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SUMMARY 

A convolutional Siamese neural network-based algorithm can calculate a continuous 

radiographic pulmonary disease severity score in COVID-19 patients, which can be used for 

longitudinal disease evaluation and clinical risk stratification. 

 

Key Points 

� A Siamese neural network-based severity score correlates with radiologist-annotated 

pulmonary disease severity on chest radiographs from patients with COVID-19 (r=0.86 

(95% CI 0.80-0.90) and r=0.86 (95% CI 0.79-0.90) in internal and external test sets 

respectively).  

� The direction of change in the severity score in follow-up radiographs is concordant with 

radiologist assessment (ρ=0.74 (95% CI 0.63-0.81)). 

� The admission chest radiograph severity score can help predict subsequent intubation or 

death within three days of admission (receiver operating characteristic area under the 

curve=0.80 (95% CI 0.75-0.85)). 

 



In 
pre

ss
Abbreviations:  

COVID-19 – coronavirus disease 2019; CXR – chest radiograph; RT-PCR – reverse 

transcriptase-polymerase chain reaction; AP – anterior-posterior; mRALE score – modified 

Radiographic Assessment of Lung Edema score; PXS score - pulmonary x-ray severity score; 

AUC – area under the curve; CI – confidence interval. 
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ABSTRACT 

Purpose: To develop an automated measure of COVID-19 pulmonary disease severity on chest 

radiographs (CXRs), for longitudinal disease tracking and outcome prediction. 

Materials and Methods: A convolutional Siamese neural network-based algorithm was trained to 

output a measure of pulmonary disease severity on CXRs (pulmonary x-ray severity (PXS) 

score), using weakly-supervised pretraining on ~160,000 anterior-posterior images from 

CheXpert and transfer learning on 314 frontal CXRs from COVID-19 patients. The algorithm 

was evaluated on internal and external test sets from different hospitals (154 and 113 CXRs 

respectively). PXS scores were correlated with radiographic severity scores independently 

assigned by two thoracic radiologists and one in-training radiologist (Pearson r). For 92 internal 

test set patients with follow-up CXRs, PXS score change was compared to radiologist 

assessments of change (Spearman ρ). The association between PXS score and subsequent 

intubation or death was assessed. Bootstrap 95% confidence intervals (CI) were calculated. 

Results: PXS scores correlated with radiographic pulmonary disease severity scores assigned 

to CXRs in the internal and external test sets (r=0.86 (95%CI 0.80-0.90) and r=0.86 (95%CI 

0.79-0.90) respectively). The direction of change in PXS score in follow-up CXRs agreed with 

radiologist assessment (ρ=0.74 (95%CI 0.63-0.81)). In patients not intubated on the admission 

CXR, the PXS score predicted subsequent intubation or death within three days of hospital 

admission (area under the receiver operating characteristic curve=0.80 (95%CI 0.75-0.85)). 

Conclusion: A Siamese neural network-based severity score automatically measures 

radiographic COVID-19 pulmonary disease severity, which can be used to track disease change 

and predict subsequent intubation or death.  
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Introduction  

The role of diagnostic chest imaging continues to evolve during the COVID-19 pandemic. 

According to American College of Radiology guidelines, while chest CT is not recommended for 

COVID-19 diagnosis or screening, portable chest radiographs (CXRs) are suggested when 

medically necessary (1). The Fleischner Society has stated that CXRs can be useful for 

assessing COVID-19 disease progression (2) and one study found that 69% of these patients 

have an abnormal baseline CXR (3). 

While radiographic findings are neither sensitive nor specific for COVID-19, with findings 

overlapping other infections and pulmonary edema, CXRs can be useful for assessing 

pulmonary infection severity and evaluating longitudinal changes. However, there is substantial 

variability in the interpretations of CXRs by radiologists, as has been demonstrated for 

pneumonia (4–6). In addition, commonly used disease severity categories on chest radiographs, 

such as “mild,” “moderate,” and “severe,” are challenging to reproduce as the thresholds 

between these categories are subjective. 

One possible solution to these challenges is to train a convolutional Siamese neural 

network to estimate radiographic disease severity on a continuous spectrum (7). Siamese 

neural networks take two separate images as inputs, which are passed through twinned neural 

networks (8,9). The Euclidean distance between the final two layers of the networks can be 

calculated, which serves as a measure of distance between the two images with respect to the 

imaging features being trained on, such as disease features. If an image-of-interest is compared 

pairwise to a pool of “normal” images, the disease severity can be abstracted to the median of 

those Euclidean distances.  

In this study, we hypothesized that a convolutional Siamese neural network-based 

algorithm could be trained to yield a measure of radiographic pulmonary disease severity on 

frontal CXRs (pulmonary x-ray severity (PXS) score). We evaluated the algorithm performance 
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on internal and external test sets of CXRs from patients with COVID-19. We also investigated 

the association between the admission PXS score and subsequent intubation or death. 

 

Materials and Methods 

This Health Insurance Portability and Accountability Act-compliant retrospective study was 

reviewed and exempted by the Institutional Review Board of Massachusetts General Hospital 

(Boston, MA), with waiver of informed consent.  

 

Chest Radiograph Data 

To train our model, we used a publicly available CXR data set, CheXpert, from Stanford 

Hospital, Palo Alto (10), for pretraining and a CXR data set from COVID-19 positive patients for 

subsequent training (Figure 1A). Additional COVID-19 CXR datasets were assembled for model 

testing and analysis of longitudinal change. 

