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Copy number variations (CNVs) constitute a major source of genetic variations in human
populations and have been reported to be associated with complex diseases. Methods
have been developed for detecting CNVs and testing CNV associations in genome-wide
association studies (GWAS) based on SNP arrays. Commonly used two-step testing
procedures work well only for long CNVs while direct CNV association testing methods
work only for recurrent CNVs. Assuming that short CNVs disrupting any part of a given
genomic region increase disease risk, we developed a variable threshold exact test
(VTET) for testing disease associations of CNVs randomly distributed in the genome
using intensity data from SNP arrays. By extensive simulations, we found that VTET
outperformed two-step testing procedures based on existing CNV calling algorithms for
short CNVs and that the performance of VTET was robust to the length of the genomic
region. In addition, VTET had a comparable performance with CNVtools for testing the
association of recurrent CNVs. Thus, we expect VTET to be useful for testing disease
associations of both recurrent and randomly distributed CNVs using existing GWAS data.
We applied VTET to a lung cancer GWAS and identified a genome-wide significant region
on chromosome 18q22.3 for lung squamous cell carcinoma.
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INTRODUCTION
Copy number variations (CNVs) are one of the major sources
of genetic variations in the human genome (Redon et al., 2006)
and have been reported to be associated with a variety of com-
plex diseases (Sebat et al., 2007; Consortium, 2008; Stefansson
et al., 2008; Bucan et al., 2009; Diskin et al., 2009; Glessner et al.,
2009; McCarthy et al., 2009; Levinson et al., 2011). In genome-
wide association studies (GWAS) based on SNP arrays, CNVs are
inferred based on two measurements at each probe in the SNP
array: the Log R Ratio (LRR) and the B Allele Frequency (BAF).
Identifying disease-causing rare CNVs helps to elucidate the eti-
ology of complex diseases, improve risk prediction models and
may contribute to personalized treatment in the future. However,
detecting CNV associations from GWAS SNP arrays is compu-
tationally intensive and statistically challenging, particularly for
short CNVs.

There are currently two strategies for testing CNV associations.
As the standard approach, CNVs are called for each subject using
CNV detection algorithms (Olshen et al., 2004; Colella et al.,
2007; Wang et al., 2007; Korn et al., 2008; Coin et al., 2010)
followed by the association analysis comparing each probe or
genomic region against the disease phenotype of interest. This
standard two-step strategy is most useful for detecting associa-
tions of long CNVs with excellent calling accuracy. In fact, the
majority of the reported associations are based on long CNVs
covering over 10 probes. However, a large proportion of germline
CNVs are short and cover only a few probes in genotyping or

array CGH platforms (Redon et al., 2006). The sensitivity of
detecting short CNVs using these algorithms is typically low.
Consequently, testing associations of short CNVs covering less
than 10 probes is expected to have a low statistical power based on
the standard two-step methods using these widely-used software
packages. More algorithms have been recently developed with
better sensitivity for detecting shorter CNVs (Pique-Regi et al.,
2008; Wang et al., 2009; Jeng et al., 2010; Jang et al., 2013); how-
ever their performances for large-scale GWAS data remain to be
systematically evaluated.

The second strategy is to directly test the CNV associations
from the intensity data without making CNV calls (Barnes et al.,
2008; Ionita-Laza et al., 2008; Eleftherohorinou et al., 2011; Shi
and Li, 2013). The simplest method is to directly test the associ-
ation for each probe using LRR as a surrogate (Ionita-Laza et al.,
2008). This method does not use spatial information of CNVs or
the distribution of the intensity data and thus is not expected to
be efficient. CNVtools (Barnes et al., 2008) tests associations in
known CNV regions based on a Gaussian mixture model. We have
recently developed a method based on a hidden Markov model
(Shi and Li, 2013) for both documented and undocumented
CNVs in GWAS. These methods are fully efficient when CNVs
are largely overlapped or recurrent with the same boundaries.

