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A B S T R A C T   

Early detection of atrial fibrillation (AF) is crucial for its effective management and prevention. 
Various methods for detecting AF using deep learning (DL) based on supervised learning with a 
large labeled dataset have a remarkable performance. However, supervised learning has several 
problems, as it is time-consuming for labeling and has a data dependency problem. Moreover, 
most of the DL methods do not provide any clinical evidence to physicians regarding the analysis 
of electrocardiography (ECG) for classification or detection of AF. To address these limitations, in 
this study, we proposed a novel AF diagnosis system using unsupervised learning for anomaly 
detection with three segments, PreQ, QRS, and PostS, based on the normal ECG. Two independent 
datasets, PTB-XL and China, were used in three experiments. We used a long short-term memory 
(LSTM)-based autoencoder to train the segments of the normal ECG. Based on the threshold of 
anomaly scores using mean squared error (MSE), it distinguished between normal and AF seg
ments. In Experiment A, the best score was that of PreQ, which detected AF with an AUROC score 
of 0.96. In Experiment B and C for cross validation of each dataset, the best scores were also of 
PreQ, with AUROC scores of 0.9 and 0.95, respectively. To verify the significance of the anomaly 
score in distinguishing between AF and normal segments, we utilized an XG-Boosted model after 
generating anomaly scores in the three segments. The XG-Boosted model achieved an AUROC 
score of 0.98 and an F1 score of 0.94. AF detection using DL has been controversial among many 
physicians. However, our study differentiates itself from previous studies in that we can 
demonstrate evidence that distinguishes AF from normal segments based on the anomaly score.   

1. Introduction 

Atrial fibrillation (AF) is a critical disease and the most common arrhythmia worldwide. The prevalence of AF has attained 37,574 
million cases, increasing by 33 % during the last 20 years [1]. AF can lead to severe health problems such as ischemic stroke and heart 
failure [2]. As the aging population grows, the prevalence of AF increases, emphasizing the growing significance of early detection [3]. 
In addition, early detection of AF is crucial for initiating appropriate therapeutic interventions, which in turn can mitigate the risk of 
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potential complications associated with this condition [4,5]. Electrocardiography (ECG) signals are commonly utilized for the diag
nosis of heart diseases owing to their ability to identify heart disease through morphology and rhythm [6]. ECG morphology consists of 
the P wave, QRS complex, and T wave, which are recorded sequentially for each cardiac cycle. The P wave represents the atrial de
polarization and should have a height that does not exceed 2.5 mm and a width not greater than 0.1 s in a normal ECG. The QRS 
complex corresponds to ventricular depolarization and should have a width not exceeding 0.095 s in a normal ECG. The T wave is 
generated during ventricular repolarization. When diagnosing AF, physicians typically observe the ECG signal and analyze various 
ECG characteristics, such as heart rate, rhythm, P-wave, QRS complex, and T-wave, based on normal signals [7,8]. Using these pa
rameters as the basis of their analysis allows them to make an accurate diagnosis. 

In recent years, deep learning (DL) methods have demonstrated remarkable performance in accurately diagnosing AF and have the 
potential to assist physicians in making faster and more accurate diagnoses [9–12]. Most of the studies to detect AF use supervised 
learning methods. These approaches based on a large amount of labeled data have been successful. However, the results can be 
expensive and time-consuming to obtain. Due to these limitations, unsupervised learning approaches are also being actively researched 
for detecting AF using ECG data [13,14]. 

