
Heliyon 10 (2024) e25808

Available online 9 February 2024
2405-8440/Â© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

State of health estimation of LIB based on discharge section with 
multi-model combined 

Peng Xu a, Yuan Huang a,*, Wenwen Ran a, Shibin Wan a, Cheng Guo a, Xin Su a, 
Libing Yuan a, Yuanhong Dan b,c 

a School of Electrical and Electronics Engineering, Chongqing University of Technology, Banan, Chongqing, 400054, China 
b School of Computer Science and Technology, Chongqing University of Technology, Banan, Chongqing, 400054, China 
c Nanjing University of Science and Technology, Xuanwu, Nanjing, China   

A R T I C L E  I N F O   

Keywords: 
Lithium-ion battery 
State of health 
Bidirectional long short-term memory network 
Incremental capacity analysis 
Differential thermal voltammetry analysis 
Differential temperature analysis 

A B S T R A C T   

Accurate estimation of a battery’s state of health (SOH) is essential in battery management sys-
tems (BMS). This study considers a complete analysis of combining incremental capacity (IC), 
differential thermal voltammetry (DTV), and differential temperature (DT) for SOH prediction in 
cases of discharge. Initially, the IC, DTV, and DT curves were derived from the current, voltage, 
and temperature datasets, and these curves underwent smoothing through the application of 
Lowess and Gaussian techniques. Subsequently, discerning healthy features were identified 
within the domains where the curve exhibited substantial phase transitions. Utilizing Pearson 
correlation analysis, features exhibiting the utmost correlation with battery capacity degradation 
were singled out. Finally, the state-of-health (SOH) prediction model was constructed using a 
bidirectional long short-term memory (BILSTM) neural network. Two datasets were used to 
validate the model, and the experimental results demonstrated that the SOH prediction had a root 
mean square error (RMSE) below 1.2% and mean absolute error (MAE) below 1%, which verified 
the feasibility and accuracy. This approach quantifies the internal electrochemical reactions of a 
battery using externally measured data, further enabling early SOH predictions.   

1. Introduction 

With the increasing depletion of oil resources, the fuel car industry is facing challenges, and electric vehicles are becoming a 
favorable option. Electric vehicles, energy-storage devices, electronic devices, and many other industries cannot function without 
lithium-ion batteries. Lithium-ion batteries have disadvantages such as conductivity loss (CL), loss of active material (LAM), and loss of 
lithium inventory (LLI) during use [1]. To prevent the effects of battery deterioration, battery management system (BMS) monitoring 
assures that electric vehicles can operate safely and stably [2]. The BMS collects and manages not only the charging and discharging of 
individual cells in the battery package, but also the SOC and state of health (SOH) conditions of the battery [3]. Chemical reactions 
occur internally during battery cycling, and it is difficult to predict battery aging directly from these internal reactions. The SOH 
prediction is vital for battery health research and can be easily obtained from external battery characteristics, including the terminal 
voltage, current, and surface temperature of the cell. At present, research on battery health emphasizes short-term SOH predictions and 
long-term predictions of remaining useful life (RUL) prediction [4]. The battery SOH attains 70%–80% when it reaches the end of life 
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(EOL), which indicates that it should be replaced [5]. 
Standard SOH prediction methods include modeling and data-driven methods. The modeling methods include electrochemical, 