In this manuscript, we consider the scenario that cases are
more frequently disrupted by CNVs than controls in a given
genomic region while CNVs are randomly distributed in the
region with various boundaries (Figure 1), as shown as an
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FIGURE 1 | Recurrent CNVs and randomly distributed CNVs in a given

genomic region. Each red (black) bar represents a CNV in a case (control).
(A) shows CNVs with locations randomly distributed in the region and (B)

shows recurrent CNVs with identical boundaries. In both figures, there are
18 cases carrying CNVs while two controls carrying CNVs. Assuming equal
number of cases and controls, CNVs more frequently disrupt the genomic
region in cases than in controls. When CNV status is known, the
association can be tested using the Fisher’s exact test.

example in a GWAS of autism (Glessner et al., 2009). The
existing methods designed for testing the associations of over-
lapping CNVs (Barnes et al., 2008; Ionita-Laza et al., 2008;
Eleftherohorinou et al., 2011; Shi and Li, 2013) are expected to
perform poorly in this scenario. We developed a statistical frame-
work, the variable threshold exact test (VTET), for testing CNV
associations efficiently for this scenario. Briefly, VTET first eval-
uates the statistical evidence of carrying a CNV anywhere in the
selected target region and then performs exact tests to evaluate
the degree of genetic association using different thresholds to
define tentative CNV carriers. The significance can be efficiently
evaluated by permuting case-control labels. We show through
extensive simulations with realistic settings that VTET performs
very well even for short CNVs covered by as few as three probes
and is much more powerful than the standard two-step test-
ing procedures using widely-used CNV calling software packages,
e.g., PennCNV (Wang et al., 2007) and circular binary segmen-
tation (CBS) (Olshen et al., 2004). In addition, VTET performs
comparably with CNVtools for recurrent CNVs. Thus, VTET
can be used to detect associations of both overlapping and non-
overlapping CNVs. We illustrate the application of VTET using a
published lung cancer GWAS.

MATERIALS AND METHODS
QUANTIFY THE EVIDENCE OF A CNV IN A GENOMIC REGION
Consider a case-control study with m cases and n controls. Each
subject is genotyped at T probes in a given genomic region. We
use i = 1, . . . , m to index cases and i = 1 + m, . . . , m + n to
index controls. For subject i, let Xit be the LRR and Bit be the
BAF for probe t. Here, the LRR measures the total intensity of
the fluorescence used to label the probe in the assay and is an
approximation of the total amount of DNA. LRR is expected to
be zero when there is no copy number change. A large value of
LRR indicates a duplication whereas a small value of LRR indi-
cates a deletion. For each probe, we denote the two alleles as A
and B. The BAF measures the proportion of the DNA attributable
to the B allele. The distribution of BAFs is shown in Table 1. BAFs
close to 1/3 and 2/3 are indicative of duplications. The unknown
copy number status is denoted as cit ∈ {0, 1, 2, 3}. Here, we do
not consider CNVs with more than 3 copies because they are rare
in the population. LRRs are independent across probes given the
copy number status. Each Xit is normalized to follow N(0,1) when

Table 1 | Distribution of the B Allele Frequencies (BAF) given the

genotype and the copy number.

Genotype Distribution of BAF

Copy number = 0 U[0, 1]
A, AA, AAA 0.5Ib = 0 + Ib > 0φ(b/η1)

B, BB, BBB 0.5Ib = 1 + Ib < 0φ((b − 1)/η1)

AB φ((b − 0.5)/η2)

AAB φ((b − 1/3)/η2)

ABB φ((b − 2/3)/η2)

φ is the density function of N(0,1).

cit = 2. We are interested in testing whether cases are more likely
to carry a CNV, a deletion or duplication or either type of CNVs,
in a given short genomic region (Figure 1).

For convenience, we illustrate our algorithm for detecting
CNV associations without considering the BAF information. We
will then extend the algorithm to incorporate the BAF informa-
tion to improve the power, particularly for duplications. We only
consider hemizygous deletions (denoted as CN1) and duplica-
tions with three copies (denoted as CN3), given that the sensitiv-
ity for detecting homozygous deletions (CN0) is almost one and
germline duplications with copy number >3 are very rare. Briefly,
our method consists of two steps. In the first step, we quantify
the evidence that subject i carries a CNV anywhere in the region.
In the second step, we test whether cases are more likely to carry
CNVs based on a VTET.