CheXpert contains 224,316 CXRs, with annotations for image view, which we used to 

filter for AP radiographs only, as suspected or confirmed COVID-19 positive patients tend to be 

imaged more frequently in the AP projection in emergency rooms and hospitals. CheXpert also 

includes a partition for training and validation, and after filtering for only AP images, the training 

and validation sets used for pre-training contained 161,590 and 169 images, respectively. For 

each image in this dataset, there are multiple radiology report-derived annotations that 

represent pulmonary parenchymal findings, including “lung opacity,” “lung lesion,” 

“consolidation,” “pneumonia,” “atelectasis,” and “edema.” For the purpose of creating a binary 

label for model pre-training, we considered any image with at least one of these annotations 

(labeled positive or uncertain) to have an abnormal lung label. All other images were considered 

to have normal lungs (irrespective of lines and tubes, cardiomegaly, and other findings). 81% of 

training images had abnormal lung labels (Supplemental Table 1). 
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To assemble COVID-19 CXR datasets, we obtained raw DICOM data for CXRs at a 

large urban quaternary-care hospital in the United States (Massachusetts General Hospital 

[Boston, MA]), from COVID-19 positive patients (confirmed by nasopharyngeal swab RT-PCR). 

The COVID-19 training set contained 314 admission CXRs from consecutive unique patients 

hospitalized at least in part April 1-10, 2020, randomly partitioned 9:1 for training and validation 

(282:32 images). The COVID-19 internal test set contained 154 admission CXRs from 

consecutive unique patients hospitalized at least in part March 27-31, 2020. One hospitalized 

patient with COVID-19 from this time period was excluded from the test set due to prior 

pneumonectomy. There was no overlap between training and test set patients. Among the 

COVID-19 internal test set patients, 92 underwent a follow-up CXR within 12 days of admission. 

The DICOM data for these follow-up radiographs were also obtained for longitudinal analysis 

For DICOMs containing more than one frontal image acquisition, the standard frontal CXR 

image without postprocessing was selected, with the best positioning available (selected by 

M.D.L., postgraduate year 4 in-training radiologist). Most of these studies were in AP projection, 

as extracted from the DICOM metadata (Supplemental Table 2). Intubation and mortality data 

were collected from the medical record by two investigators blinded to CXR findings (A.O. and 

A.P., radiologists in fellowship training). We also obtained raw DICOM data for 113 consecutive 

admission CXRs associated with unique patients hospitalized at least in part on April 15, 2020 

at a community hospital in the United States (Newton-Wellesley Hospital [Newton, MA]), from 

COVID-19 positive patients (confirmed by nasopharyngeal swab RT-PCR), which served as an 

external test set.  

 

Radiologist Scoring of Pulmonary Disease Severity on Chest Radiographs 

To provide a reference standard assessment of disease severity on CXRs, we used a simplified 

version of the Radiographic Assessment of Lung Edema (RALE) score (11). This grading scale 
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was originally validated for use in pulmonary edema assessment in acute respiratory distress 

syndrome (ARDS) and incorporates the extent and density of alveolar opacities on CXRs. The 

grading system is relevant to COVID-19 patients as the CXR findings tend to involve multifocal 

alveolar opacities (3) and many hospitalized COVID-19 patients develop ARDS (12). In our 

study, we use a modified RALE (mRALE) score. Each lung is assigned a score for the extent of 

involvement by consolidation or ground glass/hazy opacities (0=none; 1=<25%; 2=25-50%; 

3=50-75%; 4=>75% involvement). Each lung score is then multiplied by an overall density score 

(1=hazy, 2=moderate, 3=dense). The sum of scores from each lung is the mRALE score 

(examples in Supplemental Figure 1). Thus, a normal CXR receives a score of 0, while a CXR 

with complete consolidation of both lungs receives the maximum score of 24. mRALE differs 

from the original RALE score in that the lungs are not divided into quadrants.  

Using the mRALE scoring system, two in-training radiologists (M.D.L. and F.D., both 

postgraduate year 4) independently annotated each image in the COVID-19 training set. Two 

fellowship-trained thoracic radiologists (B.P.L., 11 years of experience; D.P.M., 2 years of 

experience) and an in-training radiologist (M.D.L. for the internal test set and F.D. for the 

external test set) independently annotated each image in the COVID-19 internal and external 

test sets. The reference standard mRALE score for each image is the average of the raters. 

Annotator instructions and viewing conditions are in the Supplemental Materials. Inter-rater 

correlations between each of the raters were evaluated.  

 

Radiologist Assessment of Longitudinal Change 

The same raters who assessed the COVID-19 internal test set also evaluated the 92 internal 

test set patients with follow-up CXRs. For each longitudinal image pair, the raters independently 

assigned the label: decreased, same, or increased pulmonary disease severity (see 

Supplemental Materials for annotator viewing conditions). The majority change label was 

assigned with two or more votes for one label.  
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Convolutional Siamese Neural Network Training 

A convolutional Siamese neural network architecture takes two separate images as inputs, 

which are separately passed through identical subnetworks with shared weights (schematic in 

Figure 1A, see Supplemental Materials for image pre-processing details) (8,9). We built such a 

network using DenseNet121 (13) as the underlying subnetwork with initial pre-training on 

ImageNet, as this architecture had empirically performed well for classification tasks in the 

CheXpert study (10). The Euclidean distance Dw between the subnetwork outputs, Gw(X1) and 

Gw(X2), given image input vectors X1 and X2, is calculated from the equation (𝐷௪(𝑋ଵ,𝑋ଶ) = ‖𝐺௪(𝑋ଵ) −  𝐺௪(𝑋ଶ)‖ଶ) (9).  