empirical, and equivalent-circuit models. In electrochemical models, Zhang and White [6] proposed a method to build a single-particle 
model to simulate the mechanism changes inside the cell and characterize the solid electrolyte interface (SEI) layer growth. The 
electrochemical model involves many relevant characteristic parameters, further increasing the complexity of the process of building a 
perfect electrochemical model. Ramadass et al. [7] proposed to build a semi-empirical model to predict the decline of battery capacity. 
Although the empirical modeling approach is more efficient than electrochemical modeling, the algorithm accuracy is still affected by 
the battery model parameters, which makes it difficult to achieve accurate SOH estimation. The equivalent-circuit model must identify 
and confirm the internal parameters of the battery, which are complicated and not conducive to SOH prediction. Standard SOH 
prediction using data-driven methods includes statistical-based regression models, support vector regression models, and neural 
network models. The data-driven method relies on battery capacity-related data to predict the RUL by exploring the operational data, 
in which the feature extraction strategy can effectively combine electrochemical analysis techniques for SOH or RUL prediction. Lin 
et al. [8] used the acquired SOH history data as the input, and after determining the model parameters, they built an autoregressive 
model for current lithium-ion battery SOH estimation. The advantage of this model is that the model parameters are small and easy to 
determine, and the data volume requirement is not large, which makes it suitable for estimating the historical SOH values of lithium 
batteries. It is challenging to analyze the implied relationships between multiple input features because of the small amount of model 
data, further resulting in low accuracy of the estimation results. Guo et al. [9] proposed an integrated support vector regression model 
that considers the inconsistency of the battery. The advantage of the support vector regression model is that a high accuracy can be 
maintained even when the size of the sample is small. However, it is difficult to obtain the kernel function for the support vector 
regression model directly. To scientifically analyze the battery aging data, feature characteristics, and other factors, Zhang et al. [10] 
proposed Elman network applications that are suitable for small sample situations, and Wu et al. [11] constructed radial basis function 
neural networks to improve their prediction accuracy. The advantage of the neural network model is that it can solve the diverse, 
complex, and nonlinear mapping relationships between lithium battery feature vectors and capacity with high accuracy and good 
adaptability of model estimation. 

The use of sensors to measure voltage, current, and temperature data and make health-state predictions without damaging the 
battery is a popular research topic today. Zhang et al. [12] combined the IC curve and support vector regression model for SOH 
estimation; this method controls the mean absolute error (MAE) and root mean square error (RMSE) below 2.3%. Li et al. [13] 
combined the IC curve with a Gaussian regression model to predict the health state of a battery by probability. To suppress the effect of 
noise, Guo et al. [14] reconstructed the charging voltage curve and used the SVR model for prediction. Zhang et al. [15] divided the IC 
curve of the charging part into three regions to comprehensively predict the curve. Xu et al. [16] used IC curves as neural network 
inputs and a CNN for feature value extraction, by combining a CNN and attention mechanisms based on LSTM neural networks. 
Gismero et al. [17] analyzed the aging of batteries used in the BMW i3 and used the ICA technique for SOH prediction, where the RMSE 
error was below 2%, thus confirming the effectiveness of the ICA technique in commercial vehicles. Kwon et al. [18] for the first time 
used a charging voltage curve to extract feature data and combined it with the ICA technique to make predictions using an LSTM neural 
network. The abovementioned scholars analyzed the IC curves for charging time regions, and for extracting more accurate ICA data, 
they used low C-rate charging such as C/25 and C/10 for feature extraction. Fly and Chen [19] discussed the trend of ICA peaks while 
charging C/6 and C/24, and fewer peaks were obtained during 1C charging. In practical applications, fast-charging and high-multiplier 
charging situations must be considered. The observable peaks decreased during fast charging, and Zhou et al. [20] estimated the SOH 
of the area generated during fast charging as a new feature input. Ospina Agudelo et al. [21] discussed the case of partial peak area of 
the IC curve as a health indicator for the 1C case. High C-rate charging can still be used as an indicator of health status, although it leads 
to a reduction in the peak value. The DTV method, initially introduced by Wu et al. [22], serves as a battery status monitoring 
technique involving voltage and temperature measurements. Wang et al. [23] further investigated the DTV curve, extracting eigen-
values and integrating them with a Gaussian regression model to predict State of Health (SOH), achieving a maximum relative error 
below 2%. Yang et al. [24] employed DTV curves to delineate voltage intervals. With the battery charging and discharging cycles, an 
aging trend was observed in the internal temperature change of the battery. A neural network model incorporating temperature 
prediction of SOH was validated by a Bayesian optimization model with three sets of data; the dataset MAE was below 5% [25]. The 
feature parameters extracted from the DT curves were used to predict the SOH in 11 mainstream estimation methods, and all the 
estimated RMSEs were maintained below 2.5% [26]. Chen et al. [27] obtained the DT curve through the battery’s internal 
temperature-to-time differential, followed by a correlation analysis to find the feature value with the highest correlation to capacity, 
combined with gated recurrent unitary neural networks to estimate the SOH, and the error was controlled within 2.28%. 