We define a binary variable Ei = 1 if subject i carries a CNV
anywhere in the interval and Ei = 0 otherwise. We are interested
in CNVs covering at least L(≥ 3) probes. The log likelihood ratio
statistic (Olshen et al., 2004) based only on LRRs for detecting a
CNV in [a,b] is

zi
ab =

b∑
t = a

Xit/[b − a + 1]1/2 (1)

where zi
ab ∼ N(0, 1) if cia = · · · = cib = 2. To search for CNVs

covering at least L probes in the region, we calculate

Ui = max
L≤b−a+1,a<b

|zi
ab|. (2)

Let U0
i be the observed statistic value. The evidence that the given

region carries a CNV is quantified as a p-value

pi = P

(
Ui = max

L≤b−a+1,a<b
|zi

ab| > U0
i |Ei = 0

)
. (3)

A small value of pi supports the existence of a CNV in the region.
When T is sufficiently large, we can use Siegmund’s

method based on the random walk theory (Siegmund, 1992)
to derive a very accurate asymptotic approximation pi ≈
2TU0

i λ−2φ(U0
i )[(s1 − 1)es1 − (s2 − 1)es2 ]/8 with λ = −0.583,

s1 = 2λU0
i /

√
L − 1, s2 = 2λU0

i /
√

T + 1 and φ(·) as the den-
sity function for N(0, 1). However, the approximation performs
poorly when T ≤ 50. Thus, we have performed 106 Monte
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Carlo simulations to approximate p-values as small as 10−5,
which is sufficiently accurate in our procedure for testing CNV
associations.

Similarly, we can quantify the evidence for carrying a CN1
deletion or CN3 duplication. We define

Ui− = max
L≤b−a+1,a<b

−zi
ab (4)

for detecting CN1 deletions and

Ui+ = max
L≤b−a+1,a<b

zi
ab (5)

for detecting CN3 duplications. Let U0
i− and U0

i+ be the observed
test values for subject i. The p-values are then defined as

pi− = P

(
Ui− = max

L≤b−a+1,a<b
−zi

ab > U0
i−|Ei = 0

)
(6)

for detecting CN1 deletions and

pi+ = P

(
Ui+ = max

L≤b−a+1,a<b
zi

ab > U0
i+|Ei = 0

)
(7)

for detecting CN3 duplications. Again, p-values are approximated
by Monte Carlo simulations.

A VARIABLE THRESHOLD EXACT TEST
Given a set of p-values {p1, . . . , pm, pm + 1, . . . , pm + n} for m cases
and n controls, we test whether cases are more likely to carry
CNVs in the region. We need to determine which subjects carry
CNV based on the p-values. For a given threshold q, subjects with
pi ≤ q are considered as tentative CNV carriers. We define a(q)
and b(q) to be the numbers of tentative CNV carriers in cases and
controls, respectively. The genetic association is tested using the
Fisher’s exact test with p-value denoted as P(q). Here, the p-value
P(q) depends on the threshold q.

An inappropriate choice of q may lead to a loss of statistical
power. Choosing a liberal threshold q results in many false CNV
carriers while choosing a rigorous q misses many true CNV car-
riers. One reasonable choice is q = 2/(m + n), under which we
expect two false positive CNV carriers out of the m + n subjects.
If m ≈ n, we would expect roughly one false positive CNV carriers
in cases and controls respectively. To make statistical power more
robust, we choose a series of thresholds (q1, . . . , qK) to derive
the association p-values (P(q1), . . . , P(qK)) based on the Fisher’s
exact test. The overall statistic is then defined as

Q = min
1≤k≤K

P(qk) (8)

The significance is evaluated by permuting case-control status.
In our implementation, we use K = 5 and choose (q1, . . . , q5)

to expect (5, 2, 1, 0.5, 0.1) false CNV carriers, respectively. The
procedure is summarized in Figure 2. We call the method as
a VTET.