We used a two-step training strategy, that involves pre-training with weak labels on the 

large CheXpert data set using the contrastive loss function (8), followed by transfer learning to 

the relatively small COVID-19 training set using mean square error loss, using the assigned 

mRALE scores as disease severity labels. The contrastive loss function teaches the model the 

difference between abnormal and normal lungs, while the mean square error loss teaches the 

model a representation of difference in mRALE scores. Details regarding the training strategy 

are in the Supplemental Materials. The code is available at https://github.com/QTIM-Lab/PXS-

score. For comparison, models were also trained using only the first or second training steps. 

 

Calculating the Pulmonary X-Ray Severity (PXS) Score 

After training the Siamese neural network, when two CXR images are passed through the 

subnetworks, the Euclidean distance calculated from the subnetwork outputs can serve as a 

continuous measure of difference between the two CXRs, with respect to pulmonary 

parenchymal findings. Thus, to evaluate a single image-of-interest for pulmonary disease 

severity, an image can be compared to a pool of N images without a lung abnormality 

(schematic in Figure 1B). We created a pool of normal images using all cases labeled with “No 
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Finding” from the CheXpert validation set (N=12, ages 19-68 years, 7 women; Supplemental 

Materials). Using the Siamese neural network, the Euclidean distance is calculated between the 

image-of-interest and each of the N normal images, and the median Euclidean distance is 

calculated. This median Euclidean distance is the Pulmonary X-Ray Severity (PXS) score.  

 

Occlusion sensitivity maps for visualizing Siamese neural network outputs 

We used an occlusion sensitivity approach (14) to visualize what portions of the input images 

were important to the Siamese neural network for calculating the PXS score. See the 

Supplemental Materials for details. 

 

Statistical Analysis 

We used Chi-square and Mann-Whitney tests, Pearson correlation (r), Spearman rank 

correlation (ρ), linear Cohen’s kappa (κ), Fisher’s exact test for odds ratios, and bootstrap 95% 

confidence intervals where appropriate (details in Supplementary Materials). The threshold for 

statistical significance was considered a priori to be P<0.05.  

 

Results 

COVID-19 Data Set Characteristics 

There was no significant difference in age, sex, or mRALE scores between the training set and 

internal test set; patients in the external test set were significantly older than in the training and 

internal test sets, but there was no significant difference in sex or mRALE scores (Table 1). For 

the 468 patients from the combined training and internal test sets, 134 patients were intubated 

or died within 3 days of hospital admission. The age and mRALE scores were significantly 

higher in these patients (Table 2).  
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mRALE Score Inter-Rater Correlation 

The correlation between the mRALE scores assigned by the radiologist raters was similar in the 

COVID-19 datasets (r=0.84-0.88, P<0.001 in all cases; see Supplemental Materials for details).  

 

Siamese Neural Network-based PXS Score Correlates with mRALE score 

In the internal test set, the Siamese neural network-based PXS score correlated with the 

average mRALE score assigned, which is a measure of radiographic pulmonary disease 

severity (r=0.86 (95% CI 0.80-0.90), P<0.001) (Figure 2A). In the external test set, the PXS 

score also correlated with the average mRALE score assigned (r=0.86 (95% CI 0.79-0.90), 

P<0.001) (Figure 2B). Using an occlusion sensitivity map-based approach, we show that the 

network focuses its attention on pulmonary opacities (Figure 2C). Pre-training improved model 

performance (Table 3; Supplemental Materials). 

 

Longitudinal Change Assessment with the PXS Score  

Of the internal test set patients with available longitudinal CXRs, according to the assigned 

majority vote change labels, 24 (26%), 19 (21%), and 44 (48%) of patients showed a decrease, 

no change, or increase in pulmonary disease severity respectively. Five patients (5%) did not 

receive majority votes (i.e. the three raters each voted differently; examples in Supplemental 

Figure 2) and were omitted from further analysis, which reflects subjectivity in the interpretation 

of heterogeneous CXRs. The inter-rater reliability between the three raters for assigning change 

labels was moderate (linear Cohen’s κ=0.58, 0.59, 0.57).  

The change in PXS score between two longitudinally acquired images correlates with 

the majority vote change label (ρ=0.74 (95% CI 0.63-0.81), P<0.001) (Figure 3A). For patients 

labeled with decreased disease severity, 18 (75%) were associated with decreased PXS score. 

For patients labeled for increased disease severity, 43 (98%) were associated with increased 

PXS score. For patients labeled for no change, the mean PXS score change is 0.1 (standard 
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deviation ± 1.3). Illustrative examples of longitudinal change assessment are shown in Figure 

3B. In cases labeled for no change but with an PXS score absolute change >1, variations in 

inspiratory effort and positioning seem to account for the PXS change (examples shown in 

Supplemental Figure 3). 