To avoid the overreliance of the model on a single feature source, a combination of feature sources was considered for a 
comprehensive prediction of the SOH. There is a decrease in the IC peak during high C-rate discharge by considering the peak of the IC 
curve during discharge alone as a feature source. This may lead to inaccurate modeling, and the impact of temperature changes inside 
the battery could be considered on the basis of capacity changes, as ICA technology is commonly used in charging situations. A 
mechanistic model based on differential voltage curves, such as IC and DV curves, can be implemented in a BMS that controls three 
parameters: voltage, current, and temperature [28]. The characteristic data for predicting battery aging consisted of peak and valley 
data. The characteristic values that correlated with the battery capacity in the range of 80%–100% were selected using Pearson 
correlation analysis. The battery aging process has time-series characteristics and long-term dependence. Therefore, time-series neural 
networks with gating mechanisms such as LSTM are suitable for SOH prediction. Compared to the LSTM neural network, the BILSTM 
neural network can analyze the data from front to back together, which offers a more comprehensive analysis. Bharat et al. [29] 
discussed BILSTM with LSTM, CNN-LSTM, and CNN-BILSTM neural network models for short term residential load prediction and 
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Fig. 1. Variation of voltage, current, and temperature (a) Voltage, current and temperature transformation in two cycles. (b) Voltage and temperature change under different cycles.  
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obtained the lowest RMSE prediction using the BILSTM model. Zhang et al. [30] compared the prediction time errors of BILSTM and 
LSTM. The results demonstrated that the BILSTM neural network was more advantageous in extracting time-series data. Panagiotis 
et al. [31] predicted the battery capacity decline phenomenon under different operating conditions and compared the LSTM, BILSTM, 
GRU, and BIGRU algorithms; BILSTM had the smallest MAE and RMSE, thus confirming that the BILSTM algorithm is suitable for SOH 
prediction. The main contributions of this study are as follows:  

(a) The ICA technique is commonly used for low C-rate charging cases. To verify that it is still applicable for high C-rate discharging 
cases, 1C discharging data are used for feature processing and extraction.  

(b) By combining IC, DTV, and DT technologies, the integrated sensor-measurable quantities captured the internal chemical 
changes of the battery and predicted the aging of the battery more comprehensively.  

(c) A data-driven approach was used to perform the SOH prediction for both datasets. 

This study characterized the discharge part of the data using NASA and Oxford datasets, combined with a data-driven approach to 
predict the SOH. The remainder of this paper is organized as follows: Section 2 describes the computation of IC, DTV, and DT curves, 
compares different sampling intervals and filtering methods, and extracts features from peaks and troughs with significant phase 
changes. Section 3 extracts quantities that are highly correlated with battery capacity as eigenvalues from the Pearson correlation 
analysis. Section 4 describes the BILSTM network structure and compares the SOH prediction results of the BP, LSTM, and BILSTM 
neural-network models. Finally, section 5 concludes the study. 

1.1. Data analysis 

1.1.1. Data collection 
The NASA Ames Prognostics Center of Excellence (PCoE) published experimental data on the cycle life of lithium-ion batteries [32]. 

This dataset collects test data of 18,650 Li-ion batteries for charging, discharging, impedance, and temperature at 24 ◦C. This study 
analyzed the data of batteries B05, B06, and B07. These three batteries were charged in the CC-CV mode and discharged in the CC 
mode. The charging process consisted of charging to 4.2 V at a constant current of 1.5 A and then charging at a constant voltage of 4.2 V 
until the current was reduced to a 20 mA cut-off current. The discharge process selected 2 A constant current discharge. The battery 
discharge cutoff voltages were 2.7 V, 2.5 V, and 2.2 V, which collected 168 cycles of charge and discharge data for this dataset. 

