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Abstract: A support vector regression (SVR) method was introduced to improve the robustness
and predictability of the design space in the implementation of quality by design (QbD), taking the
extraction process of Pueraria lobata as a case study. In this paper, extraction time, number of
extraction cycles, and liquid–solid ratio were identified as critical process parameters (CPPs), and the
yield of puerarin, total isoflavonoids, and extracta sicca were the critical quality attributes (CQAs).
Models between CQAs and CPPs were constructed using both a conventional quadratic polynomial
model (QPM) and the SVR algorithm. The results of the two models indicated that the SVR model had
better performance, with a higher R2 and lower root-mean-square error (RMSE) and mean absolute
deviation (MAD) than those of the QPM. Furthermore, the design space was predicted using a grid
search technique. The operational range was extraction time, 24–51 min; number of extraction cycles,
3; and liquid–solid ratio, 14–18 mL/g. This study is the first reported work optimizing the design
space of the extraction process of P. lobata based on an SVR model. SVR modeling, with its better
prediction accuracy and generalization ability, could be a reliable tool for predicting the design space
and shows great potential for the quality control of QbD.
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1. Introduction

Radix puerariae (RP) is the root of Pueraria lobata, known as ‘Gegen’ in Chinese. RP was one of the
earliest herbal resources used for food and medicine: it was firstly documented in “Shen Nong’s Herbal
Classic” and classified as middle grade for the prevention and treatment of fever, diabetes, diarrhea,
and cardiovascular and cerebrovascular diseases. Furthermore, modern studies have shown that RP
extract exhibits potential bioactivity for the treatment of several immune disorders, such as atopic
dermatitis [1], osteoporosis [2], and Alzheimer’s disease [3]. Isoflavonoids are believed to be the major
active components in RP. Puerarin is the major and most important component in RP with extensive
pharmacological activities such as hepatoprotection [4], anti-atherogenic effects [5], and anti-cancer
effects [6]. The content of puerarin (≥2.4%) is regarded as the quality indicator of RP according to the
Pharmacopeia of the People’s Republic of China.

Extraction is a key operation process in the manufacturing of health food, dietary supplements,
and medicine, especially for traditional Chinese medicine (TCM). The quality by design (QbD) concept
has been applied in the pharmaceutical field as a well-established tool for both formulation and
manufacturing process development. According to ICH guideline Q8, QbD is implemented with
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several steps, including risk analysis, diagnosis of potential critical quality attributes (CQAs) and
process parameters (CPPs), construction of mathematical models, optimization of the design space,
selection of a control strategy, and continual improvement in the product lifecycle [7,8]. Among these
steps, design space, as a reliable operation range, has gained increasing attention in the food and drug
industries. According to the definition of design space, the quality is guaranteed at any combination
of independent variables (process parameters) within the space. Consequently, the design space is
regarded as a zone of robustness, as no significant fluctuations should be observed within the space.

Design space is established on the basis of a sound understanding of the effect of the interaction
of CQAs and CPPs on the quality of the product. Therefore, statistical and multivariate analysis
models are essential in the implementation of QbD. The predictive ability of the mathematical model
shows the robustness and predictability of the design space. Furthermore, a well-fitted model helps
us not only to gain a clear understanding of the connection and the intrinsic regular pattern between
CPPs and CQAs, but also to gain regulatory flexibility. Thus, constructing a reliable model is first and
foremost. The robustness of the model directly influences the batch-to-batch consistency of the quality
of products.

Response surface methodology (RSM), due to its data visualization and handling ability,
has become the most widely used method to express multidimensional relationships between CQAs
and CPPs. The quadratic polynomial model (QPM) is the most common algorithm for response
surface optimization. Design of experiment (DoE) analysis techniques such as analysis of variance
and fitted regression models are used frequently. A multivariate knowledge space may be delineated
to find regions of risk or optimal performance, which are often graphically illustrated by figures and
known as response surfaces. The literature has shown that the QPM has good performance when
used for relatively simple and linear cases [9,10]. The QPM also has some well-known limitations
that may affect the prediction accuracy [11]. The multidimensional relationships observed in the
pharmaceutical area are often complex and nonlinear. The predictions of models based on the linear
regression algorithm exhibit poor estimation [12]. Therefore, the QPM may not be the most applicable
algorithm for accurate prediction of the design space of QbD.

