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Abstract: The endoplasmic reticulum represents the gateway to the secretory pathway. Here, proteins
destined for secretion, as well as soluble and membrane proteins that reside in the endomembrane
system and plasma membrane, are triaged from proteins that will remain in the cytosol or be
targeted to other cellular organelles. This process requires the faithful recognition of specific targeting
signals and subsequent delivery mechanisms to then target them to the translocases present at the
ER membrane, which can either translocate them into the ER lumen or insert them into the lipid
bilayer. This review focuses on the current understanding of the first step in this process representing
the targeting phase. Targeting is typically mediated by cleavable N-terminal hydrophobic signal
sequences or internal membrane anchor sequences; these can either be captured co-translationally at
the ribosome or recognised post-translationally and then delivered to the ER translocases. Location
and features of the targeting sequence dictate which of several overlapping targeting pathway
substrates will be used. Mutations in the targeting machinery or targeting signals can be linked
to diseases.
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1. Targeting Signals

Secretory and soluble proteins that reside in the endomembrane system are typically
synthesised with an N-terminal signal sequence, which directs them to the ER [1,2]. Once
translocated to the ER lumen, the signal is then cleaved off (Figure 1A). Signal sequences
are highly variable in sequence but typically are 12–30 residues in length and composed
of an N-terminal region, often positively charged, a core of eight or more hydrophobic
residues, and a short polar C-terminal domain which often contains helix-breaking glycine
and proline residues, as well as amino acids with short-side chains at the -1 and -2 positions,
the consensus site for the cleavage by the signal peptidase [2,3].

Integral membrane proteins can be classified based on their topology in the membrane.
Single spanning membrane proteins (with just one trans-membrane (TM) domain) that
have their N-termini in the ER lumen and C-terminus in the cytoplasm are termed type I,
whereas those with their N-termini in the cytoplasm and C-terminus in the lumen are
termed type II. In addition to this classification, a subclass of type I membrane proteins that
possess very short luminal domains are called type III membrane proteins. Similarly, type
II proteins with very short luminal domains are called tail-anchored proteins, reflecting the
location of the TM domain close to the C-terminus (Figure 1A). Membrane proteins with
multiple TM domains are termed polytopic membrane proteins.

Type I membrane proteins, similar to secretory proteins, are also targeted by cleavable
signal sequences. In contrast, type II membrane proteins, including tail-anchored proteins,
use their TM domain as a non-cleavable targeting sequence (Figure 1A) [4,5]. The same
mechanism is also used by Type III membrane proteins. Targeting of polytopic membrane
proteins is typically linked to the topology of the first TM domain; thus, where there is a
large N-terminal luminal domain, targeting typically takes place via an N-terminal signal
sequence. In contrast, where there is a short N-terminal luminal domain or where the
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N-terminus is in the cytosol, then, the first TM domain serves as a non-cleavable targeting
signal as with type II membrane proteins. A key feature of all these targeting signals is their
hydrophobic nature, and hence, a vital role of cellular targeting pathways is to prevent
their aggregation while they are being targeted.
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Figure 1. Targeting signals, pathways, and translocases: (A) Soluble secretory and luminal proteins 
as well as type I membrane proteins are targeted by cleavable N-terminally located signal sequences 
(green). Type II, type III and tail-anchor membrane proteins as well as multi-spanning polytopic 
membrane proteins utilise internal TM domains (red) for targeting. (B) These different classes of 
secretory and membrane proteins are translocated across or inserted into the membrane by a num-
ber of translocases with overlapping specificity. Short secretory proteins are translocated by the SEC 
translocase and maintained in a translocation-competent state by Hsp70 chaperones or calmodulin. 
Longer secretory proteins can use the same pathway as well as delivery to the Sec61 translocase by 
SRP. Type I and II membrane proteins can also be delivered to Sec61 by SRP. Those with more 
central and C-terminal TM domains can also be targeted by the SND pathway. Type III membrane 
proteins can be delivered by SRP to either Sec61 or the EMC translocase. Tail-anchored membrane 
proteins can utilise the SND pathway and the GET pathway as well as delivery to the EMC complex 
involving Hsp70, calmodulin, or ubiquilins. Finally, polytopic membrane proteins are targeted to 
the Sec61 translocon by SRP and may recruit the EMC or TMCO1 to assist in their integration. 
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Figure 1. Targeting signals, pathways, and translocases: (A) Soluble secretory and luminal proteins
as well as type I membrane proteins are targeted by cleavable N-terminally located signal sequences
(green). Type II, type III and tail-anchor membrane proteins as well as multi-spanning polytopic
membrane proteins utilise internal TM domains (red) for targeting. (B) These different classes of
secretory and membrane proteins are translocated across or inserted into the membrane by a number
of translocases with overlapping specificity. Short secretory proteins are translocated by the SEC
translocase and maintained in a translocation-competent state by Hsp70 chaperones or calmodulin.
Longer secretory proteins can use the same pathway as well as delivery to the Sec61 translocase by
SRP. Type I and II membrane proteins can also be delivered to Sec61 by SRP. Those with more central
and C-terminal TM domains can also be targeted by the SND pathway. Type III membrane proteins
can be delivered by SRP to either Sec61 or the EMC translocase. Tail-anchored membrane proteins
can utilise the SND pathway and the GET pathway as well as delivery to the EMC complex involving
Hsp70, calmodulin, or ubiquilins. Finally, polytopic membrane proteins are targeted to the Sec61
translocon by SRP and may recruit the EMC or TMCO1 to assist in their integration.