 

Association Between PXS Score and Intubation or Death 

The PXS score was significantly higher on admission CXRs of patients with COVID-19 who 

were intubated or dead within 3 days of admission from our training and internal test sets, 

compared to those who were not intubated (median PXS score 7.9 versus 3.2, P<0.001) (Figure 

4A). Importantly, the PXS score algorithm is not trained on outcomes data. Of the 134 patients 

who were intubated or died within 3 days of admission, 76 were intubated or died on the 

admission day and 31, 12 and 15 patients on hospital days 1, 2, and 3 respectively. A higher 

PXS score is associated with a shorter time interval before intubation or death in these patients 

(ρ=0.25, P=0.004) (Figure 4B).  

Given these findings, we used the PXS score as a continuous input for prediction of 

intubation or death within 3 days of hospital admission. For the 437 patients without an 

endotracheal tube present on the admission CXR, the receiver operating characteristic area 

under the curve (AUC) was 0.80 (bootstrap 95% CI 0.75-0.85) (Figure 4C). The PXS threshold 

can be set at different levels to obtain different test characteristics, which also be expressed as 

odds ratios (Table 4). 

 

Discussion 

Front-line clinicians estimate the risk for clinical decompensation in patients with COVID-19 

using a combination of data, including epidemiologic factors, comorbidities, vital signs, lab 

values, and clinical intuition (12,15). The chest radiograph can help contribute to this 

assessment, but manual assessment of severity is subjective and requires expertise. In this 
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study, we designed and trained a Siamese neural network-based algorithm to provide an 

automated measure of COVID-19 disease severity on chest radiographs in hospitalized 

patients, the Pulmonary X-ray Severity (PXS) score. The PXS score correlates with a manually 

annotated measure of radiographic disease severity in internal and external test sets, and the 

direction of change in PXS score for longitudinally acquired radiographs is concordant with 

radiologist assessment. For patients with COVID-19 presenting to the hospital with an 

admission chest radiograph, the PXS score can help predict subsequent intubation or death. 

The automatic PXS score can potentially be rapidly scaled and deployed, which has 

important clinical applications in the COVID-19 pandemic, particularly in countries like the 

United States or under-resourced settings where CXRs are frequently acquired, while CT 

studies are relatively rarely obtained. For example, in the emergency room, clinicians must 

decide whether or not a patient is safe to discharge home. By setting the PXS score threshold in 

favor of sensitivity for prediction of intubation or death, the score can be used to help with such 

decisions. Additionally, PXS score can potentially be used to improve existing and newCOVID-

19 machine learning models that account for other variables like vital signs, lab values, and co-

morbidities (16). Other potential applications include radiologist workflow optimization, where 

CXRs with more severe findings can be interpreted earlier, and hospital resource management, 

where the PXS score can help with resource allocation (e.g. prediction of future ventilator need). 

Various grading systems have been developed to measure respiratory disease severity 

on chest imaging, including for pulmonary edema in ARDS (11), severe acute respiratory 

infection (17), parainfluenza virus-associated infections (18), and pediatric pneumonia (19). A 

manual radiographic grading system for COVID-19 lung disease severity has been associated 

increased odds of intubation (20). These studies use manually annotated features from chest 

imaging to predict outcomes, such as mortality, need for intensive care, and other adverse 

events. However, barriers to adoption of these systems include inter-rater reliability and learning 

curve for users. In our study, raters assessing longitudinal change showed only moderate inter-
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rater agreement. Our automated Siamese neural network-based approach addresses these 

challenges.  

Deep learning-based algorithms have been applied to CXRs extensively, but primarily 

for disease detection, such as for pneumonia and tuberculosis (21,22), as well as for COVID-19 

localization on CXR images (23). However, due to the nature of chest radiography, there are 

limits to the sensitivity and specificity of this modality for COVID-19 detection (3). There is a 

relative paucity of research using deep learning for disease severity assessment on CXRs. 

Automated evaluation of pulmonary edema severity on CXRs has been explored using a deep 

learning model that incorporates ordinal regression of edema severity labels in training (no, 

mild, moderate, or severe edema) (24). These severity labels were extracted from associated 

radiology reports, but are inherently noisy given the variability in interpretation of the CXRs 

(25,26). This problem of noisy labels extends beyond pulmonary edema to any disease process 

where there is subjectivity in interpretation. Our Siamese neural network-based approach 

mitigates the label noise via transfer learning on data labeled with mRALE, a more fine-grained 

scoring system which showed high agreement between raters in our study. In addition, pre-

training of the Siamese neural network on public data with weak labels helped boost 

performance.  

There are limitations to this study. First, patients in this study were from urban areas of 

the United States, which may limit the external generalizability of this algorithm to other 

locations. However, given that the model was able to generalize to a second hospital 

(community hospital vs quaternary care center) with similar performance, the model seems 

robust. The generalizability between two hospitals also suggests the model is reasonably robust 

to image acquisition technique, including differences in x-ray machinery, beam penetration, and 

technologist technique. Second, abnormal patient positioning and respiratory phase may 

introduce variability, that may impact the algorithm performance. However, since the algorithm 

explicitly learns to assess radiographic disease severity, quality control is relatively simple as 
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the PXS score can be compared visually to what is expected on sample studies. Third, our 

algorithm was trained using predominantly AP chest radiographs, as AP positioning is more 

common than posterior-anterior images among patients with COVID-19. This may limit the 

generalizability of the algorithm model for posterior-anterior (PA) radiographs, though future 

testing on PA test sets is required. Fourth, the longitudinal images were presented to raters as 

side-by-side JPEG image pairs for convenience, which could be less accurate than if the studies 

were viewed in PACS. 