Many researchers have used predictable data trends during battery cyclic charging to estimate the battery SOH. Voltage and current 
trends as well as the battery’s internal temperature were observed during the discharging process. Fig. 1 (a) depicts the relationship 
between the voltage and current, voltage, and temperature of the battery during the cycle. The pink plot window indicates the 
discharge. Fig. 1 (b) depicts the trends in the discharge voltage and temperature of B05 battery at the 40th, 60th, 80th, 100th, 120th, 
140th, and 160th cycles. Aging of the battery results in a shorter time to reach the battery cut-off voltage and maximum temperature, 
which is due to the shuttling of the internal lithium ions between the two poles during the battery cycle, and the CL, LAM, and LLI 
phenomena that occur during this process [33]. 

The battery dataset published by th e University of Oxford provided an 8-channel battery tester for commercial Kokam pouch 
batteries with a rated capacity of 740 mAh [34]. The batteries had a cut-off charging voltage of 4.2 V and a cut-off discharging voltage 
of 2.7 V. The 1C charge/discharge test was carried out at 40 ◦C. The tests were conducted using an 8-channel battery tester. The 
sampling interval was 1 Hz. Under the simulation of Artemis urban discharge conditions, battery data were recorded for every 100 
cycles. The data descriptions of the two batteries are listed in Table 1. 

1.1.2. Feature extraction 
The IC curve can effectively quantify the internal degradation. When the battery was discharged in the CC model, a voltage interval 

decreased as the Li ions moved toward the end of electrodes. Within this interval, the peaks in the IC curve were generated as a result of 
the increase in power discharge. The DTV method can be used to track the phase changes that occur in the electrode and the resulting 
entropic heat. The aging process can be reflected by correlating the internal chemical reactions with the external measurements of the 
battery [35]. Lithium ions migrated from the anode to cathode during battery discharge. The charge imbalance between the cathode 
and anode was strong such that it generated approximately 4.2 V. The charge imbalance gradually decreased with the gradual 
migration of lithium ions. During migration, the internal temperature of the battery gradually increased until it reached the battery 
cut-off voltage. Subsequently, the internal temperature gradually decreased during the battery setting process. The battery degradation 
process was predicted in connection with the external data, and thus, the IC, DTV, and DT curves were used as important evaluation 
targets of the battery health state, and equations (1)–(5) to find the three curves. 

Table 1 
Description of the battery dataset.  

Dataset Charging cut-off 
voltage [V] 

Charging cut-off 
current [mA] 

Charging constant 
current [C] 

Discharge cut-off 
voltage [V] 

Discharge constant 
current [C] 

Temperature 
[◦C] 

NASA 4.2 20 0.75 2.7 1 24 
Oxford 4.2 – 2 2.7 1 40  
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Fig. 2. NASA discharge data curve at different sampling intervals and filtering (a) IC curve at different sampling intervals and filtering. (b) DTV curve at different sampling intervals and filtering. (c) DT 
curve at different sampling intervals and filtering. 
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Q=

∫

Idt (1)  

IC =
dQ
dV

=
I · dt
dV

= I ·
dt
dV

(2)  

IC =
QK − QKN

VK − VKN
=

IK tK − IKNtKN

VK − VKN
(3)  

DTV =
ΔT
ΔV

=
TK − TKN

VK − VKN
(4)  

DT =
ΔT
Δt

=
TK − TKN

tK − tKN
(5) 

Where N is the sampling interval, K is a certain moment, and Q is the battery capacity, which is obtained by integrating the 
measurable amount of current I as shown in equation (2). The DTV curve can be obtained as mentioned in equation (4). The chemical 
reaction of the battery varied the internal temperature. The DT curve can be obtained by differentiating the internal temperature 
variation of the battery. Although the sampling interval N = 1 has noise, it can be filtered by increasing the sampling interval. In Fig. 2 
(a), although the IC curve gradually smooths out as the sampling interval N increases, the noise is still present. The IC curve was 
smoothed via Lowess filtering. This filter method fits a polynomial regression curve in the subset by taking a certain percentage of local 
data, and the curve’s trend can be observed. The trend of the curve can be observed in Fig. 3 (a). Both DTV and DT curves were 
smoothed using Gaussian filtering to obtain smooth curves as depicted in Fig. 2 (b), (c). 