INCORPORATING THE BAF INFORMATION
Incorporating BAFs can substantially improve the sensitivity of
detecting CN3 duplications (Shi and Li, 2012). Briefly, BAFs
close to 1/3 or 2/3 support CN3 duplications while BAF close
to 0 or 1 are not informative for the inference of CN3 dupli-
cations. For an informative BAF bit ∈ [0.2, 0.8], we convert bit

into a normal quantile Yit . Here, Yit ∼ N(0, 1) if cit = 2 and Yit

is large when cit = 3. In addition, (Yi1, . . . , YiT) are mutually
independent for subject i. Details can be found in (Shi and Li,
2012). Based on simulations, we found that cor(Xit, Yit) = −0.05
if cit = 2. Thus, we define Zit = (Xit + Yit)/

√
2 + cor(Xit, Yit) =

(Xit + Yit)/1.38. For an uninformative BAF bit /∈ [0.2, 0.8], we
define Zit = Xit . Again, when cit = 2, Zit ∼ N(0, 1). We then cal-
culate statistic zi

ab in (1), Ui+ in (5) and pi+ in (7) based on the
newly defined Zit .

IMPLEMENTATION AND GENOME-WIDE SCAN
The algorithm has been implemented using C++. VTET first
normalizes the genome-wide LRRs for each sample to have a
zero median and unit variance. VTET tests the CNV associa-
tions in a given short genomic region, typically covering 10∼100
probes, depending on the probe density and the length of the tar-
get genomic region. There are multiple ways to apply VTES to
GWAS. For example, we can partition the genome into segments
of M probes and apply VTET to each of the segments. We can also
apply VTET to each gene to perform a gene-based test.

SIMULATION STUDIES
To evaluate the statistical performance of VTET, we performed
extensive simulations using autosomal SNPs that were present on
both the Illumina HumanHap550 SNP array and the Hapmap II
SNP list. Our simulations for case-control studies involved two
steps: simulating CNV events in subjects and simulating LRRs
and BAFs conditioning on the simulated CNV events. Each sim-
ulation was based on a given interval with T probes. To eliminate
the potential impact of minor allele frequencies (MAF) of SNPs
in the interval, simulations results were averaged across randomly
chosen intervals with T probes.

We first describe the procedure to simulate CNV events. Let
f denote frequency of the risk CNV events in the target genomic
interval with T probes. Here, the CNV events could be either dele-
tions, or duplications or both. CNVs cover at least L(≥ 3) probes.
Let OR be the odds ratio. Then, the frequency of risk CNV events
in the case group is given by f+ = OR · f /(OR · f + 1 − f ). Thus,
CNV events were simulated using the Bernoulli distribution with
rate f for controls and f+ for cases.

The detailed procedure for simulating LRRs and BAFs for
a subject with given copy number status in an interval was
described previously (Shi and Li, 2012). Briefly, we randomly
drew two haplotypes for the interval from the Hapmap II hap-
lotype pool of European ancestry and specified the copy number
status of each SNP in two haplotypes. Then, we simulated LRRs
and BAFs for each SNP probe according to the distributions
specified in Table 2, which were estimated based on the data pro-
duced from Illumina HumanHap550 SNP arrays (Shi and Li,
2012). In summary, our simulations were based on real hap-
lotypes and realistic parameters for LRRs and BAFs. Thus, the
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FIGURE 2 | Testing the association of CNVs in a given genomic region.

(A) LRRs in the given genomic region for m + n subjects. (B) The existence
of a CNV anywhere in the region is quantified as a p-value. A small p-value
indicates the presence of a CNV. (C) For a given threshold q1, subjects with
p-value < q1 are determined as tentative CNV carriers. We have a(q1) CNV

carriers in m cases and b(q1) CNV carriers in n controls, with the association
tested by the Fisher’s exact test. To make the power robust, we use multiple
thresholds (q1, . . . , qK ) to derive association p-values (P(q1), . . . , P(qK )).
(D) The overall statistics is defined as the minimum of (P(q1), . . . , P(qK )) and
its significance is determined by permuting the case-control status.

Table 2 | Parameters characterizing the distribution of LRRs and BAFs.

Mean of LRRs SD of LRRs SD of BAFs

(μ0, μ1, μ2, μ3, μ4) (σ0, σ1, σ2, σ3, σ4) (η1, η2)

(−3,−0.45,0,0.30,0.50) (1,0.26,0.16,0.19,0.22) (0.02,0.05)

Given the copy number cit = k for probe t and subject i, the LRR Xit ∼ N(μk , σ 2
k ).

See Table 1 for the definition of (η1, η2). The parameters were estimated from

the long, experimentally validated CNVs in Illumina 550K arrays.

results are valuable for the purpose of comparing performance
and evaluating the potential for future studies.