2. ER Protein Translocases and Insertases

At the ER membrane, a number of protein translocases are able to either translocate
proteins into the ER lumen or insert them into the lipid bilayer (Figure 1B). The canonical
Sec61 translocase can perform both these functions with a large range of substrates. The
more recently discovered GET insertase and EMC translocase can function independently
of Sec61 but are limited to substrates with short luminal domains, while the recently
discovered TMCO1 translocon functions in collaboration with Sec61 during polytopic
membrane protein biogenesis [5–7]. Here, we shall focus on the targeting mechanisms
which recognise substrates and deliver them to these translocases. The details of structure,
function, and insertion mechanisms of these translocases are covered by a number of
excellent recent reviews [5,6,8,9].
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3. SRP-Dependent Targeting

The signal recognition particle (SRP) is a highly-conserved targeting machine present
in all domains of life [10]. SRP is able to bind to translating ribosomes and can scan
the emerging N-terminus of the nascent chain for the presence of signal sequences [11]
(Figure 2A). Signal sequence recognition by SRP leads targeting of the ribosome together
with the nascent chain to the ER membrane via the action of its cognate receptor (SRP
receptor SR), an integral ER membrane protein which then facilitates the transfer of the
ribosome and nascent chain to the Sec61 protein-conducting channel [12–14] (Figure 2A).
SRP also induces a transient slowdown in translation, termed elongation arrest, which
extends the time window where the ribosome-nascent chain complex remains competent
to be targeted to Sec61 by the action of SR [15]. Once the nascent chain is released from the
SRP–SR complex, the two can dissociate to allow further rounds of targeting.
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Figure 2. SRP-dependent targeting pathway: (A). Overview of the SRP targeting pathway: SRP
can bind to ribosomes and scan for the presence of a signal sequence in the nascent chain as the
N-terminus emerges from the ribosome exit tunnel. Engagement with the nascent chain with the
SRP54 subunit (red) leads to a transient retardation in translation elongation and targeting to the ER
membrane via an interaction with SRP receptor (SR). Complex formation between SRP and SR is
driven by GTP (T) binding to SRP54 and SRα. The Sec61 translocase triggers release of signal sequence
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from SRP concomitant with hydrolysis of GTP to GDP (D). The ribosome binds Sec61 such that as
translation resumes the nascent chain is threaded through the channel into the ER lumen where
signal peptidase (SPase) can then remove the signal sequence. Finally, SRP and SR can dissociate,
and nucleotide is released, permitting further rounds of targeting. (B). Domain organisation of
yeast and mammalian SRP: Mammalian SRP is composed of a 7SL SRP RNA and six SRP proteins.
SRP54, SRP19, SRP68, and SRP72 bind the RNA to form the S-domain whilst SRP9 and SRP14 form
the Alu domain. Yeast SRP comprises a larger 11S RNA and homologues of SRP54, SRP19 (Sec65),
SRP68, and SRP72 in the S domain and Srp14 and a dimer of Srp21 in the Alu domain. (C). Domain
organisation of SRP54 and SRP receptor: SRP54 is comprised of a composite NG domain containing
a four α-helical N- and GTPase (G) domain as well as a M-domain that comprises the RNA and
signal sequence binding site. SRα has an N-terminal SRX domain that interacts with SRβ, a flexible
linker with conserved CBR, RBR, and MoRF motifs and an NG domain closely related to that of
SRP54. SRβ comprises an N-terminal TM domain and GTPase domain that interacts with SRX.
(D). All ribosomes are associated with NAC, a nascent chain chaperone, which is bound at the exit
site; SRP can transiently bind to the ribosome, positioning SRP54 at the exit site via an interaction
with uL23 and uL29, allowing it to scan the emerging nascent chain for signal sequences. NAC aids
the specificity of cargo loading of SRP54 with the signal sequence, which then stabilises ribosome
binding. Initial interaction with SR at the ER membrane involves interaction of the SRP54 and SRα
NG domains adjacent to uL23/uL29 (the proximal site) and is accelerated by the SRα linker MoRF
motif binding to the SRP RNA when SRP54 is bound to a signal sequence. Subsequent dissociation
and the NG domains from uL23/L29 and SR compaction move the NG domains to the distal site,
where interactions involving SRP68, SR CBR motif, SRX, and SRβ stabilise its binding to form the
‘prehandover complex’. An interaction of the GTPase domains with SRP72 blocks GTP hydrolysis
until Sec61 arrives. Movement to the distal site allows access to uL23/uL29 which is a key binding
site for the Sec61 translocase and exposes the signal sequence and M-domain. This allows efficient
transfer of the ribosome and nascent chain to Sec61 coordinated by concerted GTP hydrolysis by the
NG domains.