For the NASA dataset, as the number of battery cycles increased, there was a leftward shift and an increase in the peak of the IC 
curve, as depicted in Fig. 3 (a). The peak rise is related to LAM, and the peak shift to the left is related to CL and LLI [36]. Therefore, the 
IC curve can be used to visualize the internal chemical reactions of the lithium-ion battery during cycling. As depicted in Fig. 4 (a), the 

Fig. 3. Discharge IC curve acquisition process (a) Trends in IC curves for NASA datasets. (b) Trends in IC curves for Oxford datasets. (c) Features 
selection for NASA datasets. (d) Features selection for Oxford datasets. 

P. Xu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e25808

7

DTV curve tends to shrink and shift. There was an entropy change inside the battery, and the DTV curve characterized the entropy 
change in the battery through inflection points. Therefore, the cell SOH can be predicted using these phase change characteristics [37]. 
The battery phase change process requires energy to drive, which leads to a change in the temperature [38], therefore, the peaks and 
valleys of the DTV curve were used as characteristic data. The DT curve also exhibited an offset and rise, as depicted in Fig. 5 (a). The 
peaks and valleys of the three curves are used as important indicators for battery aging prediction. The IC peaks were used as the first 
group of characteristic data [F1–F2] as depicted in Fig. 3 (c); the peaks and valleys of the DTV curves were used as the second to fourth 
groups of characteristic data [F3–F8] as depicted in Fig. 4 (c); and the peaks and valleys of the DT curves were used as the fifth to sixth 
groups of characteristic data [F9–F12], as depicted in Fig. 5 (c). 

For the Oxford dataset, the IC, DTV, and DT curve trends are depicted in Fig. 3 (b), 4 (b), and 5 (b), respectively. The peaks and 
valleys were used as feature values, where the IC peaks were used as the first set of feature data [F1–F2], as depicted in Fig. 3 (d). The 
characteristic values of the DTV curves were [F3–F8], where the second peak indicated a decreasing trend with increasing number of 
cycles, that varied significantly in the range of 3.85–4.10 V, as depicted in Fig. 4 (d). The DT curve depicted in Fig. 5 (d) was used as the 
third feature set, to extract the feature data [F9–F14]. 

1.2. Pearson correlation coefficient analysis 

The features extracted from the IC, DTV, and DT curves were closely related to battery aging. The Pearson correlation analysis 
method determines the correlation using the ratio of covariance to the standard deviation of two random variables, as shown in 
equation (6). When the absolute value of the correlation coefficient was between 80% and 100%, there was a strong correlation 
between these two variables. 

ρX,Y =
Cov(X,Y)

σXσY
=

E(XY) − E(X)E(Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
(
X2
)
− E2(X)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
(
Y2
)
− E2(Y)

√ =
E((X − EX)(Y − EY))

̅̅̅̅̅̅̅̅̅̅̅
D(X)

√ ̅̅̅̅̅̅̅̅̅̅̅
D(Y)

√ (6) 

Fig. 4. Discharge DTV curve acquisition process (a) Trends in DTV curves for NASA datasets. (b) Trends in DTV curves for Oxford datasets. (c) 
Features selection for NASA datasets. (d) Features selection for Oxford datasets. 
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Where X and Y are any two features, and the correlation is determined by the Pearson ratio value. The correlation analysis for cells B05, 
B06, and B07 in the NASA dataset and cells Cell1, Cell3, and Cell4 in the Oxford dataset are listed in Table 2. 

Fig. 6 depicts the correlation analysis of 12 sets of feature numbers with a battery capacity of for battery B05, where ten sets of 
feature numbers F1, F2, F3, F5, F6, F7, F8, F10, F11, and F12 were highly correlated with battery capacity. These ten sets of feature 
data were used as the input of the training set for further SOH prediction. 

By considering the NASA dataset B05 as an example, the aging trend of eigenvalue F4 of the first peak and valley of the DTV curve 
was not evident as depicted in Fig. 7 (a) and Fig. 7 (b), and the trend of F4 is smoother, which is not suitable for its use as an aging 
indicator. In the DT curve of B05, eigenvalue F9 was concentrated in the range of 150–160 S, and the variation was not prominent, as 
depicted in Fig. 5 (a), which is poorly correlated with the capacity. In addition, the other characteristic values exhibited significant 
trends with battery aging and were positively or negatively correlated with capacity degradation. This is favorable for the SOH 
prediction of batteries. The selection of eigenvalues depended on the trend of the characteristic curve changes, and the quantity with 
an evident aging trend was selected as the eigenvalue. 