Support vector regression (SVR) is a promising kernel-based machine learning algorithm
developed by Vapnik and Cortes [13]. The SVR approach can optimize complex nonlinear problems by
using an exclusive objective function that minimizes the structural risk of the model. The introduction
of the kernel function allows nonlinear problems to be linearly solved in a higher dimension
compared with its original dimensional feature space. Thus, SVR has a global optimum and exhibits
excellent prediction accuracy. Considering its remarkable generalization performance, SVR has
attracted particular attention and been extensively used in applications including atmospheric
science prediction [14], drug design [15], credit rating analysis [16], protein structure and function
prediction [17], and metabolomics [18]. In most of these cases, the performance of the SVR model is
better than that of traditional machine learning approaches. To our knowledge, few studies of the
design space model have been developed based on the SVR model.

The aim of this present study was to explore the practicability of using an SVR model for predicting
a design space. For the RP extraction process, there are several analytical methods based on the QPM
for response surface optimization [19]. A single algorithm may not be credible enough for model
development. To the best our knowledge, there is no study in the literature comparing the QPM and
the SVR algorithm for the extraction process of RP. Thus, in this paper, the RP extraction process was
optimized as a case study. The extraction time, number of extraction cycles, and liquid–solid ratio
were identified as CPPs, and the yield of puerarin, total isoflavonoids, and extracta sicca were the
CQAs. Models between CQAs and CPPs were constructed using both the QPM and the SVR algorithm
based on the Box–Behnken design. The performance of the two models was analyzed and compared.
Then, the design space was calculated and optimized using a grid search technique. This is the first
study on optimization of the design space of the extraction process of RP using the SVR algorithm.
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2. Results

2.1. Box–Behnken Design

Box–Behnken design is one of the most commonly used DoEs for RSM. Three influential factors
(independent variables) for the extraction process of RP were investigated, including extraction time
(X1, min), extraction cycles (X2, cycles), and liquid–solid ratio (X3, mL/g). Seventeen experimental runs
were arranged using Box–Behnken design. Their experimental results were considered as dependent
variables. In this work, Y1, Y2, and Y3 represented the yields of puerarin (%), extracta sicca (%),
and total isoflavonoids (%), respectively. The entire dataset obtained using Box–Behnken design was
considered as the training set and adopted to establish the QPM and SVR fitted models. To further
evaluate the performance of the two fitted models, cross-validation and external validation approaches
were adopted. Four sets of external validation values—random combinations of independent variables
along with experimental responses—were used as the test set to evaluate the quality of the fitted
models. The experimental datasets are shown in Table 1.

Table 1. Results of training and test set.

No.
Factors Response Variables

X1 (min) X2 (cycles) X3 (mL/g) Y1 (%) Y2 (%) Y3 (%)

Training set
1 35 3 5 3.93 28.64 16.00
2 35 3 15 5.22 34.11 43.86
3 10 3 10 3.63 27.53 28.95
4 35 2 10 4.03 28.06 16.40
5 60 3 10 4.74 34.44 26.82
6 35 2 10 3.90 27.97 20.60
7 35 1 5 1.22 13.52 39.20
8 10 2 15 3.24 25.18 27.57
9 60 2 5 3.24 26.67 13.37

10 10 1 10 1.76 14.82 7.73
11 35 2 10 3.93 28.25 15.41
12 60 1 10 2.40 23.47 12.66
13 35 2 10 4.03 30.40 23.03
14 60 2 15 4.28 33.46 36.94
15 35 2 10 3.77 28.90 21.69
16 10 2 5 2.32 19.67 8.46
17 35 1 15 2.56 20.74 20.70

Test set
1 25 2 10 3.50 25.92 22.70
2 30 2 8 3.45 25.37 17.62
3 15 2 15 3.46 26.35 34.41
4 20 2 15 3.45 27.78 35.40

2.2. QPM Analysis

A five-fold cross-validation method was used for training and evaluation of both the QPM and
the SVR model. The regression coefficient and parameters of QPM and SVR are listed in Table 2.
All the fitted R2 (training set) values of QPM were more than 0.96, which shows that more than 96%
of the variation could be explained by QPM. For the yields of puerarin (Y1) and extracta sicca (Y2),
the predicted R2 (test set) values were higher than 0.90, which shows that 90% of the variation could
be predicted by QPM. The cross-validation R2 values were above 0.80. The closer the cross-validation
R2 is to 1, the better the generalization capability of the statistical model. The regression coefficients
and p-values of the constructed QPM equation are presented in Table 3. For the yields of puerarin (Y1)
and extracta sicca (Y2), the effects of extraction time (X1), extraction cycles (X2), and liquid–solid ratio
(X3) were all significant model terms. For the yield of total isoflavonoids (Y3), there was no significant
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model term, whereas the fitted R2 (training set) of the QPM was more than 0.96. This phenomenon
may be caused by the combined effect of each model term playing a greater role than any single
model term.