The conserved core of the SRP targeting system, present in all domains of life, com-
prises the signal-sequence-binding protein of SRP, SRP54, associated with a conserved
SRP RNA together with the SRα subunit of SR. SRP54 and SRα are both GTPases and
possess closely related GTPase domains. In higher eukaryotes, SRP comprises a 300 nt 7S
SRP RNA and six polypeptides organised in two domains: the S-domain which includes
the conserved core as well as proteins SRP19, SRP68, and SRP72, and the Alu domain
comprising proteins SRP9 and SRP14 [16] (Figure 2B). Yeast SRP possesses a slightly larger
11S RNA, a larger homologue of SRP19 (Sec65), and SRP9 is replaced with the related Srp21,
and Srp14 is present as a homodimer [17] (Figure 2B). The S-domain of SRP is primarily
involved with signal sequence recognition and accurate handover to the Sec61 translocation
channel at the ER membrane facilitated by the interaction with SR. In contrast, the Alu
domain is responsible for inducing the elongation arrest activity [18].

The SRP receptor comprises the conserved SRα subunit anchored at the ER membrane
by single spanning-membrane protein SRβ, which also possesses a GTPase domain but
which is more closely related to ARF and Sar1 than SRP54 and SRα [19] (Figure 2C).

Structural insight into SRP and its interaction with signal sequences and the ribosome
have been provided by both X-ray crystallography and cryo-EM studies [11,20,21]. SRP54
is composed of two domains, the NG and M-domains, separated by a flexible linker which
allows communication between the two domains [22] (Figure 2C). The N-domain comprises
a four α-helical bundle which folds onto the GTPase domain [23]. The M-domain contains a
helix-loop-helix structure, which allows SRP54 to bind to the SRP RNA and a hydrophobic
groove which forms the binding site for signal sequences [24,25]. SRP19 does not contact
SRP54 directly but also binds the SRP RNA and modifies its structure allowing SRP54
to bind [26].

Initial, low-affinity binding of SRP to ribosomes is independent of the signal sequence
allowing it to dynamically scan ribosomes for the presence of signal sequences in the
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emerging nascent chain prior to high affinity binding upon recognition of the signal
sequence [27,28]. Consistent with this observation, ribosome profiling experiments indicate
that SRP can also be recruited to ribosomes prior to emergence of the signal sequence [29].

The S-domain of SRP binds to the ribosome on the 60S subunit at the exit site where the
nascent chain emerges from the exit tunnel which conveys it from the peptidyl-transferase
centre to the ribosome surface (Figure 2D) [20]. The N-domain of SRP54 contacts ribosomal
proteins uL23 and L29 at one side of the exit tunnel, as well as three additional contact
sites involving the SRP54 M-domain and SRP68/72 [11,20,30]. This positioning of SRP54
permits efficient scanning and capture of the signal sequence by the M-domain as it
emerges [11,20,30,31]. Blocking access of SRP to uL23/L29 is known to lead to targeting
defects in vivo [32].

The Alu domain of SRP contacts the interface of the large and small subunits at the
translation elongation factor-binding site, thus rationalising the slowdown in translation
elongation by antagonising factor binding [11,20] (Figure 2D). The C-terminus of SRP14
represents one of the contact sites, and its removal leads to targeting defects, which can be
ameliorated by elevating SR concentration [20,33,34].