Fig. 5. Discharge DT curve acquisition process (a) Trends in DT curves for NASA datasets. (b) Trends in DT curves for Oxford datasets. (c) Features 
selection for NASA datasets. (d) Features selection for Oxford datasets. 

Table 2 
Battery capacity correlation analysis.  

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

B05 0.96 ¡0.99 0.94 − 0.71 0.99 0.95 0.98 ¡0.98 − 0.64 ¡0.98 0.99 ¡0.96 __ __ 
B06 0.99 ¡0.96 0.99 0.18 0.98 0.96 0.96 ¡0.95 − 0.20 ¡0.99 0.99 ¡0.95 __ __ 
B07 0.97 ¡0.99 0.95 − 0.65 0.97 0.98 0.96 ¡0.93 − 0.20 ¡0.97 0.99 ¡0.90 __ __ 
Cell1 0.96 0.94 0.62 0.88 0.98 ¡0.86 0.88 0.91 0.78 ¡0.95 0.97 0.33 0.96 ¡0.81 
Cell3 0.95 0.93 0.44 0.88 0.97 ¡0.8 0.87 0.88 0.77 ¡0.96 0.97 0.32 0.96 ¡0.83 
Cell4 0.96 0.85 0.68 0.83 0.98 ¡0.86 0.85 0.90 0.79 ¡0.92 0.95 0.42 0.99 ¡0.81  
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2. Method 

2.1. BILSTM structure 

Compared to traditional recurrent neural networks (RNN), LSTM a has gating mechanism. An RNN only has short-term memory 
capability, which makes it challenging to handle time-series data; moreover, the presence of gradient disappearance and gradient 
explosion problems occur during backpropagation, which may cause the neural network to fail to learn. The LSTM neural network can 
effectively solve the gradient disappearance and gradient explosion problems [39]. The LSTM adds a new internal state and gating 
mechanism based on recurrent networks. 

Fig. 6. Pearson correlation coefficient analysis of B05.  

Fig. 7. B05 Changes in features (a) Aging trends in [F1–F6]. (b) Aging trends in [F7–F12].  
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The BILSTM neural network adds a reverse layer to the LSTM layer, as depicted in Fig. 8. Compared to LSTM, which only analyzes 
previous information, BILSTM has a higher prediction capability by combining previous and subsequent information. The prediction 
results of y were obtained by combining the forward and reverse hidden layers. When the output was at t moment, the forward LSTM 
layer analyzed the information to moment t − 1, whereas the reverse LSTM layer analyzed the information to moment t+ 1 as shown in 
the following equations (7)–(9): 

h
→

t = σ
(
ω

h→x
xt +ω

h→h
ht + b

h→
)

(7)  

h
←

t = σ
(
ω

h
←

x
xt +ω

h
←

h
ht + b

h
←
)

(8)  

yt =ω
h→y

h
→

t +ω
h
←

y
h
←

t + by (9) 

Where x = (xt− 1, xt , xt+1) denotes the input vector at different moments, h
→

= ( h
→

t− 1, h
→

t , h
→

t+1) is the hidden layer of the forward 

LSTM layer, h
←
= (h

←

t− 1, h
←

t , h
←

t+1) is the hidden layer state of the inverse LSTM, ω is the weight of the LSTM layer, and b is the bias of the 
LSTM layer. The forward and reverse outputs are combined to obtain the output y = (yt− 1,yt ,yt+1). A BILSTM neural network combined 
with the dropout technique was used to effectively prevent overfitting. The structure of SOH prediction is depicted in Fig. 9. 