Anomaly detection is a type of unsupervised learning with large datasets. Anomalies in ECG signals can include various ar
rhythmias that differ from normal ECG signals. Various DL models in anomaly detection, such as the autoencoder (AE) and generative 
adversarial network (GAN), have been introduced using large volume of normal ECG signals for detecting or predicting abnormal ECG. 
The AE model is usually utilized in anomaly detection. Thill et al. [14] achieved an F1 score of 0.92 using a temporal convolutional 
autoencoder model on the MIT-BIH Arrhythmia database. Jang et al. [13] also used a convolutional variational AE model for detecting 
four types of anomalies based on normal signals, which achieved an F1 score of 0.86 in all types and 0.76 in AF using an ECG record of 
10 s. To preserve the temporal feature in ECG signals, Hou et al. [15] trained a model as a long short-term memory (LSTM)-based AE to 
distinguish normal and abnormal ECG signals with the MIT-BIH Arrhythmia database, which achieved an average accuracy of 0.994. 
Additionally, GAN-based models have been studied and their performance in anomaly detection has improved. Zhu et al. [16] used an 
LSTM-GAN model for anomaly detection to distinguish between normal and anomalous classes, which performed an accuracy of 0.81. 
Qin et al. [17] used an ECG-ADGAN model trained with normal ECG and detected anomaly ECG in an MIT-BIH database, which 
achieved an F1 score of 0.94. Recent studies have shown that leveraging the GAN framework in AE models yields excellent perfor
mance in anomaly detection research. Wang et al. [18] used an AE with memory module in a GAN framework to distinguish between 
normal and abnormal ECG and classify abnormal types, which performed an area under the receiver operating characteristic curve 
(AUROC) score of 0.95. In general, most of the mentioned studies have been conducted on ECG data at the 10 s, beat, or R–R interval. 

Although these approaches have exhibited signi-ficant performance, the results predicted by current DL models lack clinical evi
dence and remain a black box to many physicians [19]. To overcome this limitation, the class activation mapping (CAM) method has 
been used to explain how the model was able to distinguish between different classes by focusing on distinctive features [20–23]. 
Additionally, the attention-based model, which selectively focuses on those parts of the input data that are most relevant for making a 
prediction, has also been used for detecting various arrythmias [24–27]. However, these approaches have various limitations. They 
rely on the input features and tend to be random, and inconsistency is critical in the medical field and diagnosis system. Therefore, 
these challenges should be considered for applying a DL system in a real-medical environment. 

In this study, we proposed a new approach for an AF diagnosis system using anomaly detection in ECG segments that contain PreQ 
(before Q-wave), QRS (QRS complex), and PostS (after S-wave) segments (Fig. 1). 

The contributions of our study are as follows:  

- We demonstrate that using unsupervised learning for anomaly detection can overcome the challenges related to time-consuming 
data labeling and limited availability of labeled datasets.  

- To facilitate clinical interpretation of results predicted by DL models, we divided the ECG signals into PreQ, QRS, and PostS 
segments, and calculated an anomaly score to distinguish between normal and AF segments. 

Fig. 1. Segments of ECG beat.  
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- We proposed an AF diagnosis system that diagnoses AF by comparing the anomaly scores in each ECG segment, which is the first of 
its type and offers more reliability to physicians and the medical field in general. 

2. Material and methods 

Fig. 2 shows an overview of the overall study, which comprises preprocessing, training dataset for the model, DL model, and 
anomaly detection. We provide a detailed description of the datasets used in our study in Section 2.1, the preprocessing steps for 
training our model are described in Section 2.2, our proposed AE model-based LSTM is explained in Section 2.3, and the method for 
evaluation of the model for anomaly detection is explained in Section 2.4. 

2.1. Dataset 

Our study utilized two public datasets, the PTB-XL dataset and the China dataset provided by PhysioNet. The PTB-XL dataset was 
recorded from 1989 to 1996 in Germany, and it comprises 21,837 clinical 12-lead ECG records from 18,885 patients [28]. The China 
dataset was collected by the GE MUSE ECG system in Shaoxing People’s hospital of China and consists of 10,646 patients aged 50 or 
above; it corresponds to more than 60 % of the records [29]. Both datasets were recorded 10 s and sampled at 500 Hz. Our dataset has 
7528 normal ECG records and 1514 records of AF from the PTB-XL dataset, whereas the China dataset contains 5419 normal ECG 
records and 1780 records of AF. We used only the lead II from both datasets, which was selected because it is known to provide a clear 
and reliable representation of cardiac electrical activity and is widely used in clinical practice. As shown Fig. 3, the training and test 
dataset were split at a ratio of 8:2; the training set was split into a validation set at a ratio of 8:2 during the training phase. We 
implemented three experiments. Experiment A used two independent datasets to train and evaluate the model. To verify the gener
alization of our model, we trained and evaluated the model on each of the two datasets separately to perform cross-validation in 
Experiment B and C. 