Slowdown of translation is not solely mediated by SRP; analysis of codon-optimality
downstream from the targeting sequences revealed a prevalence of poorly translated codons
distal to the signal sequence, which also contributes to slowed translation and replacement
with more synonymous optimal codons, reducing targeting efficiency [35].

Careful kinetic and structural analysis of the SRP targeting cycle has provided key
insight into the roles played by the two GTPases, SRP54 and SRα, in regulating targeting.
SRP54 and SRα are both members of the SIMIBI family of GTPases which are characterised
by a relatively low affinity for GTP compared to other small GTPases, such as Ras [36]. This
is explained structurally by the presence of an additional insertion domain called the I-box
which stabilises the nucleotide-free state [37].

SRα is organised into two domains, an N-terminal SRX domain, which folds together
with the SRβ GTPase [38–40], and the SRP54-related NG domain, separated by a conserved
flexible linker rich in positive charge (Figure 2C). SRP54 and SRα NG domains dimerise in a
GTP-dependent manner, whereby the two bound nucleotides sit at the interface contacting
one another in an anti-parallel organisation [41,42].

Once bound to a signal sequence, SRP54 can then engage the SRP receptor. This
occurs in two steps, an initial low affinity binding where the SRP54 NG domain is still
adjacent to ribosomal proteins, uL23 and uL29, termed the proximal site, followed by
rearrangement to a high-affinity bound state where the NG-domains together move away
from the ribosome surface together towards SRP68/72, termed the distal site, to form a
‘prehandover’ complex [43,44]. Initial complex formation at the proximal site is facilitated
by GTP-dependent NG–NG domain interaction and is dramatically accelerated by the
conserved molecular recognition feature (MoRF) in the unstructured SRα linker region,
which contacts the SRP RNA [45]. This kinetic acceleration is dependent on cargo loading
to SRP54, thereby strongly favouring complex formation upon recognition of the signal
sequence [45]. Moreover, this is directly analogous to the role played by the SRP RNA in
bacterial SRP–SR complex formation [46,47].

Following the initial complex formation by the two NG domains, there is destabili-
sation of the first α-helix in each of the two N domains and their associated loops which
contact the ribosome [44,48]. This rationalises their dissociation from uL23/uL29 at the
proximal site. Once the NG domains are dissociated, a compaction of SR brings the NG
domain close to the SRX domain at the distal site [49]. This is stabilised by interactions
between SRP68, elements of SRα NG, and X domains, as well as with SRβ [44]. The charged
CBR motif in the SRα linker also makes an interaction with the distal site elements of the
SRP RNA [44] (Figure 2D).

This prehandover complex is now primed to interact with the Sec61 translocon as
the uL23/L29 site, which Sec61 also contacts, and is now accessible, as well as the signal
sequence in the M-domain [30,43,44,50]. Whilst at the distal site, an interaction of the
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GTPase domain interface with the C-terminus of SRP72 delays hydrolysis of GTP by SRP54
and SRα until Sec61 is present [44,51].

The arrival of Sec61 leads to rearrangement of the prehandover complex which induces
concerted GTP hydrolysis by SRP54 and SRα, thereby releasing the nascent chain from
SRP and allowing its transfer together with the ribosome to the Sec61 complex [14,43,52].
Following GTP hydrolysis, SRP and SR can dissociate to undertake further rounds of
targeting [53].

Recent studies have shown that SRP alone is unable to discriminate with high pre-
cision cognate and near-cognate (non-functional) signal sequences. Another ribosome-
associated biogenesis factor, NAC, also needs to collaborate with SRP to enhance fidelity [54]
(Figure 2D). NAC binds to all ribosomes and contacts overlapping regions at the exit site
to where SRP binds [20,55–57]. It is also able to initially insert a domain deep into the
exit tunnel which would prohibit interactions of factors with non-translating ribosomes;
subsequent displacement of this domain by the nascent chain has been proposed to lead to
dynamic rearrangement of NAC which appears important for the correct triage of nascent
chains to SRP in the case of secretory and membrane proteins and RAC and Hsp70 in
the case of cytosolic proteins [57,58]. Hence, the increased fidelity in signal sequence
recognition in the presence of NAC is entirely consistent with this model.