Table 2. Statistical parameters of the quadratic polynomial model (QPM) and the support vector
regression (SVR) model.

QPM SVR

R2 RMSE MAD R2 RMSE MAD

Y1

Training set 0.985 0.127 0.111 0.983 0.132 0.077
Test set 0.903 0.191 0.164 0.918 0.175 0.133

Cross-validation 0.802 0.457 0.366 0.846 0.403 0.329

Y2

Training set 0.988 0.641 0.514 0.982 0.789 0.596
Test set 0.944 0.946 0.797 0.975 0.636 0.559

Cross-validation 0.908 1.795 1.429 0.954 1.272 1.031

Y3

Training set 0.964 1.906 1.56 0.961 2.005 1.646
Test set 0.706 4.12 4.02 0.765 3.683 3.606

Cross-validation 0.724 5.311 4.567 0.821 4.281 3.834

Table 3. Coefficients of the constructed QPM equation.

QPM

C0 X1
2 X2

2 X3
2 X1 X2 X1 X3 X2 X3 X1 X2 X3

Y1
Regression coefficient 0.751 −1.524 −1.674 −1.124 2.157 3.859 2.237 0.470 0.120 −0.050

p-value 0.014 * 0.006 * 0.003 * 0.023 * 0.275 0.771 0.903 0.003 * 0.001 * 0.003 *

Y2
Regression coefficient 9.371 −3.317 −11.287 −6.567 11.257 26.075 13.050 −1.740 1.280 −1.750

p-value 0.001 * 0.132 0.001 * 0.012 * 0.413 0.542 0.41 0.003 * 0.001 * 0.001 *

Y3
Regression coefficient 1.402 0.158 −1.702 8.478 5.412 17.347 5.582 −7.060 4.460 11.080

p-value 0.698 0.979 0.777 0.186 0.273 0.477 0.104 0.491 0.053 0.478

* Significant at the 0.05 level.

2.3. SVR Analysis

2.3.1. Parameter Optimization for SVR

Due to the good general performance and the small number of parameters to be adjusted,
the Gaussian radial basis function (RBF) was employed as the kernel function in this study.
Thus, the SVR performance depends on the combination of three parameters: the capacity parameter
C, the kernel function parameter ε, and the kernel parameter σ.

In the SVR formulation, the capacity parameter C represents the tradeoff between the margin
maximization and the training error minimization. If the C value is too high or too low, the algorithm
may over- or under-fit the training set. The kernel function parameter ε signifies the width of the
ε-insensitive zone used to fit the training data. Moreover, the corresponding kernel parameter σ

strongly influences the number of support vectors. Thus, the combination of the three parameters
controls the accuracy and generalization performance of the regression estimate.

To choose the parameters of the model, this paper adopted the method of cross-validation based
on a grid search avoiding blindness and randomness. The key is to find out which combination of the
three parameters gives the highest prediction accuracy. The procedure for optimizing the parameters
of SVR is as follows (schematic shown in Figure 1):

Step 1: Start SVR using an RBF kernel and find the R2, RMSE, and MAD for the run with the
test set.

Step 2: Repeat the procedure by varying ε from 2−15 to 2−1 (typically 15 values) and find the R2,
RMSE, and MAD for each run (15 runs).

Step 3: Repeat the procedure by varying C (capacity control) from 26 to 2 (typical six values: 26,
25, 24, 23, 22, 2) and find the R2, RMSE, and MAD for each run (15 × 6 runs).
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Step 4: Repeat the procedure by varying σ from 2−15 to 2−1 (typically 15 values) and find the R2,
RMSE, and MAD for each run (15 × 6 × 15 runs).

Step 5: Steps 1–4 are repeated for the development of each model of Y1, Y2, and Y3.
The optimized combination of the three parameters for the SVR model is shown in Table 4.
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Table 4. Optimized parameters for the SVR model.

SVR

σ C ε

Y1 2−4 22 2−6

Y2 2−5 24 2−3

Y3 2−4 25 2−3

2.3.2. Evaluation of Models

The performance of the two models was mainly evaluated using two validation techniques:
cross-validation and test set. The parameters of the QPM and the SVR model are listed in Table 2.
Although the R2 values of the training set were similar between QPM and SVR, for the test set
and cross-validation group, the R2 values of the SVR model were higher than those of the QPM.
Furthermore, the RMSE and MAD values of SVR for the test set and cross-validation were lower than
those of QPM. The high R2 and low RMSE and MAD indicate the good prediction and generalization
performance of the SVR model.