We compared the statistical power of detecting CNV associ-
ations between VTET and the standard two-stage methods. To
estimate the power of two-step methods, we first performed sim-
ulations to estimate the sensitivity of detecting CNVs for two
widely used algorithms, PennCNV (Wang et al., 2007) and CBS
(Olshen et al., 2004), using genome-wide intensity data based
on Illumina HumanHap550 SNP arrays. We then estimated the
power of detecting CNV associations based on the estimated sen-
sitivity for CNV detection. The power was simulated for CNVs
covering 3∼10 probes.

We also compared the performance of VTET with that
of CNVtools (Barnes et al., 2008), an algorithm for testing
CNV associations in a given genomic region known with CNV.
CNVtools is one of the most efficient algorithms for detecting

the association of overlapping or recurrent CNVs. CNVtools first
performs principal component analysis (PCA) on the LRRs of
all probes in the interval across all subjects and then performs
a likelihood ratio test based on the Gaussian mixture model using
the first PCA scores. CNVtools requires that the first PCA scores
show obvious clustering pattern for different copy number sta-
tus and will fail without convergence otherwise. When CNVs are
recurrent or largely overlapping, CNVtools can succeed in the
majority of simulations for deletions and long duplications but
not for short duplications. We found that, when CNVs are ran-
domly distributed in the interval, CNVtools fails in almost all
simulations.

Thus, we only compared the performance of VTET and
CNVtools for recurrent CNVs with identical boundaries. We also
compared the power of VTET with the “ideal” power estimated
assuming known CNV status. Of note, the power of CNVtools
was estimated based on the successful simulations. For example,
out of 1000 simulations, CNVtools converges for 800 simulations
and detects associations for 500 simulations. The power was esti-
mated as 500/800 = 62.5% instead of 500/1000 = 50%. Thus, the
power of CNVTools is overestimated, particularly for short CN3
duplications with non-ignorable failure rates.

APPLICATION TO A GWAS OF LUNG CANCER
We applied VTET to a GWAS of lung cancer based on the
Environment And Genetics in Lung cancer Etiology (EAGLE)
study (Landi et al., 2009). Samples were genotyped using the
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Illumina HumanHap550 SNP arrays. We analyzed ever smok-
ers including 1955 controls and 2374 lung cancer cases. The
cases included 587 squamous cell carcinoma (SQ) patients and
920 adenocarcinoma (AD) patients. We partitioned autosomal
chromosomes into segments covering 50 SNP probes and tested
whether deletions or duplications were overrepresented in cases
in each of the segments. We performed an analysis for AD (920
cases and 1955 controls), SQ (587 cases and 1955 controls) and
overall lung cancer (2374 cases and 1955 controls) separately. For
each test, the p-value was accurately estimated by permutations
with at least 10 “successful” events.

RESULTS
SIMULATION RESULTS FOR RANDOMLY DISTRIBUTED CNVs
CNVs were simulated with the locations randomly distributed in
the given interval. Here, simulations were carried out for 2000
subjects (1000 cases and 1000 controls) and 4000 subjects (2000
cases and 2000 controls), intervals with T = 20 probes and 40
probes, CNV frequency f = 0.01, 0.005, and 0.002, odds ratio
R = 3, 4, and 5. Power was estimated based on 1000 simulations

and different α levels (α = 0.001, 0.01, 0.05). We report the
results only for f = 0.01 and α = 0.001 because the comparison
results for other frequencies and α levels are similar. For each sim-
ulation, the p-value was calculated based on 10,000 permutations.
The ideal power was estimated assuming known CNV status and
thus represents the limit of any testing procedure.

The simulation results are shown in Figure 3 for CN1 hem-
izygous deletions and Figure 4 for CN3 duplications. We do not
report the results for CNVtools because CNVtools failed in almost
all simulations (see the explanation in the Materials and Methods
section). As expected, power increases with sample size, strength
of association measured as OR and the number of probes cov-
ered by the CNVs for all testing procedures. In addition, power
of VTET depends on the length of the interval. A larger inter-
val implies a larger multiple testing in identifying CNVs and thus
typically reduces the power. However, our simulation results sug-
gest that the power of VTET is robust to the length of the tested
genomic region.