Proteomic approaches in yeast have used ribosome profiling to identify substrates
and binding sites for SRP on translating polysomes [29]. SRP is associated mainly with
ribosomes translating integral membrane proteins and to a lesser extent proteins with
N-terminal signal sequences [29]. This parallels similar studies in bacteria which also
show SRP is mainly involved in membrane protein biogenesis [59]. These findings are
also supported by SRP-substrate dependency as measured proteome-wide by loss of ER
mRNA association upon rapid depletion of SRP [60]. This analysis revealed a similar
SRP-dependency profile that is again biased towards integral membrane proteins [60].
The ribosome profiling experiments also revealed that whilst for some substrates SRP
recruitment occurs as the targeting sequence emerges from the ribosome as expected in the
canonical model of SRP function, in many cases SRP is recruited earlier, often well before
the signal sequence/anchor has been synthesised [29]. This non-canonical binding of SRP
is still dependent upon the ribosome and in some cases requires features of the 3′ UTR, but
it is not presently known how preferential pre-delivery of SRP to these substrates occurs
and if it requires specific mRNA binding proteins [29]. Interestingly, it was recently shown
that the ribosome-associated factor, Hel2, which binds to collided ribosomes that arise
where stalling occurs, was shown to bind to membrane protein polysomes in a pattern that
strongly overlaps with that of SRP [61].

In the absence of SRP, substrates that are usually delivered to the ER can become aggre-
gated [62] or are instead mistargeted to mitochondria causing disruption to mitochondrial
function [56,60], a phenotype also observed if Hel2 is disrupted [61]. Hence, another key
function of SRP is to prevent promiscuous misbehaviour of hydrophobic targeting signals.

4. SND-Targeting Pathway

SRP is not the only co-translational ER-targeting pathway. Studies in yeast investi-
gating targeting of GPI-anchored proteins identified the SND pathway, comprising the
cytosolic factor SND1 associated with the ribosome and ER-membrane associated SND2/3
proteins [63]. Exploitation of this pathway is not exclusive to GPI-anchored proteins but
rather membrane proteins with centrally located TM domains. The SND pathway also
operates in mammalian cells, although to date, only the homologue of SND2 has been
identified [64]. As seen in yeast, human GPI-anchored proteins also use SND2 for their
targeting to the ER [65]. Detailed molecular details of the SND-targeting pathway await
further investigation.
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5. Sec62-Dependent Targeting

Work in yeast showed that ER targeting of many secretory precursors is independent
of SRP and SR but rather requires the ER membrane protein, Sec62 [66], which forms a
larger SEC complex along with the core Sec61 translocase as well as Sec63, Sec71, and
Sec72 [67]. Sec62 is dispensable for targeting of substrates that use SRP and SR [68,69]. Also,
in contrast to the SRP pathway, targeting can be uncoupled from translation [70]. Indeed,
the SEC complex cannot bind ribosomes directly [71,72], rationalised by recent structures
of the SEC complex which show the ribosome-binding sites on the core Sec61 components
are all occupied by the additional components of the SEC complex [73].

Cytosolic Hsp70s and Hsp40 are required to maintain substrates in a translocation-
competent state [74,75], and Sec71/72 have been shown to be receptors for Hsp70 family
chaperones [76]. Properties of the signal sequence largely determine which targeting
pathway a substrate will use, with more hydrophobic sequences exclusively using the
SRP-pathway and less hydrophobic ones using Sec62, while intermediate hydrophobic
ones can access both [69].

Although Sec62-dependent translocation can be uncoupled from translation, proteome-
wide proximity labelling experiments in yeast have shown that most substrates are translo-
cated co-translationally, likely driven by engagement of a pioneer ribosome-associated
signal-sequence-bearing protein with the SEC complex before its translation has been
completed [77]. This will bring the polysome close to the membrane such that subsequent
nascent chains are also highly likely to engage the SEC translocon before their synthesis is
complete [77].

Homologues of Sec62 as well as Sec63 (but not Sec71/72) also exist in higher
eukaryotes [72,78]. Unlike its yeast counterpart, mammalian Sec62 has an additional
ribosome-binding domain [79]. They have mainly been implicated in the targeting and
translocation of short-secretory proteins (<100 amino acids), such as the insect proteins,
preprocecropin A and prepromelittin [80–83], and mammalian proteins, such as insulin,
apelin, and statherin [81,84]. These proteins are so short that they are released from the ribo-
some before SRP can effectively engage with them and so are targeted post-translationally.
In the case of preprocecropin A, an interaction with calmodulin is important to maintain
the protein in an insertion-competent state [85]. This is a calcium-dependent phenomenon
that can occur already at resting cytosolic calcium levels [85]. Proteomic approaches in
human cells have identified 199 proteins whose biogenesis is negatively affected by loss
of Sec62 [86]. Not all of these are short secretory proteins, but as in yeast, they typically
possess signal peptide or trans-membrane domains with lower hydrophobicity [86]. This
may reflect a role of Sec62 in their SRP-independent targeting and/or a requirement of
Sec62 at the translocon at the later stages of translocation following targeting via SRP and
SR [87,88]. Overall, targeting sequences in mammalian cells have higher hydrophobicity
than in yeast, which likely reflects the difference in bias in SRP versus Sec62-dependence in
the two systems [85].