We developed an automated Siamese neural network-based pulmonary disease severity 

score for patients with COVID-19, with the potential to help with clinical triage and workflow 

optimization. With further validation, the score could be incorporated into clinical treatment 

guidelines to be used together with other clinical and lab data. The score could be validated for 

association/prediction with other outcomes, like oxygen saturation. Beyond the COVID-19 

pandemic, this automated severity score could also be modified and applied to other continuous 

disease processes manifesting on chest radiographs, like pulmonary edema, interstitial lung 

disease, and other infections. 

 

Acknowledgments: The authors thank Jeremy Irvin for sharing the CheXpert pre-processing 
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Table 1. Summary of dataset characteristics and radiologist mRALE scores. N, Number; Q1-

Q3, Quartile 1 to Quartile 3 (i.e. interquartile range). 

 Internal Dataset  
(Quaternary Care Hospital) 

External Dataset  
(Community Hospital) 

All Training/ 
Validation Set 

Internal  
Test Set 

p-valuea  External  
Test Set 

p-valueb  

Admission CXRs, N 
 

468 314 154  113  

Age (years), median 
(Q1-Q3) 

57 (43-72) 56 (43-72) 
 

59 (44-73) 0.2 74 (59-84) <0.001* 

Sex, N women (%)   192 (41%) 132 (42%) 
 

60 (39%) 0.6 54 (48%) 0.2 

mRALE, median 
(Q1-Q3) 
 
mRALE, N (%) 
     mRALE = 0  
     0 < mRALE ≤ 4 
     4 < mRALE ≤ 10 
     mRALE > 10 
 

4.0 (2.0-7.5) 
 
 
 
28 (6%) 
213 (46%) 
164 (35%) 
63 (13%) 

4.0 (1.5-8.0) 
 
 
 
20 (6%) 
143 (46%) 
105 (33%) 
46 (15%) 

4.0 (2.1-6.9) 
 
 
 
8 (5%) 
70 (45%) 
59 (38%) 
17 (11%) 

0.9 3.3 (1.3-6.7) 
 
 
 
7 (6%) 
61 (54%) 
30 (27%) 
15 (13%) 

0.1 

 
ap-value for comparison of internal test set with training/validation set. 
bp-value for comparison of external test set with internal dataset (all). 
*statistically significant. 
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Table 2. Patient and CXR characteristics stratified by outcome for the combined training and 

internal test set data (N = 468). N, Number; Q1-Q3, Quartile 1 to Quartile 3 (i.e. interquartile 

range). 

 Intubated or dead 
within 3 days of 
hospital admission 

Not intubated or dead 
within 3 days of 
hospital admission 

p-value 

Patients, N (% total) 
 

134 (29%) 334 (71%)  

Age (years), median 
(Q1-Q3) 

60 (50-72) 56 (42-72) 0.049* 

Sex, N women (% 
subgroup)  

50 (37%) 142 (43%) 0.4 

mRALE, median (Q1-
Q3) 

9.0 (5.0-12.2) 3.0 (1.5-5.7) <0.001* 

 
*statistically significant. 
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Table 3. Siamese neural network model performance was improved by pre-training on 

CheXpert using weak labels (abnormal versus normal lung) followed by training using COVID-

19 CXRs annotated for lung disease severity (mRALE score). 

 Model performance with 
only CheXpert training 

(weak labels for abnormal 
vs normal lung)  

Model performance  
with only COVID-19 
training set training 

(mRALE annotations) 

Model performance  
with CheXpert pre-training 
and COVID-19 training set 

training 
Pearson r  
(95% CI) 

Spearman ρ  
(95% CI) 

Pearson r  
(95% CI) 

Spearman ρ  
(95% CI) 

Pearson r  
(95% CI) 

Spearman ρ  
(95% CI) 

Internal test 
set 
 

0.66 (0.55-
0.75) 

0.70 (0.60-
0.77) 

0.81  
(0.74-0.86) 

0.77  
(0.69-0.83) 

0.86  
(0.80-0.90) 

0.84  
(0.77-0.88) 

External test 
set 
 

0.50 (0.37-
0.62) 

0.57 (0.42-
0.69) 

0.87  
(0.80-0.91) 

0.75  
(0.63-0.83) 

0.86  
(0.79-0.90) 

0.78  
(0.67-0.85) 
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Table 4. Admission radiograph PXS scores in hospitalized patients with COVID-19 (without 

endotracheal tube on admission CXR, N = 437) are associated with increased odds ratios for 

subsequent intubation or death within 3 days of admission. N, number. 

PXS score 
threshold 

Patients with PXS above 
threshold, total N (% total) 

Odds 
Ratio 

p-value ≥ 2 417 (95%) 2.9 0.2 ≥ 4 209 (48%) 5.9 <0.001* ≥ 6 120 (27%) 6.8 <0.001* ≥ 8 60 (14%) 12.1 <0.001* 
 
*statistically significant. 
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Figure 1: A, Schematic for training the convolutional Siamese neural network-based algorithm 

used to calculate the Pulmonary X-Ray Severity (PXS) score, a continuous measure of 

radiographic pulmonary disease severity in COVID-19 patients. The network is pre-trained with 

chest radiographs (CXRs) from CheXpert (10) using binary lung disease presence labels and 

then trained on CXRs from a COVID-19 training set using annotations for modified Radiographic 

Assessment of Lung Edema (mRALE) scores. B, Schematic for calculating the PXS score, 

which is calculated by comparing the image-of-interest pairwise with a pool of normal CXRs 

from CheXpert. Dw = Euclidean distance; MSE loss = mean square error. 
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Figure 2: Siamese neural network-based Pulmonary X-Ray Severity (PXS) score is a measure 

of radiographic pulmonary disease severity in patients with COVID-19. A and B, Scatterplots 

show, in a 154-patient internal test set (A) and 113-patient external hospital test set (B), the 

PXS score correlates with the modified Radiographic Assessment of Lung Edema (mRALE) 

score, a measure of pulmonary disease severity on chest radiographs (p=0.86, P<0.001 and 

p=0.86, P<0.001, respectively) (linear regression 95% confidence interval shown in the 

scatterplots). C, Occlusion sensitivity map-based approach shows that the Siamese neural 

network is focusing on pulmonary opacities. Yellow areas indicate parts of the image important 

to the neural network. 
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Figure 3: Siamese neural network-based Pulmonary X-Ray Severity (PXS) score can be used 

to assess longitudinal change in radiographic disease severity over time in COVID-19 patients. 

A, Boxplot shows the PXS score correlates with majority vote change in pulmonary disease 

severity (ρ=0.74, P<0.001), where -1, 0, and 1 indicate decreased, unchanged, and increased 

severity in longitudinal chest radiograph pairs, assigned by three independent raters (2 thoracic 

radiologists, 1 in-training radiologist). The boxplot boxes indicate the median and interquartile 

range (IQR), with whiskers extending to points within 1.5 IQRs of the IQR boundaries. B, 

Examples of PXS score evaluation of longitudinal change in three patients with COVID-19. 

 

 

Figure 4: Siamese neural network-based Pulmonary X-Ray Severity (PXS) score is associated 

with intubation in patients hospitalized with COVID-19. A, Boxplot shows the PXS score is 

significantly higher in patients intubated within three days of hospital admission (P<0.001). B, 

Boxplot shows that a higher PXS score is associated with a shorter time interval before 
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intubation (ρ=0.25, P=0.004), C, Receiver operating characteristic and precision recall curves 

show the performance of the PXS score for predicting subsequent intubation within three days 

of hospital admission, in patients without an endotracheal tube on their admission chest 

radiograph (AUC, area under the curve; dashed lines indicate bootstrap 95% confidence 

intervals).  
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Supplemental Methods 

Chest Radiograph Image Pre-processing 

Full size CXR images in JPEG format from CheXpert were all resized to 320 x 320 pixels, which 

is within the resolution range of optimal performance for CXR binary classification tasks (27). 

DICOM files from the COVID-19 CXRs were all pre-processed in the same manner as in 

ChexPert, with image pixel array extraction using pydicom (28), followed by normalization to [0, 

255], conversion to 8-bit, correction of photometric inversion, histogram equalization in OpenCV 

(29), and conversion to a JPEG file. These DICOMs were anonymized at the time of study 

export from the PACS. In the external test set CXR images, some images included a large black 

border around the actual radiograph, which was mostly removed using an automatic cropping 

algorithm in Python (border pixels with a 0 pixel value were removed). 

 

mRALE annotator instructions and CXR image viewing conditions 

All annotators were instructed on use of mRALE and practiced on ~10 cases before annotating 

the complete datasets independently. There were instructed that the goal of mRALE is to grade 

pulmonary opacity, regardless of cause (e.g. fibrosis or pulmonary edema still presents with a 

lung opacity, and should be graded as such). In the overall density score, the term ‘moderate’ is 

used which is from the original RALE paper. We have interpreted it to mean anything in 

between hazy opacities and dense consolidation. The lung may have different densities in 

different parts (e.g. ~50% of the left lung shows opacities, but some is ‘moderate’ density and 

some is ‘dense.’ The rater decides on the predominant density to assign the score. Pleural 

effusions are not included in the scoring system, though concurrent “basal opacities” which may 

be due to atelectasis does contribute to the mRALE score. 

For the training set, CXR images were viewed by annotators using JPEG images pre-

processed from the DICOMs on personal computers (due to convenience during the COVID-19 

pandemic). For the internal and external test sets, CXR images were viewed by annotators 
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using PACS stations routinely used for clinical work in the hospital, in standard diagnostic 

conditions, so as to simulate the real-world radiologist work environment.  

For the longitudinal image pair annotations for change, CXR images were displayed as 

side-by-side pre-processed JPEG images to allow for convenience of comparison. 

 

Convolutional Siamese Neural Network Training 

We used a two-step training strategy, that involves pre-training with weak labels on the large 

CheXpert data set followed by transfer learning to the relatively small COVID-19 training set, as 

follows: 

Step 1. To pre-train the Siamese neural network on CheXpert data, the contrastive loss 

function is used to train the network parameters, as defined by the equation (𝐿 = (1 − 𝑌)𝐷௪ଶ +(𝑌){𝑚𝑎𝑥(0,𝑚 − 𝐷௪)}ଶ ; Y = 0 if same class (i.e. no change) and Y = 1 if different class (i.e. 

change), Dw = Euclidean distance, and m = margin) (9). The contrastive loss function minimizes 

when there is a small Euclidean distance for no change and large Euclidean distance for 

change in class. The margin hyperparameter is empirically set to 50, which gives the maximum 

Dw for which dissimilar image input pairs will not contribute further to the loss, helping to 

stabilized training. As the goal of this algorithm is to generate a measure of disease severity, we 

trained the convolutional Siamese neural network to maximize Euclidean distance when the 

input images showed a difference in labels that identify lung parenchymal abnormalities. In the 

CheXpert data set, there are annotations that represent pulmonary parenchymal findings, 

including “lung opacity,” “lung lesion,” “consolidation,” “pneumonia,” “atelectasis,” and “edema.” 

If an image had any one of these labels (marked positive or uncertain), it was assigned an 

abnormal lung label. If an image did not have any one of those labels, it was assigned a normal 

lung label. In training the network, paired CXR images were sampled from the training data and 

passed to the subnetworks separately, where the contrastive loss function label Y = 0 if the 

CXRs both have the ChexPert label “No Finding” label (i.e. no difference between normal lungs) 
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and Y = 1 if one CXR has an abnormal lung label and the other has a “No Finding” label (i.e. 

difference between lungs). The paired input CXR images were randomly sampled in a manner 

so that an equal number of Y = 0 and Y = 1 labels were assigned, for both training and 

validation. We empirically set the number of CXR image pairs sampled per epoch of training 

and validation at 6400 and 200 image pairs respectively. For both training and validation, each 

input image is resized to 336 x 336 pixels followed by a center crop to 320 x 320 pixels. This 

algorithm was implemented in Python with the PyTorch package, using the Adam optimizer (30) 

(initial learning rate = 0.00002, �1 = 0.9, �2 = 0.999). Batch sizes were fixed at 8 for training and 

validation. Early stopping of training occurred when the validation loss showed no further 

improvement after 3 training epochs. The model with the lowest validation loss was saved for 

further training. 

Step 2. After pre-training on ChexPert data using weak labels, we train the Siamese 

neural network on the 314 image COVID-19 training set using mean square error (MSE) loss. 

Each image pair fed to the Siamese neural network results in an output of the Euclidean 

distance between the final fully connected layers. This Euclidean distance is an abstraction of 

difference in pulmonary disease severity between the two input CXRs. The “error” of the MSE 

loss is the difference between the Euclidean distance and the absolute difference in the labeled 

mRALE scores between the two input images. The input image pairs are randomly sampled 

during training and validation, with 1600 and 200 image pairs sampled per epoch, respectively. 

For training, each input image is resized to 336 x 336 pixels followed augmentation with random 

rotations of ±5° and random crop of 320 x 320 pixels. For validation, each input image is resized 

to 336 x 336 pixels followed by a center crop to 320 x 320 pixels. This training step was also 

implemented using the Adam optimizer, with the same hyperparameters as the previous step, 

and batch sizes of 8. Early stopping was set at 7 epochs without improvement in validation loss. 

The model with the lowest validation loss was saved for testing evaluation. 
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The rationale for using contrastive loss in pre-training (Step 1), but MSE loss instead in 

training (Step 2), is related to the available data labels. The pre-training dataset has weak binary 

labels (lung opacity versus no lung opacity), which can be used to create same versus different 

labels for paired inputs for the contrastive loss function. MSE loss cannot be used in this case, 

as the label is binary. Contrastingly, the training dataset has labels that provide a more granular 

severity grade (mRALE), which can be used as inputs for MSE loss. By using MSE loss during 

training, the model can learn that the differences between varying magnitudes of differences in 

mRALE scores (e.g. mRALE 1 versus 4 is different from 5 vs 16, but 3 versus 6 should have the 

same difference in mRALE between two inputs as 1 versus 4). This allows the PXS score model 

to learn a linear representation of lung disease severity. 

 

Occlusion sensitivity maps for visualizing Siamese neural network outputs 

To generate an occlusion map, patches of 32 x 32 pixels in the paired input images are 

occluded (patch area pixel intensities equal the mean of the patch) iteratively across the entire 

image (stride length 16 pixels). For each iteration, both occluded images are passed through the 

Siamese neural network and a Euclidean distance is calculated. An increased difference 

between this Euclidean distance and the non-occluded baseline Euclidean distance indicates 

that part of the image is important to the network and can be represented as a heat map. When 

evaluating disease severity in a single image, as in this case, an occlusion sensitivity map is 

generated for each comparison of the image-of-interest to each image in the pool of ChexPert 

“No Finding” images. The median of these occlusion sensitivity maps is used for visualization.  

 

Statistics 

To evaluate differences in patient gender and age in the COVID-19 data sets, we used the Chi-

square test and Mann-Whitney test (two-sided), respectively. To evaluate differences in mRALE 

score between the COVID-19 data sets, treated mRALE as a continuous variable (scale 0-24) 
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and used the Mann-Whitney test (two-sided). The associations between variables including the 

PXS score, mRALE score, and inter-rater mRALE scores were calculated using the Pearson 

correlation (r) (and also Spearman rank correlation (ρ) for comparison of correlations with and 

without pretraining). For evaluating inter-rater reliability of longitudinal CXR change labels, linear 

Cohen’s kappa (κ) was used. For comparing radiologist agreement with the algorithm on 

longitudinal change assessment, we used the Spearman rank correlation. For comparison of the 

PXS score between patients with and without intubation/death, the Mann-Whitney test was used 

(two-sided). For evaluating the correlation between the time interval between admission and 

intubation/death, we used the Spearman rank correlation. For correlation coefficients and area 

under the receiver operating characteristic curve analysis, bootstrap 95% confidence intervals 

were calculated. Odds ratios and p-values for the association of PXS score thresholds with 

clinical outcomes were calculated using Fisher’s exact test (unconditional maximum likelihood 

estimate). These calculations were all performed using the scipy and sklearn Python packages. 

The threshold for statistical significance was considered a priori to be P<0.05. Data 

visualizations were performed using the Seaborn Python package. 

 

Supplemental Results 

Inter-rater correlation in assigning mRALE scores 

In the 314-patient COVID-19 training set, the correlation between the assigned mRALE score of 

the two raters was good (r=0.87, P<0.001). In the 154-patient COVID-19 internal test set, the 

rank correlations of the assigned mRALE score between the three raters was similar (r=0.85, 

0.87, 0.85, P<0.001 in all cases). In the 113-patient COVID-19 external test set, the rank 

correlations of the assigned mRALE score between the three raters was also similar (0.84, 0.86, 

0.88, P<0.001 in all cases).  

 



In 
pre

ss
Impact of CheXpert pre-training on model performance 

To evaluate the impact of pre-training, we also trained a Siamese neural network model without 

CheXpert pre-training. We also found that this pre-training resulted in improved model 

performance, as demonstrated by increased Pearson and Spearman correlations on the internal 

test set and increased Spearman correlation on the external test set (Table 3). The Pearson 

correlation on the external test set was essentially the same.  A model trained using only 

abnormal versus normal lung labels derived from the CheXpert data set (weak supervision) had 

worse performance (Table 3). 

 

Impact of image anchor pool size on model performance 

We empirically set the size of the pool of normal studies for comparison to N = 12, which were 

used as image comparisons to calculate the PXS score as described in the Methods. During 

model development, we found that increasing the N improves model performance, particularly 

for smaller Euclidean distances (i.e. PXS scores), though with diminishing improvement with 

larger N (e.g. N = 30 resulted in the same performance as N = 12 in the internal test set). 

However, model inference time increases as N increases, due to the increased number of 

comparisons that are made using the Siamese neural network.  
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Supplemental Table 1. Distribution of abnormal lung labels in the CheXpert image dataset. 

 Complete CheXpert dataset, N 
(% total) 
 

AP CheXpert images only, N 
(% total) 

Abnormal lung label Training: 166,291 (74%) 
Validation: 126 (54%) 

Training: 130,934 (81%) 
Validation: 109 (64%) 

Normal lung label Training: 57,123 (26%) 
Validation: 108 (46%) 

Training: 30,656 (19%) 
Validation: 60 (36%) 

TOTAL Training: 223,414 
Validation: 234 

Training: 161,590 
Validation: 169 

 
For any image with a CheXpert annotation (marked positive or uncertain) that represents 
pulmonary parenchymal findings, including “lung opacity,” “lung lesion,” “consolidation,” 
“pneumonia,” “atelectasis,” and “edema.”, it was assigned an abnormal lung label. If an image 
did not have any one of those labels, it was assigned a normal lung label. AP, anterior-posterior 
view. 
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Supplemental Table 2. Distribution of CXR view position in the COVID-19 image datasets. 

 CXRs, N AP view, N (% set) PA view, N (% set) 
Training Set 
     Training Partition 
     Validation Partition 

314 
     282 
     32 

268 (85%) 
     239 (85%) 
     29 (91%) 

46 (15%) 
     43 (15%) 
     3 (9%) 

Internal Test Set 154 128 (83%) 26 (17%) 
External Test Set 113 107 (95%) 6 (5%) 
TOTAL 581 503 (87%) 78 (13%) 

 
AP, anterior-posterior view; PA, posterior-anterior view. 
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Supplemental Figure 1. Representative example images of mRALE scores in CXRs from 

patients with COVID-19 (average of scores assigned by multiple raters). 
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Supplemental Figure 2. Examples of longitudinally acquired CXRs in patients with COVID-19 

where there was no majority vote for a change label by radiologist raters (i.e. one vote for no 

change, one vote for worse disease, and one for better disease). In A, the PXS score showed a 

change of -2.8 (10.4 to 7.6), suggesting decreased lung disease severity. In B, the PXS score 

showed a change of +1.2 (3.9 to 5.1), suggesting slightly increased lung disease severity. 
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Supplemental Figure 3. Illustrative examples of the potential impact of differences in 

inspiratory effort and positioning on PXS score. In A and B, the paired radiographs are from the 

same patient acquired at different time points (from the longitudinal analysis). In both cases, the 

CXR from the second time point has a higher PXS score, but this appears to be at least in part 

due to lower lung volumes with mild atelectasis in both cases. In case A, the patient positioning 

is also different. The majority vote of radiologist annotators in both of these paired cases was for 

no change in lung disease severity between the CXRs. 

 