2.2. Hyper-parameter selection 

The SOH prediction is strongly dependent on the structure of the neural network, and the selection of hyper-parameters is crucial. 
The process of hyper-parameter selection for the BILSTM neural network is listed in Table 2. To evaluate the performance of the model, 
the RMSE and MAE were used as the evaluation metrics of the algorithm performance. These evaluation indicators are defined by 
equations (10) and (11). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

(
∑N

i=1
|ŷi − yi|

)√
√
√
√ (10)  

MAE=
1
N
∑N

i=1
|ŷi − yi| (11)  

Here, ŷi represents the SOH prediction results, yi represents the true SOH value, and N represents the total number of predictions. 
Table 3 uses 70% of the data set as the test set and 30% as the validation set. To determine the optimal hyperparameter setting, the 

hidden layer was first set to one layer compared to two layers, and the error was smaller in one layer. While keeping the other 
hyperparameters constant, we obtained more minor errors by adding epochs, as shown in the results of the second to sixth tests. The 
change in the number of hidden layers also affected the error results; thus increasing the dropout rate to 0.001 at 120 neurons, which in 
turn caused the error to increase. In the ninth test, the neurons, batch size, dropout rate, epoch, and learning rate were set to 145, 15, 
0.0001, 800, and 0.001, and the error was minimized such that the RMSE and MAE were 0.47% and 0.36%, respectively. Modifying the 
dropout rate and batch size led to the deterioration of the model performance, as in the 10th-15th times. The model prediction 
exhibited poor performance with an increase in the number of hidden layer neurons and layers. 

Fig. 8. BILSTM structure.  
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Fig. 9. SOH prediction structure diagram.  
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2.3. Predicted results 

The NASA and Oxford datasets were also used for prediction. The NASA dataset 40% was used as the training set, and 60% of the 
data was predicted, as depicted in Fig. 10 (a), (b), (c); the prediction errors for battery B05, B06, and B07 are shown in Fig. 10 (d), (e), 
(f); the BILSTM neural network prediction results were better than those of the BP and LSTM neural network predictions shown in 
Fig. 10 (g), (h), (i). Because of the different capacity regeneration phenomena of each battery dataset, the learning rate, training batch 
size, maximum number of iterations, and learning rate decay depend on manual adjustments, further resulting in different prediction 
results for each battery set. The RMSEs of the BILSTM neural network in the SOH prediction results were all less than 1.2%, and the 
MAE was less than 1%, which proves that the BILSTM neural network model is suitable for battery life prediction. The SOH prediction 
results were more accurate when 70% of the data were trained and 30% were predicted, as depicted in Fig. 11 (a), (b), (c); the 
prediction errors are shown in Fig. 11 (d), (e), (f). As the size of the training set increased, the model’s performance improved. The 
RMSE and MAE of the BILSTM prediction results were below 1% shown as Fig. 11 (g), (h), (i), which proves the reliability of the 
method. To verify the reliability of the method, the Oxford dataset was trained with 40% and 70%, as depicted in Fig. 12 (a), (b), (c) 
and 13 (a), (b), (c). The BILSTM neural network predicts an RMSE and MAE of less than 1%. 

The Oxford dataset exhibits better predictive performance compared to the NASA dataset. Shown as Fig. 12 (d), (e), (f), and Fig. 13 
(d), (e), (f). In the case of the Oxford dataset, the phenomenon of capacity regeneration is relatively minimal, making predictions more 
straightforward. The BP neural network relies on the gradient descent method, which can result in jagged prediction results and subpar 
predictive performance. On the other hand, the BILSTM neural network considers information from both before and after the data 
points, leading to higher prediction accuracy compared to the LSTM neural network. 

3. Conclusion 

This paper proposes a prediction model that combines a data-driven method with IC, DTV, and DT curve analyses. These curves 
were obtained from the measurable external battery data. The effects of internal battery reactions and battery aging on capacity 
degradation were comprehensively considered during discharge. This study was based on the NASA and Oxford discharge aging 
datasets. The IC curves selected the Lowess method for filtering, DT curves selected the Gaussian method for filtering, and based on the 
DT curve, the DTV curve obtained by differenced voltage was analyzed via Gaussian filtering. Subsequently, the data with prominent 
features, such as peaks and valleys, were used as health feature variables. Characteristic health variables with a correlation greater 
than 0.8 were selected, and these characteristics strongly correlated with the battery capacity variation. Based on the LSTM neural 
network, a BILSTM neural network combined with the dropout technique was selected, and the model performance improved as the 
size of the training set increased. As listed in Table 4, the MAE was less than 1%, and RMSE was less than 1.2% for different training 
sets. This indicated that the model was highly reliable. This study considered the effects of the current, voltage, and temperature 
change processes in the discharge section on battery aging. Future research will help the cloud computing platforms to enable the real- 
time prediction of the battery’s health status. 