6. GET-Targeting Pathway

Proteins which possess a C-terminal TM anchor (tail anchor [TA]) are unable to
access the classical co-translational SRP-targeting machinery as they are released from the
ribosomes before the TA sequence has emerged from the exit tunnel [89]. Rather they use
the distinct GET (guided-entry of tail-anchor proteins) machinery for their delivery to the
ER [4,90,91]. In yeast, they are first bound by the cytosolic targeting factor, Sgt2, which
acts as a pre-loading complex and are then transferred to Get3, facilitated by its accessory
proteins, Get4 and Get5 [92,93] (Figure 3A). The Get3-targeting factor can then deliver the
proteins to the Get1/Get2 ER membrane heterodimer, which acts as both a receptor for
Get3 and also a membrane insertase [92,94]. In higher eukaryotes, homologous of all these
key components are present: SGTA (Sgt2), TRC40 (Get3), TRC35 (Get4), Ubl4A (Get5),
and CAML/WRB (Get1/Get2) [95–98] (Figure 3B). In addition, an extra factor, BAG6, is
present in a complex with TRC35 and Ubl4A (called the BAG6 complex) and acts to triage
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hydrophobic clients between TRC40 and the ubiquitin-proteasome system [99,100]. While
bona fide ER TA proteins are delivered faithfully to TRC40, mis-localised membrane and
secretory proteins are also bound by the BAG6 complex and directed for ubiquitination
and disposal via the proteasome [99]. Hence, BAG6 has a role in both targeting fidelity
and proteostasis.
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Figure 3. GET-targeting pathways for tail-anchored proteins in yeast and mammals. (A) In yeast, the
Get4/5 complex is able to bind to the ribosome via an interaction of Get4, close to the exit site and
uL29. Get5 can then recruit Sgt2, which is able to capture a tail-anchor TM domain as it emerges
from the exit tunnel. The Sgt2-Get4/5-TA protein can be released from the ribosome and then the
TA protein can be directly transferred to Get3, a homodimeric ATPase, which is recruited in the ATP
bound state. Release from Get4/5 leads to ATP hydrolysis to ADP and Pi, which remain bound,
altering the conformation of the TA-binding domain such that the TA remains bound but can now
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bind the membrane receptor Get1/2. Get1/2 is from a dimeric complex embedded in the ER
membrane that can assemble to a tetramer. Cytosolic elements of Get1 bind Get3 and allow insertion of
a coiled coil, like a wedge into the ATPase domain interface of Get3, which triggers phosphate release
and reorganisation of the TA-binding regions such that the TA is now released into a hydrophilic
cavity between Get3 and the inter-membrane regions. This directs the TA to the insertase formed by
the membrane-spanning regions of Get1/2. (B) In mammals, initial TA capture involves SGTA and
the BAG complex (formed by Bag6, Ubl4A and TRC35). Again, this occurs co-translationally at the
ribosome. TA proteins are then efficiently transferred from SGTA to TRC40; BAG6 can additionally
triage hydrophobic, non-TA proteins to the ubiquitin proteasome system for degradation. As with
the yeast TRC40 homologue, Get3, the TRC40 ATPase cycle controls recruitment and transfer of the
TA protein from SGTA and subsequent delivery to the membrane insertase formed by the Get1/2
homologues, WRB/CAML.

Initial capture of TA sequences by the SGTA pre-loading complex occurs at the ri-
bosome [97] (Figure 3B). Furthermore, a recent in vitro study indicated that SGTA can
be pre-recruited to the translating ribosome, prior to the emergence of a hydrophobic
sequence from the exit tunnel, thereby allowing co-translational capture of TA segments
for subsequent handover to TRC40 [101]. BAG6, TRC40, and TRC35 are also ribosome
associated, indicating this step also occurs at the ribosome [97]. In the case of the Sec61β,
delayed termination of translation due to pausing at the stop codon also likely enhances
TA capture by TRC40 [97,102].