Compared with the standard two-step testing methods, VTET
is more powerful for detecting CNV associations, particularly

FIGURE 3 | Statistical power for detecting the association of

hemizygous deletions (CN1) with locations randomly distributed in a

given region. f is the frequency of CNVs in the general population. OR is
odds ratio. The left three panels are based on 1000 cases and 1000
controls. The right three panels are based on 2000 cases and 2000
controls. The x-coordinate is the number of probes covered by the
deletions. Powers were calculated based on the significance level

α = 0.001. “ideal” denotes the power when CNV status is known and
thus represents the limit of the performance of any method. “PennCNV”
and “CBS” are the powers from the two-step approach: first calling CNVs
using the algorithms and then testing associations based on identified
CNVs. The power of PennCNV or CBS does not depend on the length of
the interval. “VTET-20 (40)” is the power for detecting CN1 associations in
a genomic region with 20 (40) probes using VTET.
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FIGURE 4 | Statistical power for detecting the association of

duplications with three copies (CN3) with locations randomly

distributed in a given region. f is the frequency of CNVs in the
general population. OR is odds ratio. Powers were calculated based on

the significance level α = 0.001. The x-coordinate is the number of
probes covered by the duplications. “VTET-20 (40)” is the power for
detecting CN3 associations in a genomic region with 20 (40) probes
using VTET.

when CNVs are short. Encouragingly, even for short CNVs,
the power of VTET is close to the ideal power estimated
assuming known CNV status, suggesting a very high efficiency
of VTET.

Note that PennCNV uses both LRRs and BAFs while CBS uses
only LRRs. CBS tends to be more sensitive for detecting deletions
but less sensitive for detecting duplications from genome-wide
intensity data. Thus, as expected, the two-step testing procedure
based on PennCNV is more powerful for detecting the association
of CN3 duplications but less powerful for CN1 deletions com-
pared to CBS. Of note, the testing procedure based on CBS has
no power for detecting the association of short CN3 duplications
while the test based on PennCNV has no power for detecting the
association of short CN1 deletions.

SIMULATION RESULTS FOR RECURRENT CNVs
While VTET is designed for detecting associations of randomly
distributed CNVs, it is important to investigate its performance
for recurrent CNVs. Because CNVtools is widely used for detect-
ing associations of recurrent CNVs, we compared VTET with
CNVtools for recurrent CNVs. Of note, CNVtools uses only LRRs
and cannot use BAFs.

Simulation results are shown in Figure 5. For short CN3
duplications, CNVtools failed in 10% (>6 probes) −30% (3
or 4 probes) of simulations because it could not converge. For
short CN1 deletions, CNVtools failed in 1–5% simulations. As
expected, failure to explicitly take advantage of the recurrent pat-
tern results in a power loss in VTET, but the power loss is small.
CNVtools is slightly more powerful for detecting associations of
CN1 deletions. However, VTET is more powerful for detecting
associations of CN3 duplications because it uses both LRR and
BAF information.

RESULTS OF ANALYZING EAGLE LUNG CANCER GWAS
We partitioned autosomal chromosomes into 10,957 segments
covering 50 probes and applied VTET to each of the segments.
The quantile-quantile (QQ) plots for detecting CNV associations
in SQ, AD and overall lung cancer are shown in Figure 6. We did
not observe a global inflation in any of the analyses, suggesting
the validity of VTET. Instead, QQ plots suggest a deflation when
analyzing duplications. Further investigation revealed that ∼40%
of segments had p-value = 1 when analyzing duplications while
only ∼15–20% of segments had p-value = 1 when analyzing dele-
tions. This can be explained by the discreteness of the statistics
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FIGURE 5 | Statistical power for detecting the association of recurrent

CNVs with the same boundary. f is the frequency of CNVs in the general
population. OR is odds ratio. Powers were calculated based on the
significance level α = 0.001. The x-coordinate is the number of probes

covered by the deletions. “ideal” represents the power when CNV status is
known. “VTET-20 (40)” is the power for detecting CNV associations in a
genomic region with 20 (40) probes using VTET. The power for CNVtools was
estimated based on simulations successfully run by CNVtools.