2.2. Preprocessing 

The preprocessing included three parts: filtering, dividing segments, and normalization. Both datasets were filtered using a band- 
pass filter to remove baseline wandering and high frequency noise. We used a 4th order Butterworth bandpass filter, with a frequency 
range set from 0.5 to 50 Hz. 

After applying a filtering process, we employed the Pan–Tompkins algorithm to identify R-peaks in 10 s ECG recordings [30]. The 
identified R-peaks were used to segment the ECG recordings into individual ECG beats based on a 1:2 R–R interval ratio between the 
preceding and subsequent R peaks. We then calculated the Q peak and S peak based on the R peak identified earlier to separate the 
PreQ, QRS, and PostS segments. To extract the Q peak, we first selected the signal from 0.08 s before the R peak and then computed the 
gradient at each point. The Q peak was identified as the point where the slope of the Q–R segment changed from positive to negative for 
the first time. Similarly, the S peak was identified by extracting the signal from the R peak to 0.1 s after the R peak and identifying the 
point where the slope of the R–S segment transitioned from negative to positive for the first time. However, these methods for finding 

Fig. 2. Overview of the experiment.  
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the Q and S peaks have a drawback in some cases where the ECG beat has ST-segment patterns such as ascending, horizontal, or 
descending, or a J wave. These patterns can cause errors where the S peak is delayed beyond its expected location. To solve this 
problem, we detected these cases by calculating the slope between the R peak and R–S points and identifying the slope of the expected S 
peak as the smallest value. If this is the case, we determined the baseline of the ECG beat and calculated the intersection of the R–S 
signal and the baseline to obtain the location of the modified S peak. 

Due to different length of PreQ, QRS, and PostS in each record, we opted to select only those beats that fell within the top 95 % and 
bottom 5 % of the distribution for each segment value, which excluded the segments that were either too short or long. Fig. 4 shows the 
distribution of each segment, and the selected ranges for analysis were from 77 to 174 samples for PreQ, from 28 to 62 samples for QRS, 
and from 167 to 362 samples for PostS. All the segments were normalized by applying min-max normalization to scale the data to 
within [− 1,1]. The normalization was calculated as Equation (1). 

Scale=
Segment − min (Segment)

max(Segment) − min (segment)
× 2 − 1 (1) 

To standardize the length of each segment, we applied zero-padding to the length of each segment to make it the nearest power of 2, 
resulting in lengths of 256, 64, and 512. 

2.3. Deep learning model 

We trained three AE models based on LSTM according to each segment. LSTM is a type of RNN model that processes sequential data 
and selectively stores and extracts important information from the input data, allowing it to capture long-term dependencies. LSTM has 
shown excellent performance in time-series data, and ECG data exhibits the characteristics of time-series data. The AE model is a neural 
network architecture that consists of two main parts: an encoder and decoder. The encoder takes an input xt = [x1,⋯ 
,xt ] ( t:length of input ) and compresses it into a lower-dimensional representation as latent space Zd =

[Z1,⋯Zd](d:dimension of latent space ) through a series of LSTM layers. The encoder captures the most important features of the input, 
which represent as Equation (2). 

houtput of encoder = f (wix+ bi )= f (Z) (2)  

where f is the activation function (a hyperbolic tangent (tanh) activation function was used). w is the weight matrix, b is the bias, and Z 
is the latent space. The decoder reconstructed the original input by generating through a series of LSTM layers that unsampled the 
compressed representation, which is represented as Equation (3) 

x̂= f ′( wjh+ bj
)

(3)  

where f′ is the activation function used in the same manner as the encoder. w is the weight matrix, b is the bias for decoder and h is the 
input of decoder. 