Interestingly, SRP-dependent targeting sequences could be similarly engaged by SGTA,
this may reflect a holdase function prior to SRP binding, or a mechanism for targeting
signal sequences that SRP fails to recognise for degradation via BAG6 [101].

Studies in yeast have shown that Get4 and Get5 bind to non-programmed ribosomes
with high affinity mediated by an interaction of Get4 with the ribosome close to ribosomal
proteins uL29 and uL26 at the exit site and that this enhances recruitment of Sgt2 [103].
Consistent with the observations with SGTA, the presence of a TM inside the ribosome exit
tunnel enhances ribosome binding of Get4/5 and Sgt2 as has also been seen previously
with SRP [103–105]. The ribosome-binding site of SRP and Get5 overlap [20,30,103], and
once SRP binds to a SA/SS that has emerged from the exit tunnel, Get4/5 binding is
inhibited [103]. The Hsp70 ATPase Ssa1 has also been shown to be important for efficient
transfer of TA proteins to Sgt2 in the absence of the ribosome; thus, it may rescue any TA
clients that fail to be captured by Sgt2 at the ribosome [106].

Get3/TRC40, the central player of the GET pathway is a homodimeric ATPase, com-
posed of a P-type ATPase domain and alpha-helical domain, which is involved in TA
binding [107,108]. The ATPase cycle of Get3 controls the conformation of the TA-binding
region, such that in the ATP-bound state the homodimer forms a fully closed state that
forms a composite hydrophobic groove that can accommodate a 20 amino acid long hy-
drophobic helix [107,108]. Hydrolysis of ATP to the ADP bound state partially disrupts
the groove but still allows the TA to remain bound, while in the nucleotide-free state the
composite groove is completely disrupted [90].

Get3 is recruited to Get4 in the ATP-bound state, which inhibits ATP hydrolysis
and promotes direct transfer of the substrate from Sgt2 to the hydrophobic groove in
Get3 [109,110]. A dynamic α-helix in Get3 that forms a lid facilitates transfer and prevents
delivery of hydrophobic helices that were not pre-bound to Sgt2 [111]. Binding of the
substrate to Get3 stimulates ATP hydrolysis releasing it from the preloading complex and
allowing it to interact with the Get1/2 insertase at the ER membrane in the ADP-bound
conformation [110,112,113].

Get1 and Get2 both possess cytoplasmic domains that extend from the membrane and
engage Get3. Upon binding, a coiled-coil domain within Get1 inserts between the sub-
units of Get3 and thereby stabilises the nucleotide-free conformation, triggering substrate
release [113–115].
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Recent structures of the complete Get1/2/3 complex, including the TM regions of
Get1/2, show that Get1/2 forms a hetero-tetramer with symmetric recruitment of Get3,
where both its subunits contact separate Get2 subunits [116]. Furthermore, mutations at
the hetero-tetramer interface decrease the efficiency of membrane insertion, suggesting
the tetramer is the active form. However, it may still be possible for insertion to occur via
a Get1/2 heterodimer as has also been proposed [112]. A hydrophilic cavity is formed
between the trans-membrane region and Get3. Furthermore, a hydrophobic helix (a3′) in
Get1 forms a gate adjacent to the TA-binding region of Get3 and the cavity such that as
the cargo is released, the a3′ helix is displaced forming a wall to direct the cargo into the
cavity [116].

Despite the essential function of many tail-anchor proteins, loss of the GET machinery
is not lethal to yeast cells, indicating functional redundancy [94]. In particular, the alternate
co-translational SND pathway can also accommodate TA proteins in the absence of GET
components [63]. This is also reflected in mammalian cells; TA proteins with moderately
hydrophobic TMs can be recognised by calmodulin and then targeted to the EMC com-
plex [85,117,118]. Hsp70s and ubiquilin family proteins can similarly maintain TA proteins
in a soluble state in the cytosol competent for insertion [4], whilst the more hydrophobic
TA protein, Sec61β, can engage both SRP and TRC40 as well as the mammalian SND
complex [64,97,119].

