA alone or in combination with 0.25 mM
bilirubin or 5 mM NaTC) for 8 wks Reduced intestinal adenomas by NaTC [130]

Metformin (biguanide derivative) p.o. (250 mg/kg/day) for 10 wks Chemopreventive potential [131]

Silibinin Gavage (750 mg/kg b.w.) for 5 days a wk for 13 wks Chemopreventive potential [132]

Min mice/female and male

Aspirin Diet supplemented (250 or 500 ppm) for 7 wks Chemopreventive potential [133]

Curcumin Diet supplemented (2% curcumin) from 4 to 18 wks of age Chemopreventive potential [134]

Anthocyanin-rich tart cherry extract and sulindac (a
nonsteroidal anti-inflammatory drug)

p.o. (0, 375, 750, 1500 or 3000 mg anthocyanin-rich tar
cherry extract/kg if diet with 100 mg sulindac/kg diet) for

19 wks

The combination of both compounds had a more
protective effect than compounds alone [135]

Physical activity t.r. (18 m/min, 60 min/day, 6 days/wk or voluntary
wheel running) for 9 wks

Reduced number and size of intestinal polyps, dependent
on exercise mode and gender [136]

DMU-135 (3,4-Methylenedioxy-3,4,5 -trimethoxy chalcone)
(anticancer prodrug) Diet supplemented (0.2% w:w) from 4–18 wks Chemopreventive activity [137]

MCC-555 (peroxisome proliferator-activated receptor
(PPAR) ligand) Gavage (30 mg/kg/day 5 days/wk) for 4 wks Suppressed activity [138]

Soy isoflavones

Diet supplemented (low-isoflavone: 11.5 genistein, 2.3
daidzein and 2.3 mg of glycitein/kg diet, rich isoflavone

diet: 280.6 genistein, 147.2 daidzein and 48.3 mg of
glycitein/kg diet) for 107 days

No inhibition of colorectal tumor development [139]
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Table 7. Cont.

Animal Strain/Gender Drugs or Compounds Evaluated (Classification) Dose/Treatment Therapeutic Effects (Ref)

Min mice/male

Orange peel extract (OPE) Diet supplemented (0.25 or 0.5% OPE) for 9 wks Inhibited colorectal tumorigenesis [140]

Physical activity t.r.(18 m/min, 60 min, 6 days/wk, 5% grade) for 9 wks Reduced the overall tumor burden (size and number) [141]

Guanidinoethyldisulfide (GED) [14–17], peroxynitrite
decomposition catalyst, FP 15 and poly(ADPribose)

synthetase (PARP) inhibitor,
N-(6-oxo-5,6-dihydrophenanthridin- 2-yl)-N,

N-dimethylacetamide hydrochloride (PJ 34) (specific
inhibitors of inducible nitric oxide synthase)

Gavage (10 or 30 mg/kg/day GED, 1 or 3 mg/kg/day
FP15 and 3 or 10 mg/kg/day PJ34) twice a day from 5 wks

of age until 12 wks
Chemopreventive activity of all compounds [142]

Min mice/female (–)-epigallocatechin-3-gallate (EGCG) and fish oil Diet supplemented (0.16% EGCG alone or in combination
with high-fat fish oil diet, 20% w:w) for 9 wks

Inhibited tumor multiplicity by a combination of low
doses of EGCG and fish oil [143]

Apc1638N mice/male and female Aspirin and α-amylase resistant starch (RS) Diet supplemented (125 g/kg diet RS or 0.3 g/kg aspirin
alone or in combination) from 6 wks

The combination of two compounds showed more
preventive activity than compounds alone [144]

d.w.: drinking water; n.d.: no data; p.o.: per os; t.r.: treadmill running; wk: week; wks: weeks.



Vet. Sci. 2021, 8, 59 22 of 29

3.3.2. F344-Pirc Rat Model

In 2007, Landgraf and colleagues developed a rat model carrying a knockout allele in
the APC gene on an inbred F344/NTac genetic background rat [145]. To distinguish it from
the APC mouse, they called this strain Pirc form (polyposis in the rat colon). The Pirc rats
developed adenomas similar to those found in humans, showed the same progression to
invasive carcinomas, and dependence on gender was observed, with males more prone to
develop tumors in the intestinal tract than female rats [145]. In comparison to APC mouse
models, this model takes some advantages due to the rat’s size, the facility of diagnostic
imaging, colonic predisposition, and longevity [10].