Fig. 3. Dataset split in each experiment.  

Fig. 4. Distributions of length in each segment. (a), (b), and (c) represent the distribution of length in PreQ, QRS, and PostS respectively.  
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We utilized the reconstruction loss as the mean squared error (MSE) that is calculated to minimize the difference between the 
original signal and reconstruction signal generated by the decoder. The loss function is expressed as Equation (4), 

Reconstruction Loss (MSE)=
1
n
∑n

k=1
(xk − x̂ k)

2 (4)  

where n is the total number of input signals. In our study, we selected as anomaly score the MSE function, which is often used in 
anomaly detection tasks. Fig. 5 shows the LSTM-based autoencoder model, which takes as input the PreQ, QRS, and PostS segments. 
The number of units in the LSTM layer starts at 64 in the encoder and decreases by half at each layer. In the decoder, it starts at 16 and 
doubles in size at each layer during training. Table 1 presents the hyperparameters of the model for each experiment. The batch size 
and learning rate were set to 64 and 0.0005, respectively. 

2.4. Anomaly detection 

To evaluate model, we computed the anomaly score for each PreQ, QRS, and PostS segment of the 10 s test data. The anomaly 
scores were calculated using the MSE for the non-zero padding parts of each segment. Subsequently, the average score in each record 
was used for evaluation. We determined the threshold for detecting anomalies in the normal ECG utilizing the best threshold calculated 
using the Youden index based on the AUROC score. 

3. Results 

As evaluation metrics, accuracy, precision, recall, and F1 score were used, which are calculated as Equations (5)–(8). 

Accuracy=
TP+ TN

TP+ TN + FP+ FN
(5)  

Precision=
TP

TP+ FP
(6)  

Recall=
TP

TP+ FN
(7)  

F1 score=
2 × (Precision× Recall)

Precision+Recall
(8) 

where TP represents the number of true positive predictions, FP represents the number of false positive predictions, FN represents 
the number of false negative predictions, and TN represents the number of true negative predictions. We used micro-average scores for 
all experiments. In addition, the AUROC, which provides the model with performance ability to discriminate between positive and 
negative classes across all possible classification thresholds, was used for evaluation. In Table 2, in Experiment A, the ratios of the 
differences in anomaly scores for each class were 14.4, 2.3, and 4.6, respectively, which indicated that PreQ is the most different 
segment for normal and.AF. In Table 3 and Fig. 6, with each threshold, the PreQ segment exhibited the highest performance with an 
AUROC score of 0.96. Meanwhile, the QRS segment had an AUROC score of 0.75. This indicates that the most significant differences 
between the normal and AF rhythm were found in the ST and TP intervals during the R–R interval, rather than in the QRS complex. 
This was determined through analysis of the anomaly scores, indicating that these intervals are the most distinguishing factors between 
the two classes. We also conducted cross-validation using two independent datasets, the PTB-XL and China datasets. In Experiment B, 

Fig. 5. The deep learning model in our proposed study.  

S. Choi et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e23597

6

the PTB-XL dataset used the training model and evaluated the China dataset. The results in Table 3 show that the AUROC scores of 
PreQ, QRS, and PostS were also 0.9, 0.76, and 0.89, respectively, which means that the most different segment in ECG signals is the 
PreQ segment, regardless of the datasets. In Experiment C, the China dataset used the training model and evaluated the PTB-XL dataset. 
The AUROC scores of each segment were 0.96, 0.74, and 0.95. These performances had a similar tendency to those of previous ex
periments. These results demonstrate that our proposed method performs well without relying on the characteristics of the training 
data. The detailed results of the error distribution, ROC curve, and confusion matrix for Experiment B and C can be found in the 
supplementary material section. 