7. EMC Translocase

The alternative EMC translocase has been implicated in the biogenesis of both tail-
anchor membrane proteins, as mentioned above, and those with a type III orientation. In
both cases, the substrates possess a targeting membrane domain that is positioned close to
the C- and N-termini, respectively, such that only a small hydrophilic domain has to traverse
the bilayer [117,118,120,121]. It can also collaborate with Sec61 during the biogenesis of
some polytopic membrane proteins, particularly those with a short N-terminal luminal
domain, akin to type III proteins, such as many GPCRs [122,123]. Targeting of type III
membrane proteins in both yeast and mammalian cells involves SRP and SR [60,69,121,124],
yet the manner in which they are handed over from the ribosome–SRP–SR complex to
EMC remains unknown. Intriguingly, insertion of type III proteins in mammalian cells is
insensitive to Sec61-inihbitors, including Ipomoeassin-F, which blocks translocation of all
other known substrates via the Sec61 channel [121]. In contrast, depletion of Sec61 does
impact type III insertion [121], suggesting Sec61 might play a non-canonical role, perhaps
facilitating the release from the SRP–SR complex and handover to EMC.

8. Defective ER Targeting and Human Disease

A number of patient mutations have been identified which map to components of
the ER protein-targeting machinery. Point mutations in SRP54 are associated with severe
neutropenia and Shwachmann–Diamond syndrome-like symptoms, which affect devel-
opment and function of tissues with high secretory activity, such as the pancreas, as well
as skeletal and neurodevelopmental defects [125,126]. While some of the mutations are
attributable to loss of function and haploinsufficiency, others, including T115A, T117∆, and
G226E, have a dominant phenotype. All mutations to date map to the G-domain where
they are implicated to impact either nucleotide binding or overall structure. Several of
the mutants have been analysed in detail (T115A, T117∆, and G226E) revealing structural
changes to the core GTPase, which impair GTP binding and prevent complex formation of
isolated SRP54 and SRα NG domains [127]. A more detailed analysis of the G226E mutant
when assembled in SRP in the context of SR and the RNC reveals that while initial SRP–SR
complex assembly can occur, it becomes locked in an RNC–SRP–SR intermediate that
cannot relocate the NG domains from the proximal to distal position, thereby rationalising
the dominant negative phenotype associated with the mutation [49].

Using a zebrafish model, the severe neutropenia-associated phenotypes associated
with autosomal dominant mutations (T115A, T117∆, and G226E) are phenocopied along
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with pancreatic dysfunction [128]. Furthermore, the neutropenia phenotype has been linked
to impaired splicing of the XBP1 transcription factor required for the unfolded protein re-
sponse and which is spliced in an unconventional manner by IRE1 following its membrane
targeting by SRP [129]. Loss of Xbp1 in the zebrafish also shows a similar neutropenia
phenotype, consistent with this being a key driver of the disease phenotype [128].

Disease mutations are not limited to SRP54; a recently identified biallelic mutant of
SRP68 that leads to loss of exon1 is also associated with neutropenia and Shwachmann–
Diamond-like symptoms [130], whilst SRP72 mutants have been linked to aplastic anemia
(AA) and myelodysplasia (MDS) [131].

As well as mutations in SRP, disease mutations that impact protein targeting are
also linked to mutations in targeting sequences in client proteins [132]. First shown with
synthetic mutations in the well-studied model signal sequence from bovine preprolactin, a
reduction in the length of the hydrophobic core led to loss of SRP binding and instead the
nascent chains interacted with Argonaut2 (Ago2). As well as blocking translocation in vitro,
this also promoted rapid degradation of the mRNA in vivo in a quality control pathway
termed RAPP (Regulation of Aberrant Protein Production) [133]. A number of disease-linked
mutations in signal sequence mutations also trigger this pathway in response [132,134],
for example in granulin linked to fronto-temporal lobal degeneration [134,135], aspartyl-
glucosaminidase in aspartylglucosaminuria [134,136], UDP-glucuronosyltransferase in
Crigler–Najjar disease [134,137], and cathepsin K in pycnodysostosis [134,138].

Future Outlook

Despite more than 40 years of research into ER protein-targeting, questions clearly
remained unanswered. In particular, the SND complex remains only very basically char-
acterised in terms of mechanism and structural characterisation, and the identity of the
mammalian components beyond hSnd2 remain elusive. While the canonical mode of action
of SRP recruitment has been studied in much detail, the observed recruitment of SRP to
polysomes translating membrane proteins prior to synthesis of the signal sequence/anchor
remains poorly understood, likewise the recent link between SRP binding and the Hel2 pro-
tein. Mechanistic understanding of the role NAC plays at the ribosome has been hampered
by lack of structural images until very recently, and there is much scope to understand how
NAC functions to enhance SRP targeting. Proteomic profiling of substrate and targeting
factor interaction in yeast has proved highly informative, and extending this to the more
complex mammalian system should shed new light on the interplay between targeting
pathways. Hence, there is still much to find out for the future.
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