3.3.3. Hereditary Nonpolyposis Colon Cancer Mouse Models (HNPCC)

HNPCC is an inherited disease characterized by inactivated DNA mismatch repair
genes, such as MLH1, MSH2, MSH6, and PMS2, that leads to the development of a variety
of cancers, including colorectal cancer [15]. Mice with a targeted inactivating mutation in
the mismatch repair genes are used to study these genes and evaluate their contribution to
carcinogenesis [14,146]. Developed tumors are not specific to the colon-rectum; they occur
in other organs such as the skin, lung, lymphatic system, stomach, and small intestine [15].

3.4. Xenograft and Syngeneic Models

Colorectal cancer cells or grafts of tissue can be implanted into animals to evaluate
tumor development and to analyze the effects of several chemicals and natural compounds
(Figure 5).

Figure 5. Schematic representation of xenograft and syngeneic models. In both models, the cells
may be implanted in tumor site origin (orthotopic grafts) or a site different from tumor origin
(heterotopic grafts).

In xenograft models, human tumor cells or tumor fragments are implanted into
immunocompromised animals. Syngeneic tumor models are characterized by the use of
animal tumor cell lines obtained from chemically induced rodent colorectal cancer and
are implanted into animals with the same genetic background as the cell line [13]. These
models can be used, among others, to study the effects of treatment on colorectal cancer
metastases [4,147,148].

The cells may be implanted subcutaneously, intrasplenically into the renal capsule
(heterotopic models), or directly in the colon or rectum (orthotopic models) [13,14]. The
subcutaneous inoculation (heterotopic model) is one of the most used methods due to the
simplicity, easy access, and high tumor growth [4]; however, the tumor microenvironment is
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different from the colon [13], and the metastases do not develop [149]. Comparing with the
subcutaneous heterotopic model, the intrasplenically and renal capsule heterotopic models
and the orthotopic model are technically more advanced and more difficult to work with,
requiring the animals’ anesthesia and use of imaging modalities (e.g., ultrasonography) to
implant the cells specifically in the spleen, the renal capsule or colon, respectively [150].

Orthotopic implantation refers to cells or tumor fragments implanted in the tumor
site of origin, i.e., colon or rectum [13]. These models allow replication of tumor invasion,
vascular spread, mimic the progression to advanced colorectal cancer in humans, and
metastasize to distal organs [12]. For example, MCA-38 cells were intramurally injected
into the cecum of C5BL/6J mice, and 40–65% of them developed metastases eight weeks
later [151]. In another study, CT26 cells were transanal rectal injected in Balb/c mice with
uptake rates of 65%, but only 3.3% developed metastases [152].

These models can be used to evaluate some therapeutic drugs. For example, Tao and
colleagues used a commercial human colon cancer cell line, HCT-116, to evaluate the anti-
colorectal cancer activity of Weichang’an, a Chinese herbal medicine, with 5-fluorouracil.
The cells were injected subcutaneously in male BALB/C mice axilla, and after tumor
growth, they were transplanted into the cecum. The group concluded that the compounds
evaluated inhibited both colon tumor growth and hepatic metastases [153].

4. Conclusions

Experimental data concerning dietary, drugs, and natural compounds’ effects on colon
cancer models were reviewed in this work. Although several animal models are available
to study colon cancer, there is no perfect model; all constitute an important tool to study
human and animal colon carcinogenesis and to evaluate the potential effects of preventive
and therapeutic strategies.

Whereas the AOM/DSS model mimetics the pathogenesis observed in human colorec-
tal cancer, others like genetically engineered models allow studying genetic predisposition
to the development of this type of cancer. The model selection should consider the studies’
goals, the costs, and the advantages and disadvantages of each model, animal, strain,
and gender.

Considering dietary patterns and natural products used as chemoprevention or
chemotherapy, some like soy isoflavones, β-carotene, dried plums, fuji flavone, and Chinese
cabbage showed an inhibitory effect on colorectal carcinogenesis, and adlay bran ethanol
extract, grape seed extract, and pomegranate peel extract decreased the development of
colonic premalignant lesions. However, groups that studied the effects of wheat bran and
heme groups (in form of chicken, beef, black pudding) in the mice diet have concluded the
opposite, observing a higher incidence of colorectal carcinogenesis.

In some cases, natural compounds, several drugs, and dietary patterns results are
inconsistent and depend on multiple factors, and the best way to obtain better results is to
select the most appropriate model and try to reduce most of the external factors. To achieve
this goal, more research with controlled parameters is warranted. Moreover, ideally, the
studies to evaluate the effects of natural compounds in CRC should not only evaluate
the whole compound, but also each active substance in an isolated way. However, these
studies imply the use of a higher number of animals, and consequently, higher costs for
researchers, which may constitute a limitation.
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