4. Discussion 

We also experimented with the anomaly scores of three segments in the dataset used in Experiment A, which were classified using 
the XG-Boosted model to verify the anomaly score calculated by the DL model. As presented in Table 4 and Fig. 7, the results achieved 
an AUROC score of 0.98 and an F1 score of 0.94. In Table 5, we compared them with the results of previous studies that evaluated on 
AUROC score and F1 score because they used a different dataset at the same task [31–37]. The selected methods were feature 
extraction with DL or machine learning (ML) and only using DL. The DL methods, especially [9,35], have remarkable performance, 
with F1 score of 0.97, to detect AF automatically. Further [31], used the frequency domain in the ECG signal with the PTB-XL dataset 
and achieved the best performance at an AUROC of 0.98. However, these studies have not provided clinical evidence. Meanwhile, 
using only the PreQ score, our study detected AF with an AUROC score of 0.96, a performance comparable with that of other previous 
studies. Additionally, it enables clinical interpretation of abnormalities in comparison to normal ECG in the segment preceding the 
Q-wave. 

Moreover, our study of the three anomaly scores with the XG-boosted model had the best performance at an AUROC score of 0.98, 
which demonstrated that the anomaly scores for the three segments were verified as effective features for detection of AF. In contrast to 
previous studies that lacked clinical explanations, our study revealed significant differences in PreQ and PostS compared with normal 
ECG patterns. However, we observed no significant impact on the QRS complex, which exhibited the highest AUROC score. Fig. 8 
exhibits examples of FNs. Fig. 8(a) presents the 10 s record with the lowest anomaly score among all AF cases that remained within the 
thresholds based in normal class. Fig. 8(b) shows the anomaly scores in the 10 s record. While most ECG beats in AF exhibit indistinct P- 

Table 1 
The Hyperparameters of our model in this study.  

Experiment Activation function Loss function Batch size Learning rate Epoch 

Experiment A Tangent hyperbolic MSE 64 0.0005 200 
Experiment B 
Experiment C  

Table 2 
The Anomaly scores of three segments in each Experiment, and threshold based each segment in normal.  

Experiment Components Normal AFIB Threshold 

Experiment A PreQ 0.00126 0.0182 0.00284 
QRS 0.0247 0.056 0.0784 
PostS 0.0184 0.086 0.0251 

Experiment B PreQ 0.00393 0.0311 0.00774 
QRS 0.0208 0.123 0.0011 
PostS 0.0486 0.143 0.0543 

Experiment C PreQ 0.00423 0.0346 0.00863 
QRS 0.0279 0.167 0.000693 
PostS 0.036 0.149 0.0914  

Table 3 
The results of classification using anomaly score.  

Experiment Components AUROC Precision Recall F1 score Accuracy 

Experiment A PreQ 0.96 0.92 0.92 0.92 0.92 
QRS 0.75 0.69 0.7 0.7 0.7 
PostS 0.95 0.9 0.89 0.9 0.9 

Experiment B PreQ 0.9 0.84 0.84 0.84 0.84 
QRS 0.76 0.7 0.7 0.7 0.7 
PostS 0.89 0.79 0.79 0.79 0.79 

Experiment C PreQ 0.96 0.9 0.9 0.9 0.9 
QRS 0.74 0.56 0.56 0.56 0.56 
PostS 0.95 0.87 0.87 0.87 0.87  
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Fig. 6. Results of Experiment A. (a), (b), and (c) show results of error distribution between normal and AF case in each segment. (d), (e), and (f) 
show results of ROC curve in each segment. (g), (h), and (I) show results of confusion matrix. Class 0 represents Normal, while Class 1 corresponds 
to AF. 

Table 4 
The performance of XG-boosted model using three segments.  

Class Precision Recall F1 score Support 

Normal (0) 0.93 0.9 0.91 412 
AF (1) 0.93 0.95 0.94 603 
Accuracy   0.93 1015 
AUROC   0.98 1015  

Fig. 7. Result of classification using anomaly scores based on the XG-boosted model. (a) and (b) show results of ROC curve and confusion matrix. 
Class 0 represents Normal, while Class 1 corresponds to AF. 
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wave morphology, this case presented slight P-wave morphology. In addition, it is possible for the T-wave of the preceding beat to 
overlap with the post best when creating a beat from a 10 s ECG recording due to the irregular R–R interval. This result indicated that 
not all beats demonstrate AF within a 10 s timeframe at the beat level. We propose a new approach for an AF diagnosis system that 
utilizes an explainable model to assist physicians clinically and addresses the limitations of the black box nature of DL models. Despite 
the contribution of this study, there are several limitations that need to be considered and addressed in future research. First, we 
utilized a single lead ECG, specifically lead II. Although lead II has important features for diagnosing AF, other arrhythmias may 
require additional leads in the ECG. 

Second, our study defined anomalies exclusively as AF; however, it is necessary to address various other cardiac diseases beyond AF 
in the future study. Third, in our research, although the defined segments, PreQ, QRS, and PostS, are crucial in determination of cardiac 
diseases, it is also important to consider evaluating more precise segments, such as the PR interval and QT segment. Finally, the dataset 
utilized in our study comprises records contained in 10 s rather than continuous records, which may not be conducive to continuous AF 
diagnosis. Therefore, it would be developed to apply out study to continuous long-term data, such as Holter data, to monitor three 
segments for anomaly scores. 

5. Conclusion 

The AF diagnosis system using DL has been controversial to many physicians, even though it has achieved remarkable performance 
to detect or predict AF. To address the problem, we proposed a novel AF diagnosis system that considers anomaly detection in seg
ments, PreQ, QRS, and PostS, compared with the normal ECG. The highest and lowest AUROC scores were 0.96 and 0.75 in the PreQ 
and QRS segments, respectively. This means that the PreQ segment, which is the section from the P-wave to the Q-wave, has important 
features for detecting AF. Meanwhile, the QRS, which is the section from the Q-wave to the S -wave, exhibits a relatively low prev
alence of anomaly between AF and normal ECG. In addition, we conducted cross-validation by training and testing the models on 
separate datasets. We used the independent PTB-XL and China datasets and verified that the best score of AUROC was achieved in PreQ 
at 0.9 and 0.96. Through cross-validation, the potential for a generalized model that can yield promising results regardless of race has 
been demonstrated, addressing the inherent data dependency issue in conventional DL models. For applying a DL model in the medical 
field, the reason for diagnosis should be explainable and medically justified to physicians and experts. In this respect, our study 
distinguishes itself from other previous studies in that we can clearly demonstrate the evidence that distinguishes normal from AF 
based on the anomaly score. In our future work, our approach will be developed for use in detection of various anomalies. 

Table 5 
The comparison of previous study.  

Study Method Dataset AUROC F1 score Clinical explain 

Kent et al. [31] Feature extraction + DL PTB-XL 0.98 – x 
Xu et al. [32] MIT-BIH 0.95 – x 
Jo et al. [33] PTB-XL 0.97 0.93 o 
B Chen et al. [34] DL Own dataset 0.98 – x 
Anderson et al. [9] MIT-BIH 0.94 0.97 x 
Petmezas et al. [35] MIT-BIH – 0.97 x 
Kropf et al. [36] Feature extraction + ML CINC (2017) dataset – 0.81 x 
Czabanski et al. [37] MIT-BIH – 0.97 x 
Our study PTB-XL + China dataset 0.98 0.94 o 
Our study Anomaly score (PreQ) PTB-XL + China dataset 0.96 0.92 o  

Fig. 8. Example of false negative in anomaly scores of PreQ and PostS. (a) Shows a 10-s record and the beat with the lowest anomaly score in the AF 
class. (b) Shows the anomaly score of PreQ and PostS in (a) recording. 
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