Figure 2 depicts a comparison between predicted and experimental values for the training and
test sets with QPM and SVR. Obviously, the values predicted by SVR are more closely matched with
the experimental runs than are those by QPM. Hence, SVR is superior to QPM for predicting the yield
value of the extraction process of RP.
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2.4. Design Space

In this study, the aim of the optimization was to obtain the design space (operating range) which
could provide the maximum yield value of active components and minimum of extracta sicca. Figure 3
shows the design space of the optimized yield value (D) based on the SVR model. It was observed that
the yield value of D increased with the extraction time (X1) up to 20 min, and then declined for X1

greater than 55 min. This phenomenon may be caused by the increased extraction time accelerating the
mass transfer. When the extraction time continuously increases, the extracta sicca grows faster than the
active components’ dissolution rate. When the extraction time reaches 55 min, the D value begins to
decline. However, the number of extraction cycles (X2) and liquid–solid ratio (X3) both had a positive
effect on the extraction efficiency. Increased X2 and X3 enhanced the extraction efficiency greatly,
which shows that the concentration gradient of the solvent plays a critical role in the RP extraction
process. However, a continuously increasing number of extraction cycles and liquid-solid ratio may
result in a heavy load for the subsequent concentration and drying process.

For a maximum yield value of active components and minimum extracta sicca, a D value
of 0.9 was set as the lower limit. The design space was calculated using a grid search method.
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The four-dimensional design space is shown in Figure 3d. The design space is an irregular polygon,
and the operational range for the extraction process is X1, 24–51 min; X2, 3 cycles; and X3, 14–18 mL/g.

The predicted operating range was validated using an external validation approach which
consisted of a combination of CPPs that never occurred in the calibration set. Verification results are
shown in Table 5. All the optimized D values were higher than 0.9, in perfect agreement with the
predicted values. The good correlation between these results indicates that the design space was
reliable in predicting the operating range.
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Table 5. Responses for verification experiments.

No.
Factors

Predicted D Value Experimental D Value
X1 (min) X2 (cycles) X3 (mL/g)

1 35 3 14 0.98 0.99
2 40 3 15 1.03 1.01

3. Materials and Methods

3.1. Materials

RP was collected from Pingwu, Sichuan Province (China). Reference samples of puerarin and
rutin were purchased from the National Institute for the Control of Pharmaceuticals and Biological
Products (Beijing, China). Acetonitrile (chromatographic grade) and methanol (chromatographic
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grade) were obtained from Merck (Darmstadt, Germany). Deionized water was produced using a
Milli-Q academic water purification system (Millipore, Bedford, MA, USA). Sodium nitrite (analytical
grade), aluminum nitrate (analytical grade), and sodium hydroxide (analytical grade) were purchased
from Sigma (Saint Louis, MO, USA).

3.2. Apparatus

An Agilent 1200 HPLC equipped with a variable-wavelength ultraviolet detector (Agilent
Technologies, Santa Clara, CA, USA) was used for HPLC analysis. A Phenomenex reversed-phase
Gemini C18 column (250 × 4.6 mm, 5 µm) and a Phenomenex C18 guard column (Phenomenex,
Torrance, CA, USA) were used for chromatographic analysis. A Shimadzu UV-2550 UV–vis
Spectrophotometer (Shimadzu, Kyoto, Japan) was used for UV analysis.

3.3. Procedures

According to the Chinese pharmacopoeia, heat reflux extraction was used to extract active
components from RP using water as the solvent. Before extraction, RP samples were oven-dried at
60 ◦C for 12 h. Each sample was cut into half-inch cubes. A 100 g sample was placed in a round-bottom
flask and soaked with 5–15 mL/g (500–1500 mL) of water for 30 min. Then, heat reflux extraction was
performed for 1–3 cycles of 10–60 min each according to the experimental design. After extraction,
the mixture was filtered with gauze. The supernatant was subjected to HPLC, UV analysis, and weight
measurement of extracta sicca. Dried extracta sicca were obtained by firstly evaporating in a 60 ◦C
water bath and then drying in a 105 ◦C oven for 6 h. The yields of puerarin (Y1), extracta sicca (Y2),
and total isoflavonoids (Y3) were calculated using the equation Y = (mass of analyte/mass of plant
material) × 100%. Each experiment was conducted in triplicate and the average yield value was used
for statistical analysis.