FIGURE 6 | Quantile-quantile (QQ) plot of p-values for testing

CNV associations in the EAGLE lung cancer GWAS. SQ
represents lung squamous cell carcinoma. AD represents lung

adenocarcinoma. We tested for CNV associations in 10,957
segments covering 50 probes using VTET. All analyses shared the
same set of control samples.

due to the rarity of germline duplications. Typically, deletions are
twice more frequent than duplications.

Test statistics are independent across segments. The genome-
wide 5% threshold requires p = 0.05/10, 957 = 4.6 × 10−6

based on the Bonferroni correction. No segment reached
genome-wide significance under this threshold in any of the anal-
yses. For deletions in SQ, the best p-value is 9.0 × 10−6 for a
segment located at chromosome 18q22.3. Interestingly, in the
same segment, the p-value for testing the association of duplica-
tions is 0.011. When we combined deletions and duplications into

one test, the p-value for this segment was 4.5 × 10−6, reaching
genome-wide significance.

DISCUSSION
Identifying CNVs associated with complex diseases is scientifi-
cally important but statistically challenging, particularly for short
CNVs because of limited statistical power. Methods have been
proposed to directly test associations of recurrent CNVs and
have demonstrated superior performance compared to standard
two-step testing procedures. In this manuscript, we developed
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a new method, VTET, for testing associations for CNVs ran-
domly distributed in a short genomic region, a problem that was
not addressed by the current methods. We tested this tool in a
lung cancer GWAS and have identified a genome-wide significant
region on chromosome 18q22.3 for lung squamous cell carci-
noma. Lab validation for these tentative CNVs and replication of
the association in independent samples are warranted to establish
the CNV association with the risk of developing lung squamous
cell carcinoma.

VTET utilizes both LRRs and BAFs to maximize the power.
We show through simulations that VTET is as powerful as the
ideal test for short CNVs covering five or more probes and is
only slightly less powerful for shorter CNVs covering three or
four probes. In addition, we show that VTET is much more pow-
erful for short CNVs than two-step procedures based on CBS
or PennCNV. Recently, methods have been developed for jointly
detecting CNVs for multiple samples (Siegmund et al., 2011;
Zhang et al., 2012). However, these methods improve the sen-
sitivity only for recurrent CNVs. The two-step testing strategy
based on these methods is not expected to improve the power
of detecting associations of CNVs randomly distributed in the
genomic region. Because VTET does not use spatial information
of CNVs, it is not optimal in theory for detecting the association
of recurrent CNVs with identical boundaries, under which sce-
nario CNVtools would work the best. However, even under this
unfavorable scenario, VTET is only slightly less powerful than
CNVtools for short deletions but more powerful for duplications.
Thus, VTET can be used for effectively testing the association of
both recurrent and non-recurrent CNVs. Finally, we can partition
the whole genome into segments flexibly and test for CNV associ-
ations using VTET for each segment. We expect that VTET can be
used for existing GWAS of complex diseases based on case-control
designs.

VTET implicitly assumes that the intensity data, summa-
rized as LRRs and BAFs, have the same distributions in cases
and controls. When this assumption is violated, VTET, together
with the standard two-step procedures based on CNV calling
algorithms, might produce spurious findings, which, in spirit,
has been pointed out previously (Barnes et al., 2008). Thus,
VTET requires that cases and controls are genotyped using
the same genotyping platform and are proportionally balanced
in each plate, ideally. VTET is not recommended for studies
when cases and controls are genotyped separately, for exam-
ple, using publically available control data sets. QQ plots are
particularly helpful for investigating whether VTET systemat-
ically produces spurious findings due to the violation of the
assumptions.

Of note, it would useful to extend VTET to next generation
sequencing studies, for example whole-exome sequencing stud-
ies (WES) and whole-genome sequencing studies (WGS). Again,
VTET would implicitly assume that the sequencing depths are
similar between cases and controls to avoid spurious findings.
It is also useful to extend VTET to meta-analysis of existing
GWAS in which the statistical power would be greatly improved.
Although meta-analysis for GWAS SNP analysis is straightfor-
ward and has been widely investigated, it is more challenging for
VTET, both statistically and computationally, particularly when

pooling multiple studies with different genotyping platforms. We
are currently working on this problem.

In conclusion, VTET can be an important statistical tool to test
disease associations of both recurrent and randomly distributed
CNVs of various lengths using existing GWAS data.
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