In this paper, CC discharge data is employed to predict battery capacity degradation. In practical battery usage, the battery un-
dergoes random cycling between various SOCs, which results in inconsistent voltage plateaus during the discharge process and 
contributes to the irregular trends in characteristic curves. Notably, the NASA random walk dataset employs the pulse discharge 
method, making it challenging to capture the voltage plateau during the discharge process and, consequently, to extract the IC curve. 

Table 3 
Model and hyper-parameter selection.  

Number Hyper-parameter Selection Evaluation Indicators 

Hidden layer Neurons Batch Dropout rate Epoch Learning rate RMSE (%) MAE (%) 

1 2 110/10 15 0.0001 100 0.001 5.12 4.20 
2 1 110 15 0.0001 100 0.001 1.39 0.85 
3 1 110 15 0.0001 200 0.001 1.36 1.21 
4 1 110 15 0.0001 300 0.001 1.33 1.19 
5 1 110 15 0.0001 500 0.001 0.71 0.51 
6 1 110 15 0.0001 700 0.001 0.62 0.48 
7 1 120 15 0.0001 800 0.001 0.56 0.42 
8 1 120 15 0.001 800 0.001 0.83 0.69 
9 1 145 15 0.0001 800 0.001 0.47 0.36 
10 1 145 15 0.001 800 0.001 0.92 0.79 
11 1 145 15 0.005 800 0.001 0.67 0.43 
12 1 145 15 0.01 800 0.001 0.75 0.62 
13 1 145 20 0.0001 800 0.001 1.65 1.42 
14 1 145 40 0.0001 800 0.001 0.82 0.65 
15 1 145 60 0.0001 800 0.001 0.91 0.76 
16 1 150 15 0.001 1000 0.001 0.58 0.41 
17 1 150 15 0.0001 1000 0.0001 7.71 7.63 
18 2 110/10 15 0.0001 800 0.001 1.37 0.72 
19 3 110/10/10 15 0.0001 800 0.001 0.92 0.79 
20 1 100 15 0.0001 800 0.001 0.86 0.59  
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Fig. 10. NASA dataset SOH prediction (training set 40%: prediction set 60%): (a), (d), (g). Bo5 battery’s SOH prediction, prediction error, and RMSE and MAE. (b), (e), (h). Bo6 battery’s SOH 
prediction, prediction error, and RMSE and MAE. (c), (f), (i). Bo7 battery’s SOH prediction, prediction error, and RMSE and MAE. 
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Fig. 11. NASA dataset SOH prediction (training set 70%: prediction set 30%): (a), (d), (g). Bo5 battery’s SOH prediction, prediction error, and RMSE and MAE. (b), (e), (h). Bo6 battery’s SOH 
prediction, prediction error, and RMSE and MAE. (c), (f), (i). Bo7 battery’s SOH prediction, prediction error, and RMSE and MAE. 
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Fig. 12. Oxford dataset SOH prediction (training set 40%: prediction set 60%): (a), (d). Cell1 battery’s SOH prediction, and RMSE and MAE. (b), (e). Cell3 battery’s SOH prediction, and RMSE and MAE. 
(c), (f). Cell4 battery’s SOH prediction, and RMSE and MAE. 
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Fig. 13. Oxford dataset SOH prediction (training set 70%: prediction set 30%): (a), (d). Cell1 battery’s SOH prediction, and RMSE and MAE. (b), (e). Cell3 battery’s SOH prediction, and RMSE and MAE. 
(c), (f). Cell4 battery’s SOH prediction, and RMSE and MAE. 
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This paper overcomes these challenges by utilizing a combination of IC, DTV, and DT curves for predictive purposes. Using multiple 
feature curves can help avoid the problem of extracting a single feature being difficult. Even in cases where IC curve extraction proves 
problematic, the model can still predict SOH through the use of DTV and DT curves. Furthermore, subsequent experiments involving 
random cycle tests at different SOC levels can be conducted to validate the practicality and effectiveness of the model. 
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