3.4. HPLC Analysis

The yield of puerarin (Y1) extracted from RP was analyzed using an HPLC approach.
The detection wavelength was 254 nm. The gradient elution of the mobile phase contained (A)
acetonitrile and (B) water with 0.1% formic acid. Gradient procedures were as follows: 0–25 min,
11% A; 25–30 min, 11–25% A; 30–40 min, 25–40% A. The flow rate was 1.0 mL/min and the injection
volume was 10 µL. Column temperature was maintained at 30 ◦C. The linear range of puerarin was
10–1000 µg/mL, Y = 28.981X + 112.29 (R2 = 0.9997). The limits of detection (LOD) and quantification
(LOQ) were 0.6 and 2 µg/mL, respectively.

3.5. UV Analysis

The total quantity of isoflavonoids (Y3) extracted from RP was measured using an aluminum
nitrate colorimetric method described by Saeed [20]. Briefly, in a 10 mL test tube, 1 mL of the extract,
0.4 mL 5% sodium nitrite, and 0.4 mL 10% aluminum nitrate were mixed. After 6 min, 4 mL 4%
sodium hydroxide and 4.2 mL 75% ethanol were added, mixed well, and left to stand for 15 min.
Then, the absorbance of the solution was measured against a prepared reagent blank at 510 nm using
a UV–vis spectrophotometer. The standard curve for total isoflavonoids was found using a rutin
standard solution (0–80 mg/L) under the same procedure described above. The content of total
isoflavonoids was expressed as milligrams of rutin equivalent per gram of dried sample. All the
samples were analyzed in duplicate.

3.6. Establishment of Models

3.6.1. QPM

A second-order response function was applied to establish a mathematical model that relates the
response measured to the independent variables
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Y = b0 + ∑
i=1

biXi + ∑
i=1

biiXi
2
+ ∑

i,j=1
bijXij (1)

where Y is the response, b0 is a constant, bi is the linear coefficient, bii is the quadratic coefficient, bij is
the two-factor interaction coefficient, and Xi and Xj are the process parameters.

The quality of the fitted models was expressed using the coefficient of determination (R2), RMSE,
and MAD.

3.6.2. SVR

By introducing the kernel function, the original input was mapped into the feature space.
The ultimate mathematical form of the kernel-based SVR is shown in Equation (2)

f (x) =
N

∑
i=1

(α∗i − αi)K(xi, x) + b (2)

b =

{
yi − f (xi)b=0 − ε For αi ∈ (0, C)
yi − f (xi)b=0 + ε For α∗i ∈ (0, C)

(3)

where αi and αi
* are the optimized Lagrange multipliers, K(xi, x) denotes the kernel function describing

the dot product in the feature space, b is the bias parameter, and xi and yi denote the ith support
vector and the corresponding target output, respectively. The coefficients α and α* have an intuitive
interpretation as forces pushing and pulling the regression estimate f (x) towards the measurements y.

The kernel function is defined in terms of the dot product of the mapping function as given by

K(xi, xj) =
〈
φ(xi), φ(xj)

〉
(4)

where Φ(x) is the high-dimensional feature space being nonlinearly mapped to from the input space x.
There exist several choices for the kernel function K, including linear, polynomial, splines, and radial
basis functions. With respect to the support vector regression, the function which is broadly employed
is the Gaussian RBF.

K(xi, xj) = exp(
‖xi − xj‖2

2σ2 ) (5)

3.7. Optimization

A function was used to optimize the three CQAs simultaneously: D = Y1 + Y3 − Y2. D is the
optimized yield value of Y1, Y2, and Y3. All the CQA data were normalized using the equation
Y’ = (Y − Ymin)/(Ymax − Ymin). In our study, the goal of optimization was to the maximize yield value
of active components and minimize the extracta sicca. Extraction time X1 (0–70 min), number of
extraction cycles X2 (1–4 cycles), and liquid–solid ratio X3 (0–18 mL/g) were chosen as the recognition
space. A grid search method was used to seek the design space.

The software RStudio (v1.1.456, RStudio, Boston, MA, USA) and R v3.5 were used to construct
the QPM and SVR model, and to perform the grid search method.

4. Conclusions

In this study, the SVR algorithm was used to improve model performance for finding the design
space of the RP extraction process. The results indicate that the SVR model performs better, with higher
R2 and lower RMSE and MAD than those of QPM. Furthermore, verification results were in perfect
agreement with the predicted values, which indicated that the SVR model was reliable in predicting
the operating range for the extraction process of RP. This study is the first reported work optimizing the
design space of the RP extraction process based on an SVR model. SVR modeling has better prediction
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accuracy and generalization ability, and shows great potential for the quality control of QbD as a
reliable tool for predicting the